Advertisement

Predictive Scheduling as a Part of Intelligent Job Scheduling System

  • Łukasz Sobaszek
  • Arkadiusz Gola
  • Antoni Świć
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 637)

Abstract

Production processes are inseparably connected with numerous factors hindering their course. It is therefore essential to ensure that the process is carried out with no disruptions, which demands that these are identified and compensated for in advance. This paper presents intelligent job scheduling system under uncertainty. The first section gives a brief overview of job scheduling in manufacturing. The second section examines robust scheduling as a solution to production process disruptions. Furthermore, the idea of predictive/reactive scheduling is presented, highlighting the essence of predictive scheduling in a production process with two-factor uncertainty.

Keywords

Production scheduling Robust scheduling Intelligent scheduling system 

References

  1. 1.
    Sobaszek, Ł., Gola, A.: Computer-aided production task scheduling. Appl. Comput. Sci. 11(4), 58–69 (2015)Google Scholar
  2. 2.
    Billaut, J.C.H., Moukrim, A., Sanlaville, E.: Flexibility and Robustness in Scheduling. ISTE Ltd., London (2008)CrossRefGoogle Scholar
  3. 3.
    Mujanah Ezat, A.: Slimulation of Production Scheduling in Manufacturing Systems. Dublin City University, Dublin (1993)Google Scholar
  4. 4.
    Kalinowski, K.: Harmonogramowanie dyskretnych procesów produkcyjnych. Wydawnictwo Politechniki Śląskiej, Gliwice (2013)Google Scholar
  5. 5.
    Rudawska, A., Čuboňova, N., Pomarańska, K., Stanečková, D., Gola, A.: Technical and organizational improvements of packaging production processes. Adv. Sci. Technol. Res. J. 10(30), 182–192 (2016)CrossRefGoogle Scholar
  6. 6.
    Kłosowski, G., Gola, A., Świć, A.: Application of fuzzy logic in assigning workers to production tasks. Adv. Intell. Syst. Comput. 474, 505–513 (2016)Google Scholar
  7. 7.
    Sitek, P., Wikarek, J.: A hybrid programming framework for modeling and solving constraint satisfaction and optimization problems. Sci. Programm. (2016). doi: 10.1155/2016/5102616 Google Scholar
  8. 8.
    Sobaszek, Ł., Świć, A., Gola, A.: Koncepcja zastosowania narzędzi predykcji w projektowaniu harmonogramów odpornych. Zarządzanie Przedsiębiorstwem 2, 20–26 (2016)Google Scholar
  9. 9.
    Deepu, P.: Robust Schedules and Disruption Management for Job Shops. Bozeman, Montana (2008)Google Scholar
  10. 10.
    Gao, H.: Bulding Robust Schedules using Temporal Protection—An Emipirical Study of Constraint Based Scheduling Under Machine Failure Uncertainty. Ontario, Toronto (1996)Google Scholar
  11. 11.
    Klimek, M.: Predyktywno-reaktywne harmonogramowanie produkcji z ograniczoną dostępnością zasobów. AGH, Kraków (2010)Google Scholar
  12. 12.
    Paprocka, I., Skołud, B.: Robust scheduling, a production scheduling model of failures. Mechatron. Comput. Mech. Appl. Mech. Mat. 307, 443–446 (2013)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kalinowski, K., Grabowik, C., Kempa, W., Paprocka, I.: The role of the production scheduling system in rescheduling. In: Oanta, E., et al. (eds.) Modern Technologies In Industrial Engineering (MODTECH2015), vol. 95, pp. 1–6. IOP Publishing, Bristol (2015)Google Scholar
  14. 14.
    Sobaszek, Ł., Gola, A., Świć, A.: Analiza awaryjności parku maszynowego wybranego przedsiębiorstwa produkcyjnego z wykorzystaniem narzędzi predykcji. In: Knosala, R. (ed.) Innowacje w zarządzaniu i inżynierii produkcji, t. 2, pp. 638–650. Oficyna Wydawnicza Polskiego Towarzystwa Zarządzania Produkcją, Opole (2016)Google Scholar
  15. 15.
    Sugier, J., Anders, G.J.: Modelling and evaluation of deterioration process with maintenance activities. Eksploatacja i Niezawodnosc 15(4), 305–311 (2013)Google Scholar
  16. 16.
    Kosicka, E., Kozłowski, E., Mazurkiewicz, D.: The use of stationary tests for analysis of monitored residual processes. Eksploatacja i Niezawodnosc 17(4), 604–609 (2015)CrossRefGoogle Scholar
  17. 17.
    Relich, M., Świć, A., Gola, A.: A knowledge-based approach to product concept screen. Adv. Intell. Syst. Comput. 373, 341–348 (2015)Google Scholar
  18. 18.
    Antosz, K., Stadnicka, D.: The results of the study concerning the identification of the activities realized in the management of the technical infrastructure in large enterprises. Eksploatacja i Niezawodnosc 16(1), 112–119 (2014)Google Scholar
  19. 19.
    Bräsel, H., Dornheim, L., Kutz, S., Mörig, M., Rössling, I.: LiSA – A Library of Scheduling Algorithms. Magdeburg University, Magdeburg (2001)Google Scholar
  20. 20.
    Brzeziński, M.: Sterowanie produkcją – materiały do ćwiczeń i projektowania. Wydawnictwo Politechniki Lubelskiej, Lublin (2001)Google Scholar
  21. 21.
    Portal RANDOM.ORG. http://www.random.org
  22. 22.
    Al-Hinai, N., ElMekkawy, T.Y.: Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm. Int. J. Product. Econ. 132(2), 279–291 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Łukasz Sobaszek
    • 1
  • Arkadiusz Gola
    • 1
  • Antoni Świć
    • 1
  1. 1.Faculty of Mechanical Engineering, Institute of Technological Systems of InformationLublin University of TechnologyLublinPoland

Personalised recommendations