Skip to main content

Early Tool-Making and the Evolution of Human Memory Systems in the Brain

  • Chapter
  • First Online:
  • 939 Accesses

Abstract

Outlines about ancient Paleolithic artifacts and early Homo (2-1 Ma) skeletons precede considerations about cognitive versatility and developmental limitations of evolving brains. The adaptive behavior included technical skilfulness, reflected by artifact diversity, and manual dexterity requiring backward “haptic” touch memory, needed for habitual automatic, accurate handiwork, and forward “prospective” memory about foreseeably usable tools. Observational learning transmits skill insecurely, endangering persistence of evolutionary advantages. Their genetic or epigenetic underpinning enabled cerebral enlargement, affecting regions for different kinds of memory, imitation, language, and tool-use. Fundamental matters include imitative behavior and prefrontal and parietal mirror-neuron circuits, inferior parietal lobule tool-using specificity, long-term procedural memory and temporal lobe hippocampal-parahippocampal cortex, and working memory and neuronal haptic responses in prefrontal and parietal cortex. All underpin human capacities, whereby haptic working memory and propensity for habitual procedural memory evolved alongside explicit and implicit mental perspectives blending past and present behavioral memories into alternative behavioral concepts underlying Paleolithic diversity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  • Aboitiz, F., Aboitiz, García, R.R., 2010. The phonological loop. A key innovation in human evolution. Current Anthropology, Supplement 1, S55–S65.

    Google Scholar 

  • Abramiuk, M.A., 2012. The foundations of cognitive archaeology. The MIT Press, Cambridge, Massachusetts, and London.

    Google Scholar 

  • Aggleton, J.P., 2012. Multiple anatomical systems embedded within the primate medial temporal lobe: implications for hippocampal function. Neuroscience anad Biobehavioral Reviews 36, 1579–1596.

    Article  Google Scholar 

  • Aggleton, J.P., Brown, M.W., 1999. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences 22, 425–489.

    PubMed  Google Scholar 

  • Aggleton, J.P., O’Mara, S.M., Vann, S.D., Wright, N.F., Tsanov, M., Erichsen, J.T., 2010. Hippocampal-anterior thalamic pathways for memory: Uncovering a network of direct and indirect actions. European Journal of Neuroscience 31, 2292–2307.

    Article  PubMed  PubMed Central  Google Scholar 

  • Akers, K.G., Martinez-Canabal, A., Restivo, L., Yiu, A.P., de Cristofaro, A., Hsiang, H-L., Wheeler, A.L., Guskjolen, A., Niibori, Y., Shoji, H., Ohira, K., Richards, B.A., Miyakawa, T., Josselyn, S.A., Frankland, P.W., 2014. Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344, 598–602.

    Article  PubMed  Google Scholar 

  • Albouy, G., Fogel, S., King, B.R., Laventure, S., Benali, H., Karni, A., Carrier, J., Robertson, E.W., Doyon. J., 2015. Maintaining vs. enhancing motor sequence memories: Respective roles of striatal and hippocampal systems. NeuroImage 108, 423–434.

    Article  PubMed  Google Scholar 

  • Allman, J., Hakeem, A., Watson, K., 2002. Two phylogenetic specializations in the human brain. Neuroscientist 8, 335–346.

    Article  PubMed  Google Scholar 

  • Allman, J.M., Watson, K.K., Tetreault, N.A., Hakeem, A.Y., 2005. Intuition and autism: A possible role for Von Economo neurons. Trends in Cognitive Sciences 9, 367–373.

    Article  PubMed  Google Scholar 

  • Alperson-Afil, N., Goren-Inbar, N. (Eds.), 2010. The Acheulian site of Gesher Benot Ya’aqov, Volume II: Ancient flames and controlled use of fire. Springer, London.

    Google Scholar 

  • Altman, J., 1962. Are new neurons formed in the brains of adult mammals? Science 135, 1127–1128.

    Article  PubMed  Google Scholar 

  • Altman, J., 1963. Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anatomical Record 145, 573–591.

    Article  PubMed  Google Scholar 

  • Altman, J., Das, G.D., 1965. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. Journal of Comparative Neurology 124, 319–335.

    Article  PubMed  Google Scholar 

  • Amaral, D., Lavenex, P., 2007. Hippocampal neuroanatomy, in: Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J. (Eds.), 2007. The hippocampus book. Oxford University Press, Oxford and New York, pp. 37–114.

    Google Scholar 

  • Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J. (Eds.), 2007. The hippocampus book. Oxford University Press, Oxford and New York.

    Google Scholar 

  • Arbib, M.A., 2011. From mirror neurons to complex imitation in the evolution of language and tool use. Annual Review of Anthropology 40, 57–73.

    Article  Google Scholar 

  • Arbib, M.A., 2012. How the brain got language. The mirror system hypothesis. Oxford University Press. Oxford and New York.

    Book  Google Scholar 

  • Arbib, M.A., Rizzolatti, G., 1996. Neural expectations: A possible evolutionary path from manual skills to language. Communication and Cognition 29, 393–424.

    Google Scholar 

  • Archambault, P.S., Ferrari-Toniolo, S., Battaglia-Mayer, A., 2011. Online control of hand trajectory and evolution of motor intention in the parietofrontal system. The Journal of Neuroscience 31, 742–752.

    Article  PubMed  Google Scholar 

  • Asfaw, B., Beyene, Y., Suwa, G., Walter, R.C., White, T.D., WoldeGabriel, G., Yemane, T., 1992. The earliest Acheulean from Konso-Gardula. Nature 360, 732–735.

    Article  Google Scholar 

  • Ashby, F.G., Turner, B.P., Horvitz, J.C., 2010. Cortical and basal ganglia contributions to habit learning and automaticity. Trends in Cognitive Sciences 14, 208–215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Baddeley, A.D., 2001. Is working memory still working? American Psychologist 11, 851–864.

    Article  Google Scholar 

  • Bale, T.L., 2015. Epigenetic and transgenerational reprogramming of brain development. Nature Reviews Neuroscience 16, 332–344.

    Article  PubMed  Google Scholar 

  • Balsters, J.H., Ramnani, N., 2011. Cerebellar plasticity during the automation of rule-based information. The Journal of Neuroscience 31, 2305–2312.

    Article  PubMed  Google Scholar 

  • Balsters, J.H., Whelan, C.D., Robertson, I.H., Ramnani, N., 2013. Cerebellum and cognition; evidence for the encoding of higher order rules. Cerebral Cortex 23, 1433–1443.

    Article  PubMed  Google Scholar 

  • Barnard, P.J., 2010. From executive mechanisms underlying perception and action to the parallel processing of meaning. Current Anthropology 51, Supplement 1, S39–S54.

    Article  Google Scholar 

  • Barton, R.A., Venditti, C., 2014. Rapid evolution of the cerebellum in humans and other great apes. Current Biology 24, 2440–2444.

    Google Scholar 

  • Bauernfeind, A. L., de Sousa, A.A., Avasthi, T., Dobson, S.D., Raghanti, M.A., Lewandowski, A.H., Zilles, K., Semendeferi, K., Allman, J.M., Craig, A.D., Hof, P.R., Sherwood, C.C., 2013. A volumetric comparison of the insular cortex and its subregions in primates. Journal of Human Evolution 64, 263–279.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bays, P.M., 2015. Spikes not slots: noise in neural populations limits working memory. Trends in Cognitive Sciences 19, 431–438.

    Article  PubMed  Google Scholar 

  • Bays, P.M., Gorgoraptis, N., Wee, N., Marshall, L., Husain, M., 2011a. Temporal dynamics of encoding, storage and reallocation of visual working memory. Journal of Vision 11, 1–15.

    Article  Google Scholar 

  • Bays, P.M., Husain, M., 2008. Dynamic shifts of limited working memory resources in human vision. Science 321, 851–854.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bays, P.M., Wu, E.Y., Husain, M., 2011b. Storage and binding of object features in visual working memory. Neuropsychologia 49, 1622–1631.

    Article  PubMed  Google Scholar 

  • Beaman, C.P., 2010. Working memory and working attention. What could possibly evolve? Current Anthropology 51, Supplement 1, S21–S38.

    Google Scholar 

  • Begun, D., Walker, A., 1993. The endocast, in: Walker, A., Leakey, R. (Eds.), The Nariokotome Homo erectus skeleton. Springer, Berlin, and Harvard University Press, Cambridge, Massachusetts, 326–358.

    Google Scholar 

  • Bengtsson, S.L., Nagy, Z., Skare, S., Forsman, L., Forssberg, H., Ullen, F., 2005. Extensive piano practicing has regionally specific effects on white matter development. Nature Neuroscience 8, 1148–1150.

    Article  PubMed  Google Scholar 

  • Berens, S.C., Bird, C.M., 2017. The role of the hippocampus in generalizing configural relationships. Hippocampus 27, 23–228.

    Article  Google Scholar 

  • Berna, F., Goldberg, P., Horwitz, L.K., Brink, J., Holt, S., Bamford, M., Chazan, M., 2012. Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proceedings of the National Academy of Sciences of the USA 109, 7593–7594.

    Article  Google Scholar 

  • Berry, D.C., Dienes, Z., 1993. Implicit learning. Theoretical and empirical issues. Lawrence Erlbaum Associates, Hove, UK, and Hillsdale, USA.

    Google Scholar 

  • Beyene, Y., Katoh, S., WoldeGabriel. G., Hart, W. K., Uto, K., Sudo, M., Kondoh, M., Hyodo, M., Renne, P. R., Suwa, G., Asfaw, B., 2013. The characteristics and chronology of the earliest Acheulean at Konso, Ethiopia. Proceedings of the National Academy of Sciences of the USA 110, 1584–1591.

    Article  PubMed  PubMed Central  Google Scholar 

  • Binkofski, F., Buccino, G., Stephan, K.M., Rizzolatti, G., Seitz, R.J., Freund, H-J., 1999. A parieto-premotor network for object manipulation: Evidence from neuroimaging. Experimental Brain Research 128, 210–213.

    Article  PubMed  Google Scholar 

  • Bisley, J.W., Goldberg, M.E., 2010. Attention, intention, and priority in the parietal lobe. Annual Review of Neuroscience 33, 1–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bocquet-Appel, J.-P., Degioanni, A., 2013. Neanderthal demographic estimates. Current Anthropology 54, Supplement 8, S202–S213.

    Article  Google Scholar 

  • Boëda, E., Geneste, J-M., Meignen, L., 1990. Identification de chaînes opératoires lithiques du Paléolithique ancien et moyen. Paléo 2, 43–80.

    Article  Google Scholar 

  • Bonini, L., Serventi, F.U., Simone, L., Rozzi, S., Ferrari, P.F., Fogassi, L., 2011. Grasping neurons of monkey parietal and premotor cortices encode action goals at distinct levels of abstraction during complex action sequences. The Journal of Neuroscience 31, 5876–58787.

    Article  PubMed  Google Scholar 

  • Brown F.H., McDougall, I., 1993. Geologic setting and age, in: Walker, A., Leakey, R. (Eds.), The Nariokotome Homo erectus skeleton. Springer, Berlin, and Harvard University Press, Cambridge, Massachusetts, pp. 9–20.

    Google Scholar 

  • Bruner, E., 2010a. Morphological differences in the parietal lobes within the human genus. A neurofunctional perspective. Current Anthropology 51, Supplement 1, S67–S88.

    Google Scholar 

  • Bruner, E., 2010b. The evolution of the parietal cortical areas in the human genus: between structure and cognition, in: Broadfield, D., Yuan, M., Schick, K., Toth, N. (Eds.), The human brain evolving: Paleoneurological studies in honor of Ralph L. Holloway. “Stone Age Institute Publication Series Number 4”, Stone Age Institute Press, Stone Age Institute, Gosport, Indiana, and University of Indiana, Bloomington, Indiana, pp. 223–241.

    Google Scholar 

  • Bruner, E., de Lázaro, G.R., de la Cuétara, J.M., Martín-Loeches, M., Colom, R., Jacobs, H.I.L., 2014. Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals. Journal of Anatomy 224, 367–376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruner, E., Holloway, R.L., 2010. A bivariate approach to the widening of the frontal lobes in the genus Homo. Journal of Human Evolution 58, 138–46.

    Article  PubMed  Google Scholar 

  • Bruner, E., Iriki, A., 2016. Extending mind, visuospatial integration, and the evolution of the parietal lobes in the human genus. Quaternary International 405, 98–110.

    Article  Google Scholar 

  • Bruner, E., Preuss, T.M., Chen, X., Rilling, J.K., 2016. Evidence for expansion of the precuneus in human evolution. Brain Structure and Function 222, 1053–1060.

    Article  PubMed  Google Scholar 

  • Burgess, P.W., Quayle, A., Frith, C.D., 2001. Brain regions involved in prospective memory as determined by positron emission tomography. Neuropsychologia 39, 545–555.

    Article  PubMed  Google Scholar 

  • Burgess, P.W., Gonen-Yaacovi, G., Volle, E., 2011. Functional neuroimaging studies of prospective memory: What have we learnt so far? Neuropsychologia 49, 2246–2257.

    Article  PubMed  Google Scholar 

  • Calvo-Merino, B., Glaser, D.E., Grèzes, J., Passingham, R.E., Haggard, P., 2005. Action observation and acquired motor skills: An fMRI study with expert dancers. Cerebral Cortex 15, 1243–1249.

    Article  PubMed  Google Scholar 

  • Cameron, H.A., Woolley, C.S., McEwen, B.S., Gouled, E., 1993. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56, 337–344.

    Article  PubMed  Google Scholar 

  • Carmody, R.N., Dannemann, M., Briggs, A.W., Nickel, B., Groopman, E.E., Wrangham, R.W., Kelso, J., 2016. Genetic evidence of human adaptation to a cooked diet. Genome Biology and Evolution 8, 1091–1103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmody, R.N., Weintraub, G.S., Wrangham, R.W., 2011. Energetic consequences of thermal and nonthermal food processing. Proceedings of the National Academy of Sciences of the USA 108, 19199–19203.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carmody, R.N., Wrangham, R.W., 2009. The energetic significance of cooking. Journal of Human Evolution 57, 379–391.

    Article  PubMed  Google Scholar 

  • Coolidge, F.L., Wynn, T., 2005. Working memory, its executive functions, and the emergence of modern thinking. Cambridge Archaeological Journal 15, 5–26.

    Article  Google Scholar 

  • Coolidge, F.L., Wynn, T., 2007. The working memory account of the Neandertal cognition: How phonological storage capacity may be related to recursion and the pragmatics of speech. Journal of Human Evolution 52, 707–710.

    Article  PubMed  Google Scholar 

  • Coolidge, F.L., Wynn, T., 2009. The rise of Homo sapiens: The evolution of modern thinking. Wiley-Blackwell, John Wiley & Sons, Chichester, Oxford, and Malden, Massachusetts.

    Google Scholar 

  • Cowan, N., 1998. Attention and memory. An integrated framework. “Oxford Psychology Series No. 26”, The Clarendon Press, Oxford University Press, Oxford and New York.

    Google Scholar 

  • Cowan, N., 2005. Working memory capacity. Psychology Press, Hove and New York.

    Google Scholar 

  • Dayan, P., 1993. Improving generalization for temporal difference learning: The successor representation. Neural Computation 5, 613–624.

    Article  Google Scholar 

  • de la Torre, I., Mora, R., 2009. Remarks on the current theoretical and methodological approaches to the study of early technological strategies in eastern Africa, in: Hovers, E., Braun, D.R. (Eds.), Interdisciplinary approaches to the Oldowan. “Vertebrate Paleobiology and Paleoanthropology Series”, Springer Science + Business Media, Dordrecht, Heidelberg, New York, London, pp. 15–24.

    Google Scholar 

  • de la Torre, I., Mora, R., Domínguez-Rodrigo, M., de Luque, l., Alcalá, L., 2003. The Oldowan industry of Peninj and its bearing on the reconstruction of the technological skills of Lower Pleistocene hominids. Journal of Human Evolution 44, 203–224.

    Google Scholar 

  • de Sousa, A., Sherwood, C., Schleicher, A., Amunts, K., Macleod, C., Hof, P., Zilles, K., 2009. Comparative cytoarchitectural analyses of striate and extrastriate areas in hominoids. Cerebral Cortex 20, 966–981.

    Article  PubMed  Google Scholar 

  • Deacon, T.W., 1997. The symbolic species. The co-evolution of language and the human brain. W.W. Norton, New York.

    Google Scholar 

  • Dean, M.C., 2016. Measures of maturation in early fossil hominins: Events at the first transition from australopiths to early Homo. Philosophical Transactions of the Royal Society Series B 371, 20150234.

    Google Scholar 

  • Dean, M.C., Smith, H., 2009. Chapter 10. Growth and development of the Nariokotome youth KNM-WT 15000, in: Grine, F.E., Fleagle, J.G., Leakey, R.E. (Eds.), The first humans: Origin and early evolution of the genus Homo. “Vertebrate Paleobiology and Paleoanthropology Series”, Springer Science + Busines Media, Dordrecht, pp. 101–117.

    Google Scholar 

  • Degioanni, A., Bonenfant, C., Cabut, S., Condemi, S., 2015, Neandertal demise through modeling: the viewpoint of population dynamics, PESHE 4 Proceedings of the European Society for the Study of Human Evolution 4 (4th Annual Meeting of the European Society for the Study of Human Evolution ESHE, London, UK, 10–12 September 2015), European Society for the Study of Human Evolution, Leipzig, p. 73.

    Google Scholar 

  • Delagnes, A., Roche, H., 2005. Late Pliocene hominid knapping skills: The case of Lokalalei 2C, West Turkana, Kenya. Journal of Human Evolution 48, 435–472.

    Article  PubMed  Google Scholar 

  • Dias, B.G., Ressler, K.J., 2014. Parental olfactory experience influences behavior and neural structure in subsequent generations. Nature Neuroscience 17, 89–96.

    Article  PubMed  Google Scholar 

  • Dias, B.G., Maddox, S.A., Klengel, T., Ressler, K.J., 2015. Epigenetic mechanisms underlying learning and the inheritance of learned behaviors. Trends in Neurosciences 38, 96–107.

    Article  PubMed  Google Scholar 

  • Díez-Martín, F., Cuartero, F., Sánchez-Yustos, P., Baena, J., Rubio, D., Domínguez-Rodrigo, M., 2012. Testing cognitive skills in Early Pleistocene hominins: An analysis of the concepts of hierarchization and predetermiantion in the lithic assemblages of Type Section (Peninj, Tanzania), in: Domínguez-Rodrigo, M. (Ed.), Stone tools and fossil bones. Debates in the archaeology of human origins. Cambridge University Press, Cambridge and New York, pp. 245–309.

    Chapter  Google Scholar 

  • Domínguez-Rodrigo, M., Serralonga, J., Juan-Tresserras, J., Alcalá, L., Luque, L., 2001. Woodworking activities by early humans: A plant residue analysis on Acheulian stone tools from Peninj (Tanzania). Journal of Human Evolution 40, 289–299.

    Article  PubMed  Google Scholar 

  • Doyon, J., Benali, H., 2005. Reorganization and plasticity in the adult brain during learning of motor skills. Current Opinion in Neurobiology 15, 161–167.

    Article  PubMed  Google Scholar 

  • Eichenbaum, H., 2004. Hippocampus: Cognitive processes and neural representations that underlie declarative memory. Neuron 44, 109–120.

    Article  PubMed  Google Scholar 

  • Eichenbaum, H., Cohen, N.J., 2001. From conditioning to conscious recollection. Oxford University Press, Oxford and New York.

    Google Scholar 

  • Eichenbaum, H., Cohen, N.J., 2014. Can we reconcile the declarative memory and spatial navigation views on hippocampal function? Neuron 83, 764–770.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ericsson, K.A., Delaney, P.F., 1999, Long-term working memory as an alternative to capacity models of working memory in everyday skilled performance, in: Miyake, A., Shah, P. (Eds.), Models of working memory. Mechanisms of active maintenance and executive control. Cambridge University Press, Cambridge, pp. 257–297.

    Chapter  Google Scholar 

  • Ericsson, K.A., Kintsch, W., 1995. Long-term working memory. Psychological Review 102, 211–245.

    Article  PubMed  Google Scholar 

  • Ericsson, K.A., Roring, R.W., Nandagopal, K., 2007. Giftedness and evidence for reproducibly superior performance: An account based on the expert performance framework. High Ability Studies 18, 3–56.

    Article  Google Scholar 

  • Fallon, S.J., Zokaei, N., Husain, M., 2016. Causes and consequences of limitations in visual working memory. Annals of the New York Academy of Sciences 1369, 40–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Finn, A.S., Sheridan, M.A., Kam, C.L.H., Hinshaw, S., D’Esposito, M., 2010. Longitudinal evidence for functional specialization of the neural circuit supporting working memory in the human brain. The Journal of Neuroscience 30, 11062–11067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fonseca-Azevedo, K., Herculano-Houzel, S., 2012. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution. Proceedings of the National Academy of Sciences of the USA 109, 18571–18576.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frankland, P.W., Köhler, S., Josselyn, S.A., 2013. Hippocampal neurogenesis and forgetting. Trends in Neurosciences 36, 497–503.

    Article  PubMed  Google Scholar 

  • Fuster, J.M., 1999. Memory in the cerebral cortex. “A Bradford Book”, The MIT Press, Cambridge, Massachusetts, and London.

    Google Scholar 

  • Fuster, J.M., 2001. The prefrontal cortex—An update: Time is of the essence. Neuron 30, 319–333.

    Article  PubMed  Google Scholar 

  • Fuster, J.M., 2015. The prefrontal cortex. 5th edition. Elsevier-Academic Press, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris. San Diego, San Francisco, Sydney, Tokyo.

    Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L, Rizzolatti, G., 1996. Action recognition in the premotor cortex. Brain 119, 593–609.

    Article  PubMed  Google Scholar 

  • Garvert, M.M., Dolan, R.J., Behrens, T.E.J., 2017. A map of abstract relational knowledge in the human hippocampal-entorhinal cortex. eLife 2017, 6, e17086.

    Google Scholar 

  • Gazzaniga, M.S., Mangun, G.R., (Eds.), 2014. The cognitive neurosciences. 5th edition. “A Bradford Book”, The MIT Press, Cambridge, Massachusetts, and London.

    Google Scholar 

  • Giedd, J.N., Blumenthal. J., Jeffries, N.O., Castellanos, F.X., Liu, H., Zijdenbos, A., Paus, T., Evans, A.C., Rapoport, J.L., 1999. Brain development during childhood and adolescence: A longitudinal MRI study. Nature Neuroscience 2, 861–863.

    Article  PubMed  Google Scholar 

  • Gilbert, S.J., 2011. Decoding the content of delayed intentions. The Journal of Neuroscience 31, 2888–2894.

    Article  PubMed  Google Scholar 

  • Gilbert, S.L., Dobyns, W.B., Lahn, B.T., 2005. Genetic links between brain development and brain evolution. Nature Reviews Genetics 6, 581–590.

    Article  PubMed  Google Scholar 

  • Gold, J.I., Shadlen, M.N., 2007. The neural basis of decision making. Annual Review of Neuroscience 30, 535–574.

    Article  PubMed  Google Scholar 

  • Gonneaud, J., Rauchs, G., Groussard, M., Landeau, B., Mézenge, F., de La Sayette, V., Eustache, F., Desgranges, B., 2014. How do we process event-based and time-based intentions in the brain? An fMRI study of prospective memory in healthy individuals. Human Brain Mapping 35, 3066–3082.

    Article  PubMed  Google Scholar 

  • Goren-Inbar, N., Alperson, A., Kislev, M.E., Simchoni, O., Melamed, Y., Ben-Nun, A., Werker, E., 2004. Evidence of hominin control of fire at Gesher Benot Ya‘aqov, Israel. Science 304, 725–727.

    Article  PubMed  Google Scholar 

  • Gorgoraptis, N., Catalao, R.F.G., Bays, P.M., Husain, M., 2011. Dynamic updating of working memory resources for visual objects. The Journal of Neuroscience 31, 8502–8511.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goshen, I, 2014. The optogenetic revolution in memory research. Trends in Neurosciences 37, 511–522.

    Article  PubMed  Google Scholar 

  • Gowlett, J.A.J., Harris, J.W.K., Walton, D., Wood, B.A., 1981. Early archaeological sites, hominid remains and traces of fire from Chesowanja, Kenya. Nature 294, 125–129.

    Article  Google Scholar 

  • Grèzes, J., Decety, J., 2002. Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia 40, 212–222.

    Article  PubMed  Google Scholar 

  • Harmand, S., Lewis, J.E., Feibel, C.S., Lepre, C.J., Prat, S., Lenoble, A., Boës, X., Quinn, R.L., Brenet, M., Arroyo, A., Taylor, N., Clément, S., Daver, G., Brugal, J.-P., Leakey, L., Mortlock, R.A., Wright, J.D., Lokorodi, S., Kirwa, C., Kent, D.V., Roche, H., 2015. 3.3-million-year-old stone tools from Lomekwi 3, West Turkana, Kenya. Nature 521, 310–315.

    Article  PubMed  Google Scholar 

  • Harris, J.W.K., 1986. Découverte de matériel archéologique oldowayen dans le Rift de l’Afar. Oldowan archaeological findings in the Afar Rift. L’Anthropologie 90, 339–357.

    Google Scholar 

  • Hartley, T., Bird, C.M., Chan, D., Cipolotti, L., Husain, M., Vargha-Khadem, F., Burgess, N., 2007. The hippocampus is required for short-term topographical memory in humans. Hippocampus 17, 34–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazy, T.E., Frank, M J., O´Reilly, R.C., 2007. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society Series B 362, 1601–1603.

    Google Scholar 

  • Holloway, R.L., Broadfield, D.C., Yuan, M.S., 2004. Brain endocasts: The paleoneurological evidence. “The human fossil record, volume 3”, Wiley-Liss, New York.

    Google Scholar 

  • Hsieh, L.-T., Gruber, M.J., Jenkins, L.J., Ranganath, C., 2014. Hippocampal activity patterns carry information about objects in temporal context. Neuron 81, 1165–1178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Husain, M., Nachev, P., 2006. Space and the parietal cortex. Trends in Cognitive Sciences 11, 30–36.

    Article  PubMed  Google Scholar 

  • Iacoboni, M., 2005. Understanding others: imitation, language, empathy, in: Hurley, S., Chater, N. (Eds.), Perspectives on imitation: From cognitive neuroscience to social science. The MIT Press, Cambridge, Massachusetts, and London, pp. 77–99.

    Google Scholar 

  • Iacoboni, M, Molnar-Szakacs, I., Gallese, V., Buccino, G., Mazziotta, J.C., Rizzolatti, G., 2005. Grasping the intentions of others with one’s own mirror neuron system. Public Library of Science PLoS Biology 3, e79 0001–0007.

    Google Scholar 

  • Inta, D., Cameron, H.A., Gass, P., 2015. New neurons in the adult striatum: From rodents to humans. Trends in Neurosciences 38, 517–523.

    Article  PubMed  PubMed Central  Google Scholar 

  • Iriki, A., 2006. The neural origins and implications of imitation, mirror neurons and tool use. Current Opinion in Neurobiology 16, 660–667.

    Article  PubMed  Google Scholar 

  • Iriki, A., Sakura, O., 2008. The neuroscience of primate intellectual evolution: Natural selection and passive and intentional niche construction. Philosophical Transactions of the Royal Society Series B 363, 2229–2241.

    Article  Google Scholar 

  • Jenkins, L.J., Ranganath, C., 2010. Prefrontal and medial temporal lobe activity at encoding predicts temporal context memory. The Journal of Neuroscience 30, 15558–15565.

    Article  PubMed  PubMed Central  Google Scholar 

  • Josselyn, S.A., Köhler, S., Frankland, P.W., 2015. Finding the engram. Nature Reviews Neuroscience 16, 521–534.

    Article  PubMed  Google Scholar 

  • Kaas, A.L., Van Mier, H., Goebel, R., 2007. The neural correlates of human working memory for haptically explored object orientations. Cerebral Cortex 17, 1637–1649.

    Article  PubMed  Google Scholar 

  • Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.J., (Eds.), 2013. Principles of neural science. 5th edition. McGraw Hill Medical, New York.

    Google Scholar 

  • Keysers, C., Fadiga, L. (Eds.), 2008. The mirror neuron system. “A special issue of Social Neuroscience”, Psychology Press, Hove.

    Google Scholar 

  • Kimbel, W.H., Walter, R.C., Johanson, D.C., Reed, K.E., Aronson, J.L., Assefa, Z., Marean, C.W., Eck, G.G., Bobe, R., Hovers, E., Rak, Y., Vondra, C., Yemana, T., York, D., Chen, Y., Eversen, N.M., Smith, P.E., 1996. Late Pliocene Homo and Oldowan tools from the Hadar formation (Kada Hadar Member), Ethiopia. Journal of Human Evolution 31, 549–561.

    Article  Google Scholar 

  • Konopka, G., Geschwind, D.H., 2010. Human brain evolution: harnessing the genomics (r)evolution to link genes, cognition, and behavior. Neuron 68, 231–244.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kreitzer, A.C., Malenka, R.C., 2008. Striatal plasticity and basal ganglia circuit function. Neuron 60, 543–554.

    Article  PubMed  PubMed Central  Google Scholar 

  • Langer, J., 1980. The origins of logic, six to twelve months. Academic Press, New York.

    Google Scholar 

  • Langer, J., 1981. Logic in infancy. Cognition 10, 181–186.

    Article  Google Scholar 

  • Langer, J., 1986. The origins of logic, one to two years. Academic Press, New York.

    Google Scholar 

  • Lashley, K.S., 1950. In search of the engram. Symposia of the Society for Experimental Biology 4, 454–482.

    Google Scholar 

  • Lavenex, P., Banta Lavenex, P., Amaral, D.G., 2007a. Postnatal development of the primate hippocampal formation. Developmental Neuroscience 29, 179–192.

    Article  PubMed  Google Scholar 

  • Lavenex, P., Banta Lavenex, P., Amaral, D.G., 2007b. Spatial relational learning persists following neonatal hippocampal lesions in macaque monkeys. Nature Neuroscience 10, 234–239.

    Article  PubMed  Google Scholar 

  • Lee, A.C.H., Rudebeck, S.R., 2010. Investigating the interaction between spatial perception and working memory in the human medial temporal lobe. Journal of Cognitive Neuroscience 22, 2823–2835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lepre, C.J., Roche, H., Kent, D.V., Harmand, S., Quinn, R.L., Brugal, J.-P, Texier, P.-J., Lenoble, A. Feibel, C.S., 2011. An earlier origin for the Acheulian. Nature 477, 82–85.

    Article  PubMed  Google Scholar 

  • Lewis, J.E., Harmand, S., 2016. An earlier origin for stone tool making: implications for cognitive evolution and the transition to Homo. Philosophical Transactions of the Royal Society Series B 371, 2015.0233.

    Google Scholar 

  • Lindner, A., Iyer, A., Kagan, I., Andersen, R.A., 2010. Human posterior parietal cortex plans where to reach and what to avoid. The Journal of Neuroscience 30, 11715–11725.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma, E.J., Husain, M., Bays, P.M., 2014. Changing concepts of working memory. Nature Neuroscience 17, 347–356.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandl, R.C., Schnack, H.G., Zwiers, M.P., Van der Schaaf, A., Kahn, R.S., Hulshoff-Pol, H.E, 2008. Functional diffusion tensor imaging: measuring task-related fractional anisotropy changes in the human brain along white matter tracts. Public Library of Science One PLoS One 3, e3631.

    Article  PubMed  Google Scholar 

  • Manrique, H.M., Call. J., 2015. Age-dependent cognitive inflexibility in great apes. Animal Behaviour 102, 1–6.

    Article  Google Scholar 

  • Manrique, H.M, Gross, A.N-M., Call, J., 2010. Great apes select tools based on their rigidity. Journal of Experimental Psychology: Animal Behavior Processes, 36, 409–422.

    PubMed  Google Scholar 

  • Maravita, A., Iriki, A., 2004. Tools for the body (schema). Trends in Cognitive Sciences 8, 79–86.

    Article  PubMed  Google Scholar 

  • Maravita, A., Spence, C., Driver, J., 2003. Multisensory integration and the body schema: Close to hand and within reach. Current Biology 13, 531–539.

    Article  Google Scholar 

  • McPherron, S.P., 2013. Perspectives on stone tool use and cognition in the early Paleolithic record, in: Sanz, C.M., Call, J., Boesch, C. (Eds.), Tool use in animals: Cognition and ecology. Cambridge University Press, Cambridge and New York, pp. 286–309.

    Chapter  Google Scholar 

  • McPherron, S.P., Alemseged, Z., Marean, C.W., Wynn, J.G., Reed, D., Geraads, D., Bobe, R., Béarat, H.A., 2010. Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikka, Ethiopia. Nature 466, 857–860.

    Article  PubMed  Google Scholar 

  • Meyer, K., Kaplan, J.T., Essex, R., Damasio, H., Damasio, A., 2011. Seeing touch is correlated with content-specific activity in primary somatosensory cortex. Cerebral Cortex 21, 2113–2121.

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller, E.K., Cohen, J.D., 2001. An integrative theory of prefrontal cortex function. Annual Review of Neuroscience 24, 167–202.

    Article  PubMed  Google Scholar 

  • Miller, D.J., Duka, T., Stimpson, C.D., Schapiro, S.J., Baze, W.B., McArthur, M.J., Fobbs, A.J., Sousa, A.M.M., Šestan, N., Wildman, D.E., Lipovich, L., Kuzawa, C.W., Hof, P.R., Sherwood, C.C., 2012. Prolonged myelination in human neocortical evolution. Proceedings of the National Academy of Sciences of the USA 109, 16481–16485.

    Google Scholar 

  • Miyashita, Y., 1988. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 335, 817–820.

    Article  PubMed  Google Scholar 

  • Miyashita, Y., 2004. Cognitive memory: Cellular and network machineries and their top-down control. Science 306, 435–440.

    Article  PubMed  Google Scholar 

  • Morris, R., 2007. Theories of hippocampal function in: Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J. (Eds.), The hippocampus book. Oxford University Press, Oxford and New York, pp. 584–713.

    Google Scholar 

  • Murray, E.A., Wise, S.P., Graham, K.S., 2017. The evolution of memory systems: Ancestors, anatomy and adaptation. Oxford University Press, Oxford and New York.

    Google Scholar 

  • Nachev, P., Kennard, C., Husain, M., 2008. Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience 9, 356–369.

    Article  Google Scholar 

  • Nelissen, K., Borra, E., Gerbella, M., Rozzi, S., Luppino, G., Vanduffel, W., Rizzolatti, G., Orban, G.A., 2011. Action observation circuits in the macaque monkey cortex. The Journal of Neuroscience 31, 3743–3756.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neubert, F.X., Mars, R.B., Thomas, A.G., Sallet, J., Rushworth, M.F.S., 2014. Comparison of human ventral frontal cortex areas for cognitive control and language with areas in monkey frontal cortex. Neuron 81, 700–713.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., 2007. Hippocampal neurophysiology in the behaving animal, in: Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J. (Eds.), The hippocampus book. Oxford University Press, Oxford and New York, pp. 475–548.

    Google Scholar 

  • O’Keefe, J., Nadel, L., 1978. The hippocampus as a cognitive map. The Clarendon Press, Oxford University Press, Oxford.

    Google Scholar 

  • O’Reilly, R.C., Rudy, J.W., 2001. Conjunctive representations in learning and memory: Principles of cortical and hippocampal function. Psychological Review 108, 311–345.

    Article  PubMed  Google Scholar 

  • Oberman, L.M., Ramachandran, V.S., 2007.The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin 133, 310–327.

    Article  PubMed  Google Scholar 

  • Olivier, E., Davare, M., Andres, M., Fadiga, L., 2007. Precision grasping in humans: From motor control to cognition. Current Opinion in Neurobiology 17, 644–648.

    Article  PubMed  Google Scholar 

  • Orban, G.A., Rizzolatti, G., 2012. An area specifically devoted to tool use in human left inferior parietal lobule. Behavioral and Brain Sciences 35, 234.

    Article  PubMed  Google Scholar 

  • Osada, T., Adachi, Y., Kimura, H.M., Miyashita, Y., 2008. Towards understanding of the cortical network underlying associative memory. Philosophical Transactions of the Royal Society Series B 363, 2187–2199.

    Article  Google Scholar 

  • Paus, T., Zijdenbos, A., Worsley, K., Collins, D.L., Blumenthal, J., Giedd, J.N., Rapoport, J.L., Evans, A.C., 1999. Structural maturation of neural pathways in children and adolescents: In vivo study. Science 283, 1908–1991.

    Article  PubMed  Google Scholar 

  • Peeters, R., Simone, L., Neliseen, K., Fabbri-Destro, M., Vanduffel, W., Rizzolatti, G., Orban, G.A., 2009. The representation of tool use in humans and monkeys: Common and uniquely human features. The Journal of Neuroscience 29, 11523–11539.

    Article  PubMed  Google Scholar 

  • Pennartz, C.M.A., Ito, R., Verschure, P.F.M.J., Battaglia, F.P., Robbins, T.W., 2011. The hippocampal–striatal axis in learning, prediction and goal-directed behavior. Trends in Neurosciences 34, 548–559.

    Article  PubMed  Google Scholar 

  • Petanjek, Z., Judaš, M., Šimić, J., Rašin, M.R., Uylings, H.B.M., Rakic, P., Kostović, I., 2011. Extraordinary neoteny of synaptic spines in the human prefrontal cortex. Proceedings of the National Academy of Sciences of the USA 108, 13281–13286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen, S.E., Posner, M.I., 2012. The attention system of the human brain: 20 years after. Annual Review of Neuroscience 35, 73–89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Piaget, J., 1959. The language and thought of the child. 3rd edition. Routledge & Kegan Paul, London.

    Google Scholar 

  • Piaget, J., 1977. Psychology and epistemology: Towards a theory of knowledge. Penguin Books, Harmondsworth.

    Book  Google Scholar 

  • Pigeot, N., 1991. Reflexions sur l’histoire technique de l’homme: de l’évolution cognitive à l’évolution culturelle. Paléo 3, 167–200.

    Article  Google Scholar 

  • Qureshi, I.A., Mehler, M.F., 2014. An evolving view of epigenetic complexity in the brain. Philosophical Transactions of the Royal Society Series B 369, 2013.0506.

    Article  Google Scholar 

  • Ragir, S., 2000. Diet and food preparation: Rethinking early hominid behavior. Evolutionary Anthropology 9, 153–155.

    Article  Google Scholar 

  • Read, D.W., 2006. Working memory: A cognitive limit to non-human Primate recursive thinking prior to hominid evolution? In: CogSci/ICCS2006 The 28th Annual Conference of the Cognitive Science Society and 5th International Conference of the Cognitive Science, The Sheraton Hotel, Vancouver, July 26–29, 2006. Lawrence Erlbaum Associates, Mahwah New Jersey, pp. 2674–2680.

    Google Scholar 

  • Read, D.W., 2008. Working memory: A cognitive limit to non-human Primate recursive thinking prior to hominid evolution. Evolutionary Psychology 6, 676–714.

    Article  Google Scholar 

  • Read, D.W., 2017. Quantitative differences between the working memory of chimpanzees and humans give rise to qualitative differences: Subitizing and cranial development. UCLA Human Complex Systems, Los Angeles. http://escholarship.org/uc/item/5d06v437.

  • Read, D.W., Van der Leeuw, S., 2008. Biology is only part of the story… Philosophical Transactions of the Royal Society Series B 363, 1959–1968.

    Article  Google Scholar 

  • Read, D.W., Van der Leeuw, S., 2015. The extension of social relations in time and space during the Palaeolithic and beyond, in: Coward, F., Hosfield, R., Pope, M., Wenban-Smith, F. (Eds.) Settlement, society and cognition in human evolution. Cambridge University Press, Cambridge and New York.

    Google Scholar 

  • Reber, A.S., 1989. Implicit learning and tacit knowledge. Journal of Experimental Psychology, General, 118, 219–235.

    Article  Google Scholar 

  • Reber, A.S., 1996. Implicit learning and tacit knowledge. An essay on the cognitive unconscious. “Oxford Pyschology Series No. 19”, The Clarendon Press, Oxford University Press, Oxford and New York.

    Google Scholar 

  • Restivo, L., Niibori, Y., Mercaldo, V., Josselyn, S.A., Frankland, P.W., 2015. Development of adult-generated cell connectivity with excitatory and inhibitory cell populations in the hippocampus. The Journal of Neuroscience 35, 10600–10612.

    Article  PubMed  Google Scholar 

  • Reuland, E., 2010. Imagination, planning, and working memory. Current Anthropology, Supplement 1, S99–S110.

    Article  Google Scholar 

  • Rizzolatti, G., Arbib, M.A., 1998. Language within our grasp. Trends in Neurosciences 21, 188–194.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Craighero, L., 2004. The mirror-neuron system. Annual Review of Neuroscience 27, 169–192.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Fogassi, L., Gallese, V., 2004. Cortical mechanisms subserving object grasping, action understanding, and imitation, in; Gazzaniga, M.S. (Ed.), The cognitive neurosciences III. “A Bradford Book”, The MIT Press, Cambridge, Massachusetts, and London, pp. 427–440.

    Google Scholar 

  • Rizzolatti G, Gentilucci M., 1988. Motor and visual-motor functions of the premotor cortex, in: Rakic P, Singer W. (Eds.), Neurobiology ofneocortex: Report of the Dahlem workshop on neurobiology of neocortex, Berlin 1987, May 17–22. John Wiley & Sons, Chichester and New York, pp. 269–284.

    Google Scholar 

  • Rizzolatti, G., Kalaska, J.F., 2013. Voluntary movement: The parietal and premotor cortex, in: Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum. S.A., Hudspeth, A.J. (Eds.), Principles of Neural Science, 5th edition. McGraw Hill Medical, New York, pp. 865–893.

    Google Scholar 

  • Rizzolatti, G., Sinigaglia, C., 2006. So quel che fai. Il cervello che agisce e i neuroni specchio. “Scienze e Idee 143”, Raffaello Cortina, Milan.

    Google Scholar 

  • Rizzolatti, G., Sinigaglia, C., 2008. Mirrors in the brain: How our minds share actions and emotions. Oxford University Press, Oxford and New York.

    Google Scholar 

  • Rizzolatti, G., Sinigaglia, C., 2010. The functional role of the parieto-frontal mirror circuit: Interpretations and misinterpretations. Nature Reviews Neuroscience 11, 264–274.

    Article  PubMed  Google Scholar 

  • Rizzolatti, G., Strick, P.L., 2013. Cognitive functions of the premotor systems, in: Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum. S.A., Hudspeth, A.J. (Eds.), Principles of Neural Science, 5th edition. McGraw Hill Medical, New York, pp. 412–425.

    Google Scholar 

  • Ro, T., Wallace, R., Hagedorn, J., Farnè, A., Pienkos, E., 2004. Visual enhancing of tactile perception in the posterior parietal cortex. Journal of Cognitive Neuroscience 16, 24–30.

    Article  PubMed  Google Scholar 

  • Roberts, R.E., Anderson, E.J., Husain, M., 2010. Expert cognitive control and individual differences associated with frontal and parietal white matter microstructure. The Journal of Neuroscience 30, 17063–17067.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, R.E., Anderson, E.J., Husain, M., 2013a. White matter microstructure and cognitive function. The Neuroscientist 19, 8–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts, R.E., Bain, P.G., Day, B.L., Husain, M., 2013b. Individual differences in expert motor coordination associated with white matter microstructure in the cerebellum. Cerebral Cortex 23, 2282–2292.

    Article  PubMed  Google Scholar 

  • Roberts, W.A., 2000. Are animals stuck in time? Psychological Bulletin 128, 473–489.

    Article  Google Scholar 

  • Roche, H., 2005. From simple flaking to shaping: stone-knapping evolution among early hominins, in: Roux, V., Bril, B. (Eds.), Stone knapping, the necessary conditions for a uniquely hominin behaviour. “McDonald Institute Monographs”, McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, pp. 35–51.

    Google Scholar 

  • Roche, H., Brugal, J.-P., Delagnes, A., Feibel, C., Harmand, S., Kibunjia, M., Prat, S., Texier, P.-J., 2003. Les sites archéologiques plio-pléistocènes de la formation de Nachukui, Ouest-Turkana, Kenya: bilan synthétique 1997–2001. Comptes Rendus de l’Académie des Sciences de Paris Palévol 2, 663–673.

    Google Scholar 

  • Roe, D.A., 1968. British Lower and Middle Palaeolithic hand-axe groups. Proceedings of the Prehistoric Society 34, 1–82.

    Article  Google Scholar 

  • Romo, R., Salinas, E., 2001. Touch and go: Decision-making mechanisms in somatosensation. Annual Review of Neuroscience B 24, 107–137.

    Article  Google Scholar 

  • Ruby, J.W., 2008. The neurobiology of learning and memory. Sinauer Associates, Sunderland, Massachusetts.

    Google Scholar 

  • Ruff, C.B., Walker, A., 1993. Body size and body shape, in: Walker, A., Leakey, R. (Eds.), The Nariokotome Homo erectus skeleton. Springer, Berlin, and Harvard University Press, Cambridge, Massachusetts, pp. 234–265.

    Google Scholar 

  • Rushworth, M.F.S., Buckley, M.J., Behrens, T.E.J., Walton, M.E., Bannerman, D.M., 2007. Functional organization of the medial frontal cortex. Current Opinion in Neurobiology 17, 220–227.

    Article  PubMed  Google Scholar 

  • Sakai, T., Hirai, D., Mikami, A., Suzuki, J., Hamada, Y., Tomonaga, M., Tanaka, M., Miyabe-Nishiwaki, T., Makishima, H., Nakatsukasa, M., Matsuzawa, T., 2010. Nature Precedings. Pre-publication research and preliminary findings. Prolonged maturation of prefrontal white matter in chimpanzees. hdl.1010/npre.2010.4411.1.

    Google Scholar 

  • Sakai, T., Matsui, M., Mikami, A., Malkova, L., Hamada, Y., Tomonaga, M., Suzuki, J., Tanaka, M., Miyabe-Nishiwaki, T., Makishima, H., Nakatsukasa, M., Matsuzawa, T., 2013. Developmental patterns of chimpanzee cerebral tissues provide important clues for understanding the remarkable enlargement of the human brain. Proceedings of the Royal Society Series B 280, 2012.2398.

    Google Scholar 

  • Sakai, T., Mikami, A., Tomonaga, M., Matsui, M., Suzuki, J., Hamada, Y., Tanaka, M., Miyabe-Nishiwaki, T., Makishima. H., Nakatsukasa, M., Matsuzawa, T., 2011. Differential prefrontal white matter development in chimpanzees and humans. Current Biology 21, 1397–1402.

    Article  PubMed  Google Scholar 

  • Savage-Rumbaugh, E.S., Rumbaugh, D.M., Smith, S.T., Lawson, J., 1980. Reference: The linguistic essential. Science 210, 922–925.

    Article  PubMed  Google Scholar 

  • Schlanger, N., 1996. Understanding Levallois: Lithic technology and cognitive archaeology. Cambridge Archaeological Journal 6, 231–254.

    Article  Google Scholar 

  • Schlichtling, M.L., Mumford, J.A., Preston, A.R., 2015. Learning-related representational changes reveal dissociable integration and separation signatures in the hippocampus and prefrontal cortex. Nature Communications 6, article 8151 (doi:10.1038/ncomms915).

  • Scholz, J., Klein, M.C., Behrens, T.E.J., Johansen-Berg, H. 2009. Training induces changes in white-matter architecture. Nature Neuroscience 12, 1370–1371.

    Article  PubMed  PubMed Central  Google Scholar 

  • Semaw, S., Renne, P., Harris, J.W.K., Feibel, C.S., Bernor, R.L., Fesseha, N., Mowbray, K., 1997. 2.5-million-year-old stone tools from Gona, Ethiopia, Nature 385, 333–336.

    Article  PubMed  Google Scholar 

  • Semendeferi, K, Hanson, K.L., 2016. Plastic and heterogeneous. Postnatal developmental changes in the human brain, in: Trevathan, W.R., Rosenberg, K. (Eds.), Costly and cute. Helpless infants and human evolution. “Advanced Seminar Series”, School for Advanced Research Press, Santa Fe, and University of New Mexico Press, Albuquerque, pp. 133–147.

    Google Scholar 

  • Semendeferi, K., Teffer, K., Buxhoeveden, D.P., Park, M.S., Bludau, S., Amunts, K., Travis, K., Buckwalter, J., 2011. Spatial organization of neurons in the frontal pole sets humans apart from great apes. Cerebral Cortex 21, 1485—1497.

    Article  PubMed  Google Scholar 

  • Semon, R., 1921. The mneme. G. Allen & Unwin, London.

    Google Scholar 

  • Semon, R., 1923. Mnemic psychology. G. Allen & Unwin, London.

    Google Scholar 

  • Shea, J.J., 2013. Lithic modes A–I: A new framework for describing global-scale variation in stone tool technology illustrated with evidence from the East Mediterranean Levant. Journal of Archaeological Method and Theory 20, 151–186.

    Article  Google Scholar 

  • Shea, J.J., 2016. Stone tools in human evolution. Behavioral differences among technological Primates. Cambridge University Press, Cambridge and New York.

    Google Scholar 

  • Smith, A.R., Carmody, R.N., Dutton, R.J., Wrangham, R.W., 2015. The significance of cooking for early hominin scavenging. Journal of Human Evolution 84, 62–70.

    Article  PubMed  Google Scholar 

  • Solodenko, N., Zupancich, A., Cesaro, S.N., Marder, O., Lemonini, C., Barkai, R., 2015. Fat residue and use-wear found on Acheulian bface and scraper associated with butchered elephant remains at the site of Revadim, Israel. Public Library of Science PLoS One 10, issue 3, e0118572.

    Article  Google Scholar 

  • Somel, M., Liu, X., Khaitovich, P., 2013. Human brain evolution: Transcripts, metabolites and their regulators. Nature Reviews Neuroscience 14, 112–127.

    Article  PubMed  Google Scholar 

  • Sowell, E.R., Thompson, P.M., Holmes, C.J., Jernigan, T.L., Toga, A.W., 1999. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience 2, 859–861.

    Article  PubMed  Google Scholar 

  • Spalding, K.L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H.B., Boström, E., Westerlund, I., Vial, C., Buchholz, B.A., Possnert, G., Mash, D.C., Druid, G. H., Frisén, J., 2013. Dynamics of hippocampal neurogenesis in adult humans. Cell 153, 1219–1227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Squire, L.R., Alvarez, P., 1995. Retrograde amnesia and memory consolidation: A neurobiological perspective. Current Opinion in Neurobiology 5, S169–S177.

    Article  Google Scholar 

  • Squire, L.R., Kandel, E.R., 2003. Memory: From mind to molecules. “Scientific American Library. An Owl Book”, Henry Holt, New York.

    Google Scholar 

  • Squire, L.R., Zola-Morgan, S., 1991. The medial temporal lobe memory system. Science 253, 1380–1386.

    Article  PubMed  Google Scholar 

  • Sterelny, K., 2012. The evolved apprentice. How evolution made humans unique. “A Bradford Book”, The MIT Press, Cambridge, Massachusetts, and London.

    Google Scholar 

  • Stout, D., 2005. Neural foundations of perception and action in stone knapping, in: Roux, V., Bril, B. (Eds.), Stone knapping, the necessary conditions for a uniquely hominin behaviour. “McDonald Institute Monographs”, McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, pp. 273–286.

    Google Scholar 

  • Stout, D., 2006. Oldowan toolmaking and hominin brain evolution: theory and research using positron emission tomography (PET), in: Toth, N., Schick, K. (Eds.), The Oldowan: Case studies into the earliest Stone Age. “Stone Age Institute Publication Series Number 1”, Stone Age Institute Press, Stone Age Institute, Gosport, Indiana, and University of Indiana, Bloomington, Indiana, pp. 267–305.

    Google Scholar 

  • Stout, D., 2011. Stone-toolmaking and the evolution of human culture and cognition. Philosophical Transactions of the Royal Society Series B 366, 1050–1059.

    Article  Google Scholar 

  • Stout, D., Hecht, E., Khreisheh, N., Bradley, B., Chaminade, T., 2015. Cognitive demands of Lower Paleolithic toolmaking. Public Library of Science PLoS One 10, issue 4, e0121804.

    Article  Google Scholar 

  • Stout, D., Toth, N., Schick, K., 2006. Comparing the neural foundations of Oldowan and Acheulean toolmaking: a pilot study using positron emission tomography (PET), in: Toth, N., Schick, K. (Eds.), The Oldowan: Case studies into the earliest Stone Age. “Stone Age Institute Publication Series Number 1”, Stone Age Institute Press, Stone Age Institute, Gosport, Indiana, and University of Indiana, Bloomington, Indiana, pp. 321–331.

    Google Scholar 

  • Stout, D., Toth, N., Schick, K., Chaminade, T., 2008. Neural correlates of Early Stone Age toolmaking: Technology, language and cognition in human evolution. Philosophical Transactions of the Royal Society Series B 363, 1939–1949.

    Article  Google Scholar 

  • Suddendorf, T., Corballis, M.C., 1997. Mental time travel and the evolution of the human mind. Genetic, Social, and General Psychology Monographs, 123, 133–167.

    PubMed  Google Scholar 

  • Sutherland, R.J., Rudy, J.W., 1989. Configural association theory: The role of the hippocampal formation in learning, memory, and amnesia. Psychobiology 17,129–144.

    Google Scholar 

  • Tavares, R.M., Mendelsohn, A., Grossman, Y., Williams, C.H., Shapiro, M., Trope, Y., Schiller, D., 2015. A map for social navigation in the human brain. Neuron 87, 231–243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tonegawa, S., Liu, X., Ramirez, S., Redondo, R., 2015. Memory engram cells have come of age. Neuron 87, 918–931.

    Article  PubMed  Google Scholar 

  • Tulving, E., 1972. Episodic and semantic memory, in: Tulving, E., Donaldson, Eds., Organisation of memory. Academic Press, New York, pp 381–403.

    Google Scholar 

  • Tulving, E., 1983. Elements of episodic memory. Oxford University Press, Oxford and New York.

    Google Scholar 

  • Tulving, E., 2005. Episodic memory and autonoesis: Uniquely human? in: Terrace, H., Metcalfe, J. (Eds.), The missing link in cognition: Evolution of self-knowing consciousness. Oxford University Press, Oxford and New York, pp. 4–56.

    Google Scholar 

  • Van Peer, P., 1992. The Levallois reduction strategy. “Monographs in World Archaeology 13”, Prehistory Press, Madison.

    Google Scholar 

  • Villmoare, B., Kimbel, W.H., Seyoum, C., Campisano, C.J., DiMaggio, E., Rowan, J., Braun, D.R., Arrowsmith, J.R., Reed, K.E., 2015. Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science 346, 1352–1355.

    Article  Google Scholar 

  • Volle, E., Gonen-Yaacovi, G., de Costello, A., Gilbert, S.J., Burgess, P.W., 2011. The role of rostral prefrontal cortex in prospective memory: A voxel-based lesion study. Neuropsychologia 49: 2185– 2198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker, M.J., 2009. Long–term memory and Middle Pleistocene `Mysterians´, in: de Beaune, S.A., Coolidge, F.L., Wynn, T. (Eds.), Cognitive archaeology and human evolution. Cambridge University Press, Cambridge and New York, pp. 75–84.

    Google Scholar 

  • Walker, M.J., 2016. Palaeoneurophysiology and cognitive evolution in Pleistocene Homo: Biological and palaeoanthropological perspectives on the role of “haptic” working memory in the evolution of long-term procedural memory; drawing neuroscience and palaeoanthropology together, in: Ribot F. (Ed,), Homenaje al Dr. José Gibert Clols. Una vida dedicada a la ciencia y a los primeros europeos. Publicaciones de la Diputación de Granada, Granada, pp. 177–193.

    Google Scholar 

  • Walker, M.J., López-Martínez, M.V., Carrión-García, J.S., Rodríguez-Estrella, T., San-Nicolás-del-Toro, M., Schwenninger, J-L., López-Jiménez, A., Ortega-Rodrigáñez, J., Haber-Uriarte, M., Polo-Camacho, J-L., García-Torres, J., Campillo-Boj, M., Avilés-Fernández, A., Zack, W., 2013. Cueva Negra del Estrecho del Río Quípar (Murcia, Spain): A late Early Pleistocene site with an “Acheulo-Levalloiso-Mousteroid” Palaeolithic assemblage. Quaternary International 294, 135–159.

    Article  Google Scholar 

  • Walker, M.J., Anesin, D., Angelucci, D., Avilés-Fernández, A., Berna, F., Buitrago-López, A.T., Carrión, J.S., Eastham, A., Fernández-Jiménez, S., García-Torres, J., Haber-Uriarte, M., López-Jiménez, A., López-Martínez, M.V., Martín-Lerma, I., Ortega-Rodrigáñez, J., Polo-Camacho, J.L., Rhodes, S.E., Richter, D., Rodríguez-Estrella, T., Romero-Sánchez, G., San-Nicolás-del-Toro, M., Schwenninger, J-L., Skinner, A.R., Van-der-Made, J., Zack, W., 2016a. A view from a cave: Cueva Negra del Estrecho del Río Quípar (Caravaca de la Cruz, Murcia, southeastern Spain). Reflections on fire, technological diversity, environmental exploitation, and palaeoanthropological approaches. Human Evolution 31, 1–67.

    Google Scholar 

  • Walker, M.J., Anesin, D., Angelucci, D.E., Avilés-Fernández, A., Berna, F., Buitrago-López, A.T., Fernández-Jalvo, Y., Haber-Uriarte, M., López-Jiménez, A., López-Martínez, M., Martín-Lerma, I., Ortega-Rodrigáñez, J., Polo-Camacho, J.L., Rhodes, S.E., Richter, D., Rodríguez-Estrella, T., Schwenninger, J-L., Skinner, A.R., 2016b. Combustion at the late Early Pleistocene Palaeolithic site of Cueva Negra del Estrecho del Río Quípar (Murcia, Spain). Antiquity 90, 571–589.

    Article  Google Scholar 

  • Weaver, A.H., 2005. Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proceedings of the National Academy of Sciences of the USA 102, 3576–3580.

    Article  PubMed  PubMed Central  Google Scholar 

  • West, R., 2011. The temporal dynamics of prospective memory: A review of the ERP and prospective memory literature. Neuropsychologia 49, 2233–4225.

    Article  PubMed  Google Scholar 

  • White, M., Pettitt, P., 1995. Technology of early Palaeolithic western Europe: innovation, variability and a unified framework. Lithics 16, 27–40.

    Google Scholar 

  • Wimmer, G.E., Shohamy, D., 2012. Preference by association: How memory mechanisms in the hippocampus bias decisions. Science 338, 270–273.

    Article  PubMed  Google Scholar 

  • Wrangham, R., 2009. Catching fire. How cooking made us human. Profile Books, New York.

    Google Scholar 

  • Wrangham, R., Carmody, R., 2010. Human adaptation to the control of fire. Evolutionary Anthropology 19, 187–199.

    Article  Google Scholar 

  • Wynn, T., 1979. The intelligence of later Acheulean hominids. Man 14, 371–391.

    Article  Google Scholar 

  • Wynn, T., 1989. The evolution of spatial competence. “Illinois Studies in Anthropology No. 17”, University of Illinois Press, Urbana and Chicago.

    Google Scholar 

  • Wynn, T., 1993. Layers of thinking in tool behavior, in: Gibson, K.R., Ingold, T. (Eds.), Tools, language and cognition in human evolution. Cambridge University Press, Cambridge, pp. 389–406.

    Google Scholar 

  • Wynn, T., 1995. Handaxe enigmas. World Archaeology 27, 10–24.

    Article  Google Scholar 

  • Wynn, T., 2000. Symmetry and the evolution of the modular linguistic mind, in: Carruthers, P., Chamberlain, A. (Eds.), Evolution and the human mind: Modularity, language, and meta-cognition. Cambridge University Press, Cambridge, pp. 113–139.

    Chapter  Google Scholar 

  • Wynn, T., 2002. Archaeology and cognitive evolution. Behavioral and Brain Sciences 25, 389–438.

    PubMed  Google Scholar 

  • Wynn, T., Coolidge, F.L., 2004. The expert Neandertal mind. Journal of Human Evolution 46, 467–487.

    Article  PubMed  Google Scholar 

  • Wynn, T., Coolidge, F.L., 2010. How Levallois reduction is similar to, and not similar to, playing chess, in: Nowell, A, Davidson, I. (Eds.), Stone tools and the evolution of human cognition. University Press of Colorado, Boulder, pp. 83–103.

    Google Scholar 

  • Wynn, T., Coolidge, F.L., 2012. How to think like a Neandertal. Oxford University Press, Oxford and New York.

    Google Scholar 

  • Yassa, M.A., Stark, C.E.L., 2011. Pattern separation in the hippocampus. Trends in Neuroscience 34, 548–559.

    Article  Google Scholar 

  • Zeithamova, D., Dominick, A.L., Preston, A.R., 2012a. Hippocampal and ventral medial prefrontal activation during retrieval-mediated learning supports novel inference. Neuron 75, 168–179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeithamova, D., Schlichtling, M.L. Preston, A.R., 2102b. The hippocampus and inferential reasoning: Building memories to navigate future decisions. Frontiers in Human Neuroscience 6: article 70, 2012.00070.

    Google Scholar 

  • Zhang, W., Luck, S.J., 2008. Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y.D., Ardestani, A., Fuster, J.M., 2007. Distributed and associative working memory. Cerebral Cortex 17, Supplement, 17i77–17i87.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Héctor M. Manrique or Michael J. Walker .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Manrique, H.M., Walker, M.J. (2017). Early Tool-Making and the Evolution of Human Memory Systems in the Brain. In: Early Evolution of Human Memory. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-64447-9_4

Download citation

Publish with us

Policies and ethics