The Use of Neural Network Model in the Assessment of Annoyance of the Industrial Noise Sources

  • Waldemar PaszkowskiEmail author
  • Andrzej Loska
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 637)


In this article, there was made an attempt to use artificial intelligence methods in the assessment of industrial noise annoyance. There was discussed the research carried out under laboratory conditions and with using the calculation formulas. The results of the use of the neural network model, for the selected variables are more satisfactory, in the context of the methods used. One of the advantages of the presented approach is the possibility of predicting the assessment of noise annoyance for different values against input parameters.


Industrial noise annoyance Neural network model Psychoacoustic aspects Sound quality 



The article includes a part of the statutory research no. 13/030/BK_17/0027 entitled: “Methods and tools of production engineering for the development of smart specialization”, carried out at the Institute of Production Engineering of the Silesian University of Technology.


  1. 1.
    Aures, W.: ‘Berechnungsverfahren für den sensorischen Wohlklang beliebiger Schallsignale’ (A model for calculating the sensory euphony of various sounds). Acustica 59, 130–141 (1985)Google Scholar
  2. 2.
    Baran, J., Janik, A., Ryszko, A., Szafraniec, M.: Selected environmental methods and tools supporting eco-innovation implementation within national smart specialisations in Poland. In: 3rd International Multidisciplinary Scientific Conference on Social Sciences and Arts SGEM 2016, SGEM2016 Conference Proceedings, Book 2, vol. 3, Albena (Bulgaria), pp. 1029–1036 (2016)Google Scholar
  3. 3.
    Brodny, J., Stecuła, K., Tutak, M.: Application of the TPM strategy to analyze the effectiveness of using a set of mining machines. In: 16th International Multidisciplinary Scientific GeoConference. SGEM 2016, Albena (Bulgaria). Book 1: Science and Technologies in Geology, Exploration and Mining, pp. 65–72 (2016)Google Scholar
  4. 4.
    Burduk, A.: Assessment of risk in a production system with the use of the FMEA analysis and linguistic variables. In: 7th International Conference on Hybrid Artificial Intelligent Systems (HAIS), Salamanca, Hybrid Artificial Intelligent Systems, PT II. Book Series: Lecture Notes in Computer Science, vol. 7209, pp. 250–258 (2012)Google Scholar
  5. 5.
    DIN 45631/A1: 2010 Calculation of loudness level and loudness from the sound spectrum—Zwicker method—Amendment 1: Calculation of the loudness of time-variant soundGoogle Scholar
  6. 6.
    DIN 45692: 2009–08 Measurement technique for the simulation of the auditory sensation of sharpnessGoogle Scholar
  7. 7.
    EU directive on environmental noise 2002/49/EC (2002)Google Scholar
  8. 8.
    Glasberg, B.R., Moore, B.C.J.: A model of loudness applicable to time-varying sounds. J. Audio Eng. Soc. 50, 331–342 (2002)Google Scholar
  9. 9.
    Jasiulewicz-Kaczmarek, M., Piechowski, M.: Practical aspects of OEE in automotive company—case study. In: Xu, Y., Zhao, S., Xie, H. (eds.) Proceedings of the 2016 International Conference on Management Science and Management Innovation August 13–14, 2016, Guilin, China, Book Series AEBMR—Advances in Economics Business and Management Research, vol. 10, pp. 213–218 (2016)Google Scholar
  10. 10.
    Kaczmarska, A., Łuczak, A.: Analysis of annoyance caused by infrasound and low-frequency noise during mental work. Arch. Acoust. 33(3), 331–340 (2008)Google Scholar
  11. 11.
    Karwot, J., Kaźmierczak, J., Wyczółkowski, R., Paszkowski, W., Przystałka, W.: Smart water in smart city: a case study. In: 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Albena (Bulgaria), Book 3: Hydrology and water resources, pp. 851–858 (2016)Google Scholar
  12. 12.
    Kosicka, E., Kozłowski, E., Mazurkiewicz, D.: The use of stationary tests for analysis of monitored residual processes. Eksploat. Niezawodn. 17(4), 604–609 (2015)CrossRefGoogle Scholar
  13. 13.
    Loska, A.: Exploitation assessment of selected technical objects using taxonomic methods. Eksploat. Niezawodn. 15(1), 1–8 (2013)Google Scholar
  14. 14.
    Loska, A.: Remarks about modelling of maintenance processes with the use of scenario techniques. Eksploat. Niezawodn. 14(2), 92–98 (2012)Google Scholar
  15. 15.
    Loska, A.: Scenario modeling exploitation decision-making process in technical network systems. Eksploat. Niezawodn. 19(2), 268–278 (2017)CrossRefGoogle Scholar
  16. 16.
    Ozimek, E.: Dźwięk i jego percepcja. Aspekty fizyczne i psychoakustyczne. Wydawnictwo naukowe PWN, Warszawa-Poznań (2002)Google Scholar
  17. 17.
    Preis, A., Kaczmarek, T.: Annoyance of time-varying Road-traffic noise. Arch. Acoust. 35(3), 383–393 (2010)Google Scholar
  18. 18.
    Rudno-Rudzińska B.: Modelowanie emisji i propagacji dźwięku do prognozowania klimatu akustycznego środowiska zurbanizowanego. Prace naukowe Instytutu Telekomunikacji i Akustyki Politechniki Wrocławskiej, 75. Monografia nr 39. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (1994)Google Scholar
  19. 19.
    Ryszko, A.: Interorganizational cooperation, knowledge sharing, and technological eco-innovation: the role of proactive environmental strategy - empirical evidence from Poland. Pol. J. Environ. Stud. 25(2), 753–763 (2016)CrossRefGoogle Scholar
  20. 20.
    Sottek, R., Genuit, K.: Perception of roughness of time-variant sounds. J. Acoust. Soc. Am. 133(5), 3598–3598 (2013)CrossRefGoogle Scholar
  21. 21.
    Stecuła, K., Brodny, J.: Application of the OEE model to analyze the availability of the mining armored face conveyor. In: 16th International Multidisciplinary Scientific GeoConference SGEM 2016, Albena (Bulgaria), Book 1: Science and Technologies in Geology, Exploration and Mining, pp. 57–64 (2016)Google Scholar
  22. 22.
    Zimmer, K., Ellermeier, W.: Construction and evaluation of a noise-sensitivity questionnaire. In: Fastl, H. (ed.) Recent Trends in Hearing Research, pp. 163–170. BIS, Bibliotetheksund Informationssystem der Universität, Oldenburg (1996)Google Scholar
  23. 23.
    Zwicker, E., Fastl, H.: Psychoacoustics, Facts and Models. Springer, Berlin (1990)Google Scholar
  24. 24.
    Zwicker, E., Fastl, H.: Psychoacoustics, Facts and Models. Springer, Berlin (2007)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Faculty of Organisation and Management, Institute of Production EngineeringSilesian University of TechnologyGliwicePoland

Personalised recommendations