Modelling and Forecasting the Sludge Bulking in Biological Reactors of Wastewater Treatment Plants by Means of Data Mining Methods

  • Bartosz SzelągEmail author
  • Jan Studziński
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 637)


The bulking of active sludge in treatment plant bioreactors occurs very often in communal wastewater works what leads to worsening the abilities of sludge sedimentation and the efficiency of works operation. Because of that there is useful and suitable to model and predict the sludge bulking events in order to take some counteractions. In the paper the data mining methods of Support Vector Machines (SVM), Boosted Trees, Random Forests and Multivariate Adaptive Regression Splines (MARS) have been used for modelling and forecasting the sludge bulking events. By the calculation the measurement data series from 4 years concerning the physical and chemical parameters of wastewater flowing into the treatment plant investigated and the technological parameters of the plant bioreactor were used. The calculation results show that the best sludge bulking model containing the best prediction ability has been received by the MARS method and on another side the worst models have been generated by the Random Forests method.


Mathematical modelling Data mining methods Sewage treatment processes 


  1. 1.
    Chiesa, C., Irvine, R.L.: Growth and control of filamentous microbes in activated sludge: an integrated hypothesis. Water Res. 19, 471–479 (1985)CrossRefGoogle Scholar
  2. 2.
    Chan, W.T., Koe, L.C.: A knowledge-based framework for the diagnosis of sludge bulking in the activated sludge process. Water Sci. Technol. 23, 847–855 (1991)Google Scholar
  3. 3.
    Martins, A.M.P., Heijnen, J.J., van Loosdrecht, M.C.M.: Bulking sludge in biological nutrient removal systems. Biotech. Bioeng. 86, 125–135 (2004)CrossRefGoogle Scholar
  4. 4.
    Martins, A.M.P., Pagilla, K.R., Heijnen, J.J., Van Loosdrecht, M.C.M.: Bulking filamentous sludge - a critical review. Water Res. 38, 793–817 (2004)CrossRefGoogle Scholar
  5. 5.
    Schuler, A., Jassly, Y.D.: Filament content threshold for activated sludge bulking: artefact or reality? Water Res. 41, 4349–4356 (2007)CrossRefGoogle Scholar
  6. 6.
    Sezgin, M., Jenkins, D., Parker, D.S.: A unified theory of filamentous activated sludge bulking. J. Water Pollut. Control Fed. 50, 362–381 (1978)Google Scholar
  7. 7.
    Cortés, U., Martínez, J., Comas, M., Sànchez-Marrèa, M., Rodríguez, I.: A conceptual model to facilitate knowledge sharing for bulking solving in wastewater treatment plant. AI Commun 16, 279–289 (2006)MathSciNetGoogle Scholar
  8. 8.
    Barbusiński, K., Miksch, K.: Relationship between organic loading and some properties of activated sludge. J. Chem. Technol. Biot. 69, 357–361 (1997)CrossRefGoogle Scholar
  9. 9.
    Martínez, M., Rodríguez-Roda, I., Poch, M., Cortés, U., Comas, J.: Dynamic reasoning to solve complex problems in activated sludge processes: a step further in decision support systems. Water Sci. Technol. 53, 191–198 (2006)CrossRefGoogle Scholar
  10. 10.
    Szeląg, B., Gawdzik, J.: Application of selected methods artificial intelligence to activated sludge settleability predictions. Pol. J. Environ. Stud. 25, 1709–1714 (2016)CrossRefGoogle Scholar
  11. 11.
    Szeląg, B., Gawdzik, J.: Assessment of the effect of wastewater quantity and quality, and sludge parameters on predictive abilities of non-linear models for activated sludge settleability predictions. Pol. J. Environ. Stud. 26, 315–322 (2017)CrossRefGoogle Scholar
  12. 12.
    Łomotowski, J., Szpindor, A.: Nowoczesne systemy oczyszczania ścieków. Wydawnictwo Arkady, Warszawa (2002)Google Scholar
  13. 13.
    Capodaglio, A., Jones, H., Novotny, V., Feng, X.: Sludge bulking analysis and forecasting: application of system identification and artificial neural computing technologies. Water Res. 25, 1217–1224 (1991)CrossRefGoogle Scholar
  14. 14.
    Han, H.G., Qiao, J.F.: Prediction of activated sludge bulking based on a self-organizing RBF neural network. J. Process Control 22, 1103–1112 (2012)CrossRefGoogle Scholar
  15. 15.
    Han, H.G., Qiao, J.F.: Hierarchical neural network modelling approach to predict sludge volume index of wastewater treatment process. IEEE Trans. Control Syst. Technol. 21, 2423–2431 (2013)CrossRefGoogle Scholar
  16. 16.
    Bagheri, M., Mirbagheri, S.A., Bagheri, Z., Kamarkhani, A.M.: Modelling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach. Process Saf. Environ. 26, 12–25 (2015)CrossRefGoogle Scholar
  17. 17.
    Yang, Y.H., Guergachi, A., Khan, G.: Support vector machines for environmental informatics: application to modelling the nitrogen removal processes in wastewater treatment systems. J. Environ. Inform. 7, 14–23 (2012)CrossRefGoogle Scholar
  18. 18.
    Osowski, S., Cichocki, A., Siwek, K.: MATLAB w zastosowaniu do obliczeń obwodowych i przetwarzania sygnałów. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa (2006)Google Scholar
  19. 19.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 1–27 (2011)CrossRefGoogle Scholar
  20. 20.
    Kusiak, A., Zeng, Y., Zhang, Z.: Modelling and analysis of pumps in a wastewater treatment plant: a data-mining approach. Eng. Appl. Artif. Intell. 26, 1643–1651 (2013)CrossRefGoogle Scholar
  21. 21.
    Nielsen, P.H., Kragelund, C., Seviour, R.J., Nielsen, J.L.: Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 33, 969–998 (2009)CrossRefGoogle Scholar
  22. 22.
    Lou, I., Zhao, Y.: Sludge bulking prediction using principle component regression and artificial neural network. Math. Probl. Eng. 2012, 1–17 (2012)CrossRefGoogle Scholar
  23. 23.
    Rutkowski, L.: Metody i techniki sztucznej inteligencji. PWN, Warszawa (2006)zbMATHGoogle Scholar
  24. 24.
    Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)zbMATHGoogle Scholar
  25. 25.
    Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38, 367–378 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Breiman, L.: Random forests. J. Mach. Learn. 45, 5–32 (2002)CrossRefzbMATHGoogle Scholar
  27. 27.
    Davison, A.C., Hinkley, D.V.: Bootstrap Methods and their Application. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  28. 28.
    Sharda, V.N., Prasher, S.O., Patel, R.M., Ojasvi, P.R., Prakash, C.: Performance of multivariate adaptive regression splines (MARS) in predicting runoff in mid-Himalayan microwatersheds with limited data. Hydrol. Sci. J. 53, 1165–1175 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Geomatic and Energy Engineering, Faculty of EnvironmentalKielce University of TechnologyKielcePoland
  2. 2.Systems Research Institute (IBS PAN)Polish Academy of SciencesWarsawPoland

Personalised recommendations