14 Transcortical Corridors

  • Anil Kumar Roy
  • Nefize Turan
  • Gustavo PradillaEmail author


Surgical treatment of deep subcortical lesions presents unique technical challenges related to atraumatic access with appropriate illumination and instrumentation in deep corridors. Advances in MRI technique with diffusion tensor imaging and whole brain tractography now allow for the development of minimally invasive parafascicular corridors to lesions. The combination of this technique with port-based approaches has significantly widened our surgical armamentarium. In this chapter, we discuss this technique in detail and the pathologies that can be addressed by port-based approaches.


Trancortical corridors Parafascicular access Whole brain tractography Subcortical surgery Port-based intracranial surgery 


  1. 1.
    Yasargil MG, Ture U, Yasargil DC. Impact of temporal lobe surgery. J Neurosurg. 2004;101(5):725–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Goga C, Ture U. The anatomy of Meyer’s loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection. J Neurosurg. 2015;122(6):1253–62.PubMedCrossRefGoogle Scholar
  3. 3.
    Akiyama O, Matsushima K, Gungor A, et al. Microsurgical and endoscopic approaches to the pulvinar. J Neurosurg. 2016;09:1–16.Google Scholar
  4. 4.
    Gungor A, Baydin S, Middlebrooks EH, Tanriover N, Isler C, Rhoton AL Jr. The white matter tracts of the cerebrum in ventricular surgery and hydrocephalus. J Neurosurg. 2017;126(3):945–71.PubMedCrossRefGoogle Scholar
  5. 5.
    Sanai N, Berger MS. Mapping the horizon: techniques to optimize tumor resection before and during surgery. Clin Neurosurg. 2008;55:14–9.PubMedGoogle Scholar
  6. 6.
    Alexander AL, Lee JE, Lazar M, Field AS. Diffusion tensor imaging of the brain. Neurotherapeutics. 2007;4(3):316–29.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Soares JM, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:31.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Jones DK, Knosche TR, Turner R. White matter integrity, fiber count, and other fallacies: the do’s and don'ts of diffusion MRI. NeuroImage. 2013;73:239–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Jellison BJ, Field AS, Medow J, Lazar M, Salamat MS, Alexander AL. Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. AJNR Am J Neuroradiol. 2004;25(3):356–69.PubMedGoogle Scholar
  10. 10.
    Flores BC, Whittemore AR, Samson DS, Barnett SL. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations. J Neurosurg. 2015;122(3):653–62.PubMedCrossRefGoogle Scholar
  11. 11.
    Huisman TA, Bosemani T, Poretti A. Diffusion tensor imaging for brain malformations: does it help? Neuroimaging Clin N Am. 2014;24(4):619–37.PubMedCrossRefGoogle Scholar
  12. 12.
    Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34(1):51–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Potgieser AR, Wagemakers M, van Hulzen AL, de Jong BM, Hoving EW, Groen RJ. The role of diffusion tensor imaging in brain tumor surgery: a review of the literature. Clin Neurol Neurosurg. 2014;124:51–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Ozturk A, Sasson AD, Farrell JA, et al. Regional differences in diffusion tensor imaging measurements: assessment of intrarater and interrater variability. AJNR Am J Neuroradiol. 2008;29(6):1124–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Brandstack N, Kurki T, Laalo J, Kauko T, Tenovuo O. Reproducibility of tract-based and region-of-interest DTI analysis of long association tracts. Clin Neuroradiol. 2016;26(2):199–208.PubMedCrossRefGoogle Scholar
  16. 16.
    Christidi F, Karavasilis E, Samiotis K, Bisdas S, Papanikolaou N. Fiber tracking: a qualitative and quantitative comparison between four different software tools on the reconstruction of major white matter tracts. Eur J Radiol Open. 2016;3:153–61.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Nimsky C, Ganslandt O, Hastreiter P, et al. Intraoperative diffusion-tensor MR imaging: shifting of white matter tracts during neurosurgical procedures – initial experience. Radiology. 2005;234(1):218–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Nimsky C, Ganslandt O, Merhof D, Sorensen AG, Fahlbusch R. Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. NeuroImage. 2006;30(4):1219–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Jang SH, Jang WH. Ideomotor apraxia due to injury of the superior longitudinal fasciculus. Am J Phys Med Rehabil. 2016;95(8):e117–20.PubMedCrossRefGoogle Scholar
  20. 20.
    Ivanova MV, Isaev DY, Dragoy OV, et al. Diffusion-tensor imaging of major white matter tracts and their role in language processing in aphasia. Cortex. 2016;85:165–81.PubMedCrossRefGoogle Scholar
  21. 21.
    Grossi D, Soricelli A, Ponari M, et al. Structural connectivity in a single case of progressive prosopagnosia: the role of the right inferior longitudinal fasciculus. Cortex. 2014;56:111–20.PubMedCrossRefGoogle Scholar
  22. 22.
    Pescatori L, Tropeano MP, Manfreda A, Delfini R, Santoro A. Three dimensional anatomy of the white matter fibers of the temporal lobe: surgical implications. World Neurosurg. 2017;100:144–58.PubMedCrossRefGoogle Scholar
  23. 23.
    Schlaug G, Marchina S, Norton A. Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Ann N Y Acad Sci. 2009;1169:385–94.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Labib MA, Shah M, Kassam AB, et al. The safety and feasibility of image-guided BrainPath-mediated Transsulcul hematoma evacuation: a multicenter study. Neurosurgery. 2017;80(4):515–24.PubMedGoogle Scholar
  25. 25.
    Kelly PJ, Goerss SJ, Kall BA. The stereotaxic retractor in computer-assisted stereotaxic microsurgery. Technical note. J Neurosurg. 1988;69(2):301–6.PubMedCrossRefGoogle Scholar
  26. 26.
    Recinos PF, Raza SM, Jallo GI, Recinos VR. Use of a minimally invasive tubular retraction system for deep-seated tumors in pediatric patients. J Neurosurg Pediatr. 2011;7(5):516–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Engh JA, Lunsford LD, Amin DV, et al. Stereotactically guided endoscopic port surgery for intraventricular tumor and colloid cyst resection. Neurosurgery. 2010;67(3 Suppl Operative):ons198–204; discussion ons204–195.PubMedGoogle Scholar
  28. 28.
    Macellari F, Paciaroni M, Agnelli G, Caso V. Neuroimaging in intracerebral hemorrhage. Stroke. 2014;45(3):903–8.PubMedCrossRefGoogle Scholar
  29. 29.
    Cheung RT, Zou LY. Use of the original, modified, or new intracerebral hemorrhage score to predict mortality and morbidity after intracerebral hemorrhage. Stroke. 2003;34(7):1717–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Clarke JL, Johnston SC, Farrant M, Bernstein R, Tong D, Hemphill JC 3rd. External validation of the ICH score. Neurocrit Care. 2004;1(1):53–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Hemphill JC 3rd, Bonovich DC, Besmertis L, Manley GT, Johnston SC. The ICH score: a simple, reliable grading scale for intracerebral hemorrhage. Stroke. 2001;32(4):891–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Ruiz-Sandoval JL, Chiquete E, Romero-Vargas S, Padilla-Martinez JJ, Gonzalez-Cornejo S. Grading scale for prediction of outcome in primary intracerebral hemorrhages. Stroke. 2007;38(5):1641–4.PubMedCrossRefGoogle Scholar
  33. 33.
    Ziai WC, Melnychuk E, Thompson CB, Awad I, Lane K, Hanley DF. Occurrence and impact of intracranial pressure elevation during treatment of severe intraventricular hemorrhage. Crit Care Med. 2012;40(5):1601–8.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hemphill JC 3rd, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.PubMedCrossRefGoogle Scholar
  35. 35.
    Prasad K, Mendelow AD, Gregson B. Surgery for primary supratentorial intracerebral haemorrhage. Cochrane Database Syst Rev. 2008(4):CD000200.Google Scholar
  36. 36.
    Morgenstern LB, Frankowski RF, Shedden P, Pasteur W, Grotta JC. Surgical treatment for intracerebral hemorrhage (STICH): a single-center, randomized clinical trial. Neurology. 1998;51(5):1359–63.PubMedCrossRefGoogle Scholar
  37. 37.
    Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382(9890):397–408.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Auer LM, Deinsberger W, Niederkorn K, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: a randomized study. J Neurosurg. 1989;70(4):530–5.PubMedCrossRefGoogle Scholar
  39. 39.
    Mould WA, Carhuapoma JR, Muschelli J, et al. Minimally invasive surgery plus recombinant tissue-type plasminogen activator for intracerebral hemorrhage evacuation decreases perihematomal edema. Stroke. 2013;44(3):627–34.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Bauer AM, Rasmussen PA, Bain MD. Initial single-center technical experience with the BrainPath system for acute intracerebral hemorrhage evacuation. Oper Neurosurg. 2017;13(1):69–76.Google Scholar
  41. 41.
    Eliyas JK, Glynn R, Kulwin CG, et al. Minimally invasive transsulcal resection of intraventricular and periventricular lesions through a tubular retractor system: multicentric experience and results. World Neurosurg. 2016;90:556–64.PubMedCrossRefGoogle Scholar
  42. 42.
    Scranton RA, Fung SH, Britz GW. Transulcal parafascicular minimally invasive approach to deep and subcortical cavernomas: technical note. J Neurosurg. 2016;125(6):1360–6.PubMedCrossRefGoogle Scholar
  43. 43.
    Nagatani K, Takeuchi S, Feng D, Mori K, Day JD. High-definition exoscope system for microneurosurgery:use of an exoscope in combination with tubular retraction and frameless neuronavigation for microsurgical resection of deep brain lesions. No Shinkei Geka. 2015;43(7):611–7.PubMedGoogle Scholar
  44. 44.
    Kassam AB, Engh JA, Mintz AH, Prevedello DM. Completely endoscopic resection of intraparenchymal brain tumors. J Neurosurg. 2009;110(1):116–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Anil Kumar Roy
    • 1
  • Nefize Turan
    • 1
  • Gustavo Pradilla
    • 2
    Email author
  1. 1.Department of NeurosurgeryEmory University School of MedicineAtlantaUSA
  2. 2.Department of Neurological SurgeryGrady Memorial Hospital—Neurosurgery, Emory UniversityAtlantaUSA

Personalised recommendations