Advertisement

Virtual Reality Production Training System in the Scope of Intelligent Factory

  • Krzysztof Żywicki
  • Przemysław Zawadzki
  • Filip Górski
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 637)

Abstract

The paper presents a prototype Virtual Reality system for learning of operation in an intelligent factory, working according to the concept of Industry 4.0. The SmartFactory laboratory—example of part of intelligent factory—is described. The VR prototype system and process of its building is also presented, starting from digitalization of the real smart factory, through logic programming and connection of peripheral VR devices. Functions of the training system are presented, along with directions of future studies and development.

Keywords

Industry 4.0 Smart factory Virtual reality training system 

References

  1. 1.
    Górski, F., Zawadzki, P., Hamrol, A.: Knowledge based engineering as a condition of effective mass production of configurable products by design automation. J. Mach. Eng. 16(4), 5–30 (2016)Google Scholar
  2. 2.
    Zawadzki, P., Żywicki, K.: Smart product design and production control for effective mass customization in the Industry 4.0 concept. Manag. Prod. Eng. Rev. 7(3), 105–112 (2016)Google Scholar
  3. 3.
    Mueller, W., Becker, M., Elfeky, A., DiPasquale, A.: Virtual prototyping of cyber-physical systems. In: 2012 17th Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 219–226. IEEE, New Jersey (2012)Google Scholar
  4. 4.
    Gorecky, D., Schmitt, M., Loskyll, M., Zühlke, D.: Human-machine-interaction in the industry 4.0 era. In: 2014 12th IEEE International Conference on Industrial Informatics (INDIN),  pp. 289–294. IEEE, New Jersey (2014)Google Scholar
  5. 5.
    Hu, F.: Cyber-physical systems: integrated computing and engineering design. CRC Press, Boca Raton (2013)Google Scholar
  6. 6.
    Zhang, Y., Xie, F., Dong, Y., Yang, G., Zhou, X.: High fidelity virtualization of cyber-physical systems. Int. J. Model. Simul. Sci. Comput. 4(02) (2013). 1340005Google Scholar
  7. 7.
    Lee, J., Bagheri, B., Kao, H.A.: A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manuf. Lett. 3, 18–23 (2015)CrossRefGoogle Scholar
  8. 8.
    Trojanowska, J., Żywicki, K., Pająk, E.: Influence of selected methods of production flow control on environment. In: Golinska, P., Fertsch, M., MarxGomez, J. (eds.) Information Technologies in Environmental Engineering, pp. s.695–705. Springer, New York (2011). doi: 10.1007/978-3-64219536-5_54
  9. 9.
    Seidel, R.J., Chatelier, P.R.: Virtual reality, training’s future? Plenum Press, New York (1997)CrossRefGoogle Scholar
  10. 10.
    Grajewski, D., Diakun, J., Wichniarek, R., Dostatni, E., Buń, P., Górski, F., Karwasz, A.: Improving the skills and knowledge of future designers in the field of ecodesign using virtual reality technologies. Procedia Comput. Sci. 1(75), 348–358 (2015)CrossRefGoogle Scholar
  11. 11.
    Pandilov, Z., Milecki, A., Nowak, A., Górski, F., Grajewski, D., Ciglar, D., Klaić, M., Mulc, T.: Virtual modelling and simulation of a CNC machine feed drive system. Trans. FAMENA. 39(4), 37–54 (2016)Google Scholar
  12. 12.
    Grajewski, D., Górski, F., Zawadzki, P., Hamrol, A.: Application of virtual reality techniques in design of ergonomic manufacturing workplaces. In: 2013 International Conference on Virtual and Augmented Reality in Education, vol. 25, pp. 289–301 (2013)Google Scholar
  13. 13.
    Górski, F., Buń, P., Wichanirek, R., Zawadzki, P., Hamrol, A.: Immersive city bus configuration system for marketing and sales education. Procedia Comput. Sci. 75, 137–146 (2015)CrossRefGoogle Scholar
  14. 14.
    Langley, A., Lawson, G., Hermawati, S., D’Cruz, M., Apold, J., Arlt, F., Mura, K.: establishing the usability of a virtual training system for assembly operations within the automotive industry. Human Fact. Ergon. Manuf. Serv. Ind. 26(6), 667–679 (2016)CrossRefGoogle Scholar
  15. 15.
    Gorecky, D., Khamis, M., Mura, K.: Introduction and establishment of virtual training in the factory of the future. Int. J. Comput. Integr. Manuf. 30(1), 182–190 (2017)Google Scholar
  16. 16.
    Abate, A.F., Guida, M., Leoncini, P., Nappi, M., Ricciardi, S.: A haptic-based approach to virtual training for aerospace industry. J. Vis. Lang. Comput. 20(5), 318–325 (2009)CrossRefGoogle Scholar
  17. 17.
    Angelov, A.N., Styczynski, Z.A.: Computer-aided 3D virtual training in power system education. In: Power Engineering Society General Meeting, pp. 1–4. IEEE, New Jersey (2007)Google Scholar
  18. 18.
    Fast, K., Gifford, T., Yancey, R.: Virtual training for welding. In: Third IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2004, pp. 298–299. IEEE, New Jersey (2004)Google Scholar
  19. 19.
    Lin, F., Ye, L., Duffy, V.G., Su, C.J.: Developing virtual environments for industrial training. Inf. Sci. 140(1), 153–170 (2002)CrossRefzbMATHGoogle Scholar
  20. 20.
    Wasfy, A., Wasfy, T., Noor, A.: Intelligent virtual environment for process training. Adv. Eng. Softw. 35(6), 337–355 (2004)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Krzysztof Żywicki
    • 1
  • Przemysław Zawadzki
    • 1
  • Filip Górski
    • 1
  1. 1.Chair of Management and Production EngineeringPoznan University of TechnologyPoznanPoland

Personalised recommendations