Skip to main content

Ecological Factors Driving Uptake of Anticoagulant Rodenticides in Predators

  • Chapter
  • First Online:
Anticoagulant Rodenticides and Wildlife

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 5))

Abstract

In recent years anticoagulant rodenticides have emerged as an important factor reducing the survival of many birds of prey and some predatory mammals. Understanding the ecological factors driving the exposure of predators is a key component in assessing the risk posed by anticoagulant rodenticides. We have reviewed the literature to better understand and synthesize the ecological factors driving AR exposure in predators, focusing on landscape and environmental management, traits of the exposed predators and the most common exposure pathways. On a global scale, the large input of ARs into urban and agricultural settings, and the relatively large footprint of these landscapes, has led to widespread AR exposure of many species, ranging from insects to large carnivores. General inferences can be made with regards to the traits of the most affected species. We determined that at-risk predators tend to be nocturnal opportunistic species for which rodents are a key dietary component, seasonally or year-round. They also tend to be non-migratory and occupy habitats within, or in close proximity to landscapes that are heavily influenced by human activities such as intensive agriculture or urban areas. Predators that consume rats in urban environments are disproportionately affected by ARs. As our understanding of how ARs are transferred up the food-chain is still limited, there is a need to further comprehend the extent to which non-target prey are being exposed to ARs in different landscapes, as we are frequently documenting AR residues in predators that do not typically prey on rodents. We recommend a focus on urban landscapes, where to date no exposure data has been collected on non-target prey. We also have a very limited understanding of non-target prey exposure in the urban-wildland/agricultural interface where opportunistic predators are known to hunt both habitat types interchangeably. Finally, we need to decipher whether the mounting evidence of exposure in predators translates into any population level effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert CA, Wilson LK, Mineau P, Trudeau S, Elliott JE (2010) Anticoagulant rodenticides in three owl species from Western Canada, 1988–2003. Arch Environ Contam Toxicol 58:451–459

    Article  CAS  Google Scholar 

  • Aplin KP, Chesser T, Have J (2003) Evolutionary biology of the genus Rattus: profile of an archetypal rodent pest. In: Singleton GR, Hinds LA, Krebs CJ, Spratt DM (eds) Rats, mice and people: rodent biology and management. ACIAR Monograph No 96, Canberra, pp 487–498

    Google Scholar 

  • Atterby H, Kerins GM, MacNicoll AD (2005) Whole-carcass residues of the rodenticide difenacoum in anticoagulant-resistant and-susceptible rat strains (Rattus norvegicus). Environ Toxicol Chem 24:318–323. doi:10.1897/04-022R.1

    Article  CAS  Google Scholar 

  • Baldwin RA, Quinn N, Davis DH, Engeman RM (2014) Effectiveness of rodenticides for managing invasive roof rats and native deer mice in orchards. Environ Sci Pollut Res 21:5795–5802. doi:10.1007/s11356-014-2525-4

    Article  CAS  Google Scholar 

  • Barbosa P, Castellanos I (2005) Ecology of predator prey interactions. Oxford University press, New York

    Google Scholar 

  • Berny P, Gaillet J-R (2008) Acute poisoning of red kites (Milvus milvus) in France: data from the SAGIR network. J Wildl Dis 44:417–426

    Article  Google Scholar 

  • Berny PJ, Buronfosse T, Buronfosse F, Lamarque F, Lorgue G (1997) Field evidence of secondary poisoning of foxes (Vulpes vulpes) and buzzards (Buteo buteo) by bromadiolone, a 4-year survey. Chemosphere 35:1817–1829

    Article  CAS  Google Scholar 

  • Bildstein KL (2008) A brief history of raptor conservation in North America. In: Bildstein KL, Smith JP, Ruelas Inzunza E, Veit RR (eds) State of North America’s birds of prey. Nuttall Ornithological Club/American Ornithologists’ Union, Cambridge, MA/Washington, DC, pp 5–36

    Google Scholar 

  • Birks JDS (1998) Secondary rodenticide poisoning risk arising from winter farmyard use by the European polecat Mustela putorius. Biol Conserv 85:233–240

    Article  Google Scholar 

  • Bishop CA, Williams KE, Kirk DA, Nantel P, Reed E, Elliott JE (2016) A population model of the impact of a rodenticide containing strychnine on Great Basin Gophersnakes (Pituophis catenifer deserticola). Ecotoxicology 25:1390–1405

    Article  CAS  Google Scholar 

  • Blair RB (2001) Birds and butterflies along urban gradients in two ecoregions of the U.S. In: Lockwood JL, McKinney ML (eds) Biotic homogenization. Kluwer, Norwell, pp 33–36

    Chapter  Google Scholar 

  • Borst GH, Counotte GH (2002) Shortfalls using second-generation anticoagulant rodenticides. J Zoo Wildl Med 33:85

    Article  CAS  Google Scholar 

  • Brakes CR, Smith RH (2005) Exposure of non-target small mammals to rodenticides: short-term effects, recovery and implications for secondary poisoning. J Appl Ecol 42:118–128. doi:10.1111/j.1365-2664.2005.00997.x

    Article  CAS  Google Scholar 

  • Buckle A (2013) Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.) Pest Manag Sci 69(3):334–341. doi:10.1002/ps.3309

    Article  CAS  Google Scholar 

  • Canada GAP Food Safety program (2016) http://www.canadagap.ca/ Accessed 9 January 2016

  • Carter I, Cross AV, Douse A, Duffy K, Etheridge B, Grice PV, Newbery P, Orr-Ewing DC, O’Toole L, Simpson D, Snell N (2003) Re-introduction and conservation of the Red Kite in Britain: current threats and prospects for future range expansion. In: Thompson DBA, Redpath SM, Fielding AH, Marquiss M, Galbraith CA (eds) Birds of prey in a changing environment. The Stationery Office, Edinburgh, pp 407–416

    Google Scholar 

  • Christensen TK, Lassen P, Elmeros M (2012) High exposure rates of anticoagulant rodenticides in predatory bird species in intensively managed landscapes in Denmark. Arch Environ Contam Toxicol 63:437–444

    Article  CAS  Google Scholar 

  • Coeurdassier M, Poirson C, Paul JP, Rieffel D, Michelat D, Reymond D, Legay P, Giraudoux P, Scheifler R (2012) The diet of migrant Red Kites Milvus milvus during a Water Vole Arvicola terrestris outbreak in eastern France and the associated risk of secondary poisoning by the rodenticide bromadiolone. Ibis 154(1):136–146. doi:10.1111/j.1474-919X.2011.01193.x

    Article  Google Scholar 

  • Corrigan RM (2001) Rodent control: a practical guide for pest and management professionals. GIE Media, Cleveland

    Google Scholar 

  • Cowan D, Dunsford G, Gill E, Jones A, Kerins G, Macnicoll A, Quy R (1995) The impact of resistance on the use of 2nd-generation anticoagulants against rats on farms in southern England. Pestic Sci 43:83–93

    Article  CAS  Google Scholar 

  • Cox P, Smith RH (1992) Rodenticide ecotoxicology: pre-lethal effects of anticoagulants on rat behaviour. In: Proceedings of the 15th vertebrate pest conference. University of Nebraska-Lincoln, Lincoln, pp 165–170

    Google Scholar 

  • CRRU (Campaign for Responsible Rodenticide Use) (2016) CRRU code of best practice. http://www.thinkwildlife.org/courses/

  • Cypher BL (2010) Kit foxes. In: Gehrt SD, Riley SP, Cypher BL (eds) Urban carnivores: ecology, conflict, and conservation. JHU Press, Balitmore, pp 49–60

    Google Scholar 

  • Cypher B, McMillin S, Westall T, Van Horn JC, Hosea R, Finlayson B, Kelly EC (2014) Rodenticide exposure among endangered kit foxes relative to habitat use in an urban landscape. Cities Environ 7(Article 8):1–18

    Google Scholar 

  • Delattre P, Giraudoux P (2009) Le campagnol terrestre: Prévention et contrôle des populations. Editions Quae, Versailles

    Google Scholar 

  • Dennis GC, Gartrell BD (2015) Nontarget mortality of New Zealand lesser short-tailed bats (Mystacina tuberculata) caused by diphacinone. J Wildl Dis 51:177–186. doi:10.7580/2013-07-160

    Article  Google Scholar 

  • Dowding CV, Shore RF, Worgan A, Baker PJ, Harris S (2010) Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environ Pollut 158:161–166

    Article  CAS  Google Scholar 

  • Duckett JE (1991) Management of the Barn Owl (Tyto alba javanica) as a predator of rats in oil palm (Elaeis fuineenis) plantations in Malaysia. Birds Prey Bull Rep 4:11–23. http://www.raptors-international.org/book/birds_of_prey_1991/Duckett_1991_11-24.pdf

    Google Scholar 

  • Dunlevy PA, Campbell EW, Lindsey GD (2000) Broadcast application of a placebo rodenticide bait in a native Hawaiian forest. Int Biodeter Biodegr 45:199–208

    Article  CAS  Google Scholar 

  • Eason CT, Spurr EB (1995) The toxicity and sub-lethal effects of brodifacoum in birds and bats. A literature review. Science for Conservation: 6. Department of Conservation, Wellington, New Zealand

    Google Scholar 

  • Eason CT, Murphy EC, Wright GRG, Spurr EB (2002) Assessment of risks of brodifacoum to non-target birds and mammals in New Zealand. Ecotoxicology 11:35–48

    Article  Google Scholar 

  • Elliott JE, Hindmarch S, Albert CA, Emery J, Mineau P, Maisonneuve F (2014) Exposure pathways of anticoagulant rodenticides to nontarget wildlife. Environ Monit Assess 186:895–906. doi:10.1007/s10661-013-3422-x

    Article  CAS  Google Scholar 

  • Elliott JE, Rattner BA, Shore RF, Van Den Brink NW (2016a) Paying the pipers: mitigating the impact of anticoagulant rodenticides on predators and scavengers. Bioscience 66(5):401–407. doi:10.1093/biosci/biw028

    Article  Google Scholar 

  • Elliott JE, Weir R, Lee S, Maisonneuve F. 2016b. Anticoagulant rodenticide residues in badgers and fishers from southern British Columbia. SETAC 2016, Orlando, FL, Nov 7-11, 2016

    Google Scholar 

  • Elmeros M (2006) Food habits of stoats Mustela erminea and weasels Mustela nivalis in Denmark. Acta Ther 51:179–186

    Article  Google Scholar 

  • Elmeros M, Christensen TK, Lassen P (2011) Concentrations of anticoagulant rodenticides in stoats (Mustela erminea) and weasels (Mustela nivalis) from Denmark. Sci Total Environ 409:2373–2378

    Article  CAS  Google Scholar 

  • Endepols S, Klemann N, Jacob J, Buckle AP (2012) Resistance tests and field trials with bromadiolone for the control of Norway rats (Rattus norvegicus) on farms in Westphalia, Germany. Pest Manag Sci 68(3):348–354. doi:10.1002/ps.2268

    Article  CAS  Google Scholar 

  • Erickson W, Urban D (2004) Potential risks of nine rodenticides to birds and non-traget mammals: a comparative approach. United States Environmental Protection Agency, http://www.fwspubs.org/doi/suppl/10.3996/052012-JFWM-042/suppl_file/10.3996_052012-jfwm-042.s4.pdf, Washington DC

  • Feng AYT, Himsworth CG (2014) The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosyst 17:149–162. doi:10.1007/s11252-013-0305-4

    Article  Google Scholar 

  • Fichet-Calvet E, Pradier B, Que’re´ JP, Giraudoux P, Delattre P (2001) Landscape composition and vole outbreaks: evidence from an eight year study of Arvicola terrestris. Ecography 23:659–668

    Article  Google Scholar 

  • Fisher P, O'Conor C, Wright G, Eason CT (2003) Persistence of four anticoagulant rodenticides in the livers of laboratory rats. DOC Science Internal Series 139. Dept. of Conservation, Wellington http://nationalparks.co.nz/Documents/science-and-technical/dsis139.pdf

  • Fournier-Chambrillon C, Berny PJ, Coiffier O, Barbedienne P, Dasse B, Delas G, Galineau H, Mazet A, Pouzenc P, Rosoux R, Fournier P (2004) Evidence of secondary poisoning of free-ranging riparian mustelids by anticoagulant rodenticides in France: implications for conservation of European mink (Mustela lutreola). J Wildl Dis 40:688–695

    Article  CAS  Google Scholar 

  • Gabriel MW, Woods LW, Poppenga R, Sweitzer RA, Thompson C, Matthews SM, Higley JM, Keller SM, Purcell K, Barrett RH, Wengert GM, Sacks BN, Clifford DL (2012) Anticoagulant rodenticides on our public and community lands: spatial distribution of exposure and poisoning of a rare forest carnivore. PLoS One 7:e40163. doi:10.1371/journal.pone.0040163

    Article  CAS  Google Scholar 

  • Galeotti P, Morimando F, Violani C (1991) Feeding ecology of the tawny owls (Strix aluco) in urban habitats (northern Italy). Bolletino di Zoologia 58:143–150

    Article  Google Scholar 

  • Geddes AWM (1992) The relative importance of pre-harvest crop pests in Indonesia. Bulletin of the Natural Resources Institute, Chatham

    Google Scholar 

  • Geduhn A, Esther A, Schenke D, Mattes H, Jacob J (2014) Spatial and temporal exposure patterns in non-target small mammals during brodifacoum rat control. Sci Total Environ 496:328–338. doi:10.1016/j.scitotenv.2014.07.049

    Article  CAS  Google Scholar 

  • Geduhn A, Jacob J, Schenke D, Keller B, Kleinschmidt S, Esther A (2015) Relation between intensity of biocide practice and residues of anticoagulant rodenticides in red foxes (Vulpes vulpes). PLoS One 10(9):e0139191. doi:10.1371/ journal.pone.0139191

    Article  CAS  Google Scholar 

  • Geduhn A, Esther A, Schenke D, Gabriel D, Jacob J (2016) Prey composition modulates exposure risk to anticoagulant rodenticides in a sentinel predator, the barn owl. Sci Total Environ 544:150–157. doi:10.1016/j.scitotenv.2015.11.117

    Article  CAS  Google Scholar 

  • Gehrt SD, Riley SP (2010) Coyotes (Canis latrans). In: Gehrt SD, Riley SP, Cypher BL (eds) Urban carnivores: ecology, conflict, and conservation. JHU Press, Balitmore, pp 78–95

    Google Scholar 

  • Gehrt SD, Riley SP, Cypher BL (2010) Urban carnivores: ecology, conflict, and conservation. JHU Press, Balitmore

    Google Scholar 

  • Germaine SS, Wakeling BF (2001) Lizard species distribution and habitat occupation along an urban gradient in Tuscon, Arizona, USA. Biol Conserv 97:229–237

    Article  Google Scholar 

  • Giraudoux P, Tremollieres C, Barbier B, Defaut R, Rieffel D, Bernard N, Lucota E, Berny P (2006) Persistence of bromadiolone anticoagulant rodenticide in Arvicola terrestris populations after field control. Environ Res 102(3):291–298. doi:10.1016/j.envres.2006.02.008

    Article  CAS  Google Scholar 

  • Glue DE (1974) Food of the Barn Owl in Britain and Ireland. Bird Study 21(3):200–210. doi:10.1080/00063657409476419

    Article  Google Scholar 

  • Godefroid S, Koedam N (2003) Distribution pattern of the flora in a peri-urban forest: an effect of the city–forest ecotone. Landsc Urban Plan 65:169–185. doi:10.1016/S0169-2046(03)00013-6

    Article  Google Scholar 

  • Grolleau G, Lorgue G, Nahas K (1989) Toxicite´ secondaire, en laboratoire, d’un rodenticide anticoagulant (bromadiolone) pour des pre’dateurs de rongeurs champe’tres: Buse variable (Buteo buteo) et Hermine (Mustela erminea). Bull OEPP/EPPO 19:633–648

    Article  Google Scholar 

  • Hegdal PL, Blaskiewicz RW (1984) Evaluation of the potential hazard to barn owls of Talon (brodifacoum bait) used to control rats and house mice. Environ Toxicol Chem 3:167–179

    Article  CAS  Google Scholar 

  • Hegdal PL, Colvin BA (1988) Potential hazard to eastern screech-owls and other raptors of brodifacoum bait used for vole control. Environ Toxicol Chem 7:245–260

    Article  Google Scholar 

  • Himsworth CG, Bai Y, Kosoy MY, Wood H, DiBernardo A, Lindsay R, Bidulka J, Tang P, Jardine C, Patrick D (2015) An investigation of Bartonella spp., Rickettsia typhi, and Seoul hantavirus in rats (Rattus spp.) from an inner-city neighborhood of Vancouver, Canada: is pathogen presence a reflection of global and local rat population structure? Vector-Borne Zoonot 15:21–26

    Article  Google Scholar 

  • Hindmarch S, Elliott JE (2014) Comparing the diet of great horned owls (Bubo virginianus) in rural and urban areas of Southwestern British Columbia. Can Field Nat 128:393–399

    Article  Google Scholar 

  • Hindmarch S, Elliott JE (2015a) When owls go to town: the diet of urban barred owls. J Raptor Res 49:66–74. doi:10.3356/jrr-14-00012.1

    Article  Google Scholar 

  • Hindmarch S, Elliott JE (2015b) A specialist in the city: the diet of barn owls along a rural to urban gradient. Urban Ecosyst 18:477–488. doi:10.1007/s11252-014-0411-y

    Article  Google Scholar 

  • Hindmarch S, Elliott JE, McCann S, Levesque P (2017) Habitat use by barn owls across a rural to urban gradient and an assessment of stressors including habitat loss, road mortality and rodenticide exposure. Landscape Urban Plan 164:132–143. doi:10.1016/j.landurbplan.2017.04.003

  • Houston CS, Smith DG, Rohner C (1998) The great horned owl (Bubo virginianus). In: Poole A (ed) The birds of north America Online. Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu/bna/

    Google Scholar 

  • Howald GR, Mineau P, Elliott JE, Cheng KM (1999) Brodifacoum poisoning of avian scavengers during rat control on a seabirdcolony. Ecotoxicology 8:431–447

    Article  CAS  Google Scholar 

  • Howald GR, Donlan C, Galván JP, Russell JC, Parkes J, Samaniego A, Wang Y, Veitch D, Genovesi P, Pascal M, Saunders A (2007) Invasive rodent eradication on islands. Conserv Biol 21(5):1258–1268. doi:10.1111/j.1523-1739.2007.00755.x

    Article  Google Scholar 

  • Howald GR, Ross J, Buckle AP (2015) Rodent control and island conservation. In: Buckle AP, Smith RH (eds) Rodent pest and their control, 2nd edn. CPI Group Ltd, Croydon, pp 366–398

    Google Scholar 

  • Hughes J, Sharp E, Taylor MJ, Melton L, Hartley G (2013) Monitoring agricultural rodenticide use and secondary exposure of raptors in Scotland. Ecotoxicology 22:974–984. doi:10.1007/s10646-013-1074-9

    Article  CAS  Google Scholar 

  • Huson LW, Rennison BD (1981) Seasonal variability of Norway rat (Rattus norvegicus) infestation of agricultural premises. J Zool London 194:257–289

    Article  Google Scholar 

  • Jacquot M, Coeurdassier M, Couval G, Renaude R, Pleydell D, Truchetet D, Raoul F, Giraudoux P (2013) Using long-term monitoring of red fox populations to assess changes in rodent control practices. J Appl Ecol 50:1406–1414. doi:10.1111/1365-2664.12151

    Article  Google Scholar 

  • Johnston JJ, Pitt WC, Sugihara RT, Eisemann JD, Primus TM, Holmes MJ, Crocker J, Hart A (2005) Probabilistic risk assessment for snails, slugs, and endangered honeycreepers in diphacinone rodenticide baited areas on Hawaii, USA. Environ Toxicol Chem 24:1557–1567

    Article  CAS  Google Scholar 

  • Justice-Allen A, Loyd KA (2017) Mortality of Western Burrowing Owls (Athene cunicularia hypugaea) associated with brodifacoum exposure. J Wildl Dis 53(1):165–169. doi:10.7589/2015-12-321

    Article  Google Scholar 

  • King CM, Powell RA (2007) The natural history of weasels and stoats. Oxford University Press, Oxford

    Book  Google Scholar 

  • Kitchen AM, Gese EM, Schauster ER (2000) Changes in coyote activity patterns due to reduced exposure to human persecution. Can J Zool 78:853–857. doi:10.1139/z00-003

    Article  Google Scholar 

  • König C, Weick F (2008) Eagle owls. In: König C, Weick F (eds) Owls of the world. A&C Black Publishers Limited, London, p 323

    Google Scholar 

  • Kotliar NB, Baker BW, Whicker AD, Plumb G (1999) Acritical review of assumptions about the prairie dog as a keystone species. Environ Manag 24:177–192

    Article  CAS  Google Scholar 

  • Lambert A (1981) Presence and food preferences of the great horned owl in the urban parks of Seattle. Murrelet 62:2–5

    Article  Google Scholar 

  • Langford KH, Reid M, Kevin V, Thomas KV (2013) The occurrence of second generation anticoagulant rodenticides in nontarget species in Norway. Sci Total Environ 450–451:205–208. http://www.sciencedirect.com/science/article/pii/S0048969713001629

  • Larsen J (2003) Report supplement to the methodology for risk evaluation of biocides Emission scenario document for biocides used as rodenticides. (Ref. ENV.C3/SER/2001/0058)

    Google Scholar 

  • Le Corre M, Danckwerts DK, Ringler D, Bastien M, Orlowski S, Rubio CM, Pinaud D, Micol T (2015) Seabird recovery and vegetation dynamics after Norway rat eradication at Tromelin Island, western Indian Ocean. Biol Conserv 185:85–94

    Article  Google Scholar 

  • Lee M, Morfini M, Negrier C, Chamouard V (2006) The pharmacokinetics of coagulation factors. Haemophilia 12(Suppl 3):1–7

    CAS  Google Scholar 

  • Lenton GM (1984) The feeding and breeding ecology of Barn owls Tyto alba in peninsula Malaysia. Int J Avian Sci 126:551–575

    Google Scholar 

  • Lopez-Perea JJ, Camarero PR, Molina-Lopez RA, Parpal L, Obon E, Sola J, Mateo R (2015) Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. Sci Total Environ 511:259–267. doi:10.1016/j.scitotenv.2014.12.042

    Article  CAS  Google Scholar 

  • Mackman N, Tilley RE, Key NS (2007) Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol 27:1687–1693

    Article  CAS  Google Scholar 

  • Marks JS, Evans DL, Holt DW (1994) Long-eared owl (Asio otus). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology. http://bna.birds.cornell.edu.proxy.lib.sfu.ca/bna/species/133, Ithaca. doi:10.2173/bna.133

    Google Scholar 

  • Marti CD, Kochert MN (1995) Are red-tailed hawks and great horned owls diurnal nocturnaldietary counterparts? Wilson Bull 107:615–628

    Google Scholar 

  • Marti CD, Poole AF, Bevier LR (2005) Barn owl (Tyto alba). In: Poole A (ed) The birds of North America online. Cornell Laboratory of Ornithology, Ithaca. http://bna.birds.cornell.edu/BNA/account/Barn_Owl/

    Google Scholar 

  • Masuda BM, Fisher P, Beaven B (2015) Residue profiles of brodifacoum in coastal marine species following an island rodent eradication. Ecotoxicol Environ Saf 113:1–8. doi:10.1016/j.ecoenv.2014.11.013

    Article  CAS  Google Scholar 

  • McDonald RA, Harris S, Turnbull G, Brown P, Fletcher M (1998) Anticoagulant rodenticides in stoats (Mustela erminea) and weasels (Mustela nivalis) in England. Environ Pollut 103:17–23

    Article  CAS  Google Scholar 

  • McKinney ML (2002) Urbanization, biodiversity and conservation. Bioscience 52:883–890

    Article  Google Scholar 

  • Merson MH, Byers RE, Kaukeinen DE (1984) Residues of the rodenticide brodifacoum in voles and raptors after orchard treatment. J Wildl Manag 48:212–216

    Article  CAS  Google Scholar 

  • Montaz J, Jacquot M, Coeurdassier M (2014) Scavenging of rodent carcasses following simulated mortality due to field applications of anticoagulant rodenticide. Ecotoxicology 23:1671–1680. doi:10.1007/s10646-014-1306-7

    Article  CAS  Google Scholar 

  • Morey PS, Gese EM, Gehrt S (2007) Spatial and temporal variation in the diet of coyotes in the Chicago metropolitan area. Am Midl Nat 158:147–161

    Article  Google Scholar 

  • Moriarty JG, Riley SPD, Serieys LE, Sikich JA, Schoonmaker CM, Poppenga RH (2012) Exposure of wildlife to anticoagulant rodenticides at Santa Monica Mountains national recreation area: from mountain lions to rodents. In: Timm RM (ed) Proc. 25th Vertebr. Pest Conf. University of California, Davis, pp 144–148

    Google Scholar 

  • Morzillo AT, Mertig AG (2011) Urban resident attitudes toward rodents, rodent control products, and environmental effects. Urban Ecosyst 14:243. doi:10.1007/s11252-010-0152-5

    Article  Google Scholar 

  • Morzillo AT, Schwartz MD (2011) Landscape characteristics affect animal control by urban residents. Ecosphere 2:128. doi:10.1890/ES11-00120.1

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10:58–62. doi:10.1016/S0169-5347(00)88977-6

    Article  CAS  Google Scholar 

  • Murray M (2011) Anticoagulant rodenticide exposure and toxicosis in four species of birds of prey presented to a wildlife Clinic in Massachusetts, 2006-2010. J Zoo Wild Med 42:88–97

    Article  Google Scholar 

  • Newman MC (2014) Fundamentals of ecotoxicology: the science of pollution, 4th edn. Taylor & Francis Group, New York

    Google Scholar 

  • Nogeire TM, Lawler JJ, Schumaker NH, Cypher BL, Phillips SE (2015) Land use as a driver of patterns of rodenticide exposure in modeled kit fox populations. PLoS One 10(8):e0133351. doi:10.1371/journal.pone.0133351

    Article  CAS  Google Scholar 

  • Ntampakis D, Carter I (2005) Red kites and rodenticides: a feeding experiment. Br Birds 98:411–416

    Google Scholar 

  • NY Magazine 2015. Mayor de Blasio declares war on rats by Jessica Roy http://nymag.com/daily/intelligencer/2015/05/mayor-de-blasio-declares-war-on-rats.html# Accessed 2 January 2016

  • Olea PP, Sánchez-Barbudo IS, Viñuela J, Barja I, Mateo-Tomás P, Piñeiro A, Mateo R, Purroy FJ (2009) Lack of scientific evidence and precautionary principle in massive release of rodenticides threatens biodiversity: old lessons need new reflections. Environ Conserv 36:1–4. doi:10.1017/S0376892909005323

    Article  Google Scholar 

  • Pain DJ, Brooke MD, Finnie JK, Jackson A (2000) Effects of brodifacoum on the land crab of Ascension island. J Wildl Manag 64(2):380–387

    Article  Google Scholar 

  • Pitt WC, Berentsen AR, Shiels AB, Volker SF, Eisemann JD, Wegmann AS, Howald GR (2015) Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biol Conserv 185:36–46. doi:10.1016/j.biocon.2015.01.008

    Article  Google Scholar 

  • Plumpton DL, Andersen DE (1997) Habitat use and time budgeting by wintering ferruginous hawks. Condor 99:888–893

    Article  Google Scholar 

  • Poessel SA, Breck SW, Fox KA, Gese EM (2015) Anticoagulant rodenticide exposure and toxicosis in Coyotes (Canis latrans) in the Denver Metropolitan Area. J Wildl Dis 51:265–268. doi:10.7589/2014-04-116

    Article  Google Scholar 

  • Poulin R, Todd DL, Haug EA, Millsap BA, Martell MS (2011) Burrowing owl (Athene cunicularia). In: Poole A (ed) The birds of North America online. Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu/bna/

    Google Scholar 

  • Rattner BA, Lazarus RS, Elliott JE, Shore RF, van den Brink N (2014) Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environ Sci Technol 48:8433–8445

    Article  CAS  Google Scholar 

  • Riley SPD, Sauvajot RM, Fuller TK, York EC, Kamradt DA, Bromley C, Wayne RK (2003) Effects of urbanization and habitat fragmentation on bobcats and coyotes in southern California. Conserv Biol 17:566–576

    Article  Google Scholar 

  • Riley SPD, Bromley C, Poppenga R, Uzal FA, Whited L, Sauvajot RM (2007) Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J Wildl Manag 71:1874–1884

    Article  Google Scholar 

  • Riley SPD, Boydston EE, Crooks KR, Lyren LM (2010) Bobcats (Lynx rufus). In: Gehrt SD, Riley SP, Cypher BL (eds) Urban carnivores: ecology, conflict, and conservation. JHU Press, Balitmore, pp 120–138

    Google Scholar 

  • Rodent Academy (2016) http://www1.nyc.gov/site/doh/health/health-topics/rodent-academy.page Accessed August 6, 2016

  • Ruder MG, Poppenga RH, Bryan JA, Bain M, Pitman J, Keel MK (2011) Intoxication of nontarget wildlife with rodenticides in Northwestern Kansas. J Wildl Dis 47(1):212–216

    Article  Google Scholar 

  • Ruiz-Suárez N, Henríquez-Hernández LA, Valerón PF, Boada LD, Zumbado M, Camacho M, Almeida-González M, Luzardo OP (2014) Assessment of anticoagulant rodenticide exposure in six raptor species from the Canary Islands (Spain). Sci Total Environ 485:371–376

    Article  CAS  Google Scholar 

  • Russell JC, Holmes ND (2015) Tropical island conservation: rat eradication for species recovery. Biol Conserv 185:1–7

    Article  Google Scholar 

  • Sage M, CÅ“urdassier M, Defaut R, Lucot É, Barbier B, Rieffel D, Berny P, Giraudoux P (2007) How environment and vole behaviour may impact rodenticide bromadiolone persistence in wheat baits after field controls of Arvicola terrestris? Environ Poll 148:372–379

    Article  CAS  Google Scholar 

  • Sage M, Courdassier M, Defaut R, Gimbert F, Berny P, Giraudoux P (2008) Kinetics of bromadiolone in rodent populations and implications for predators after field control of the water vole, Arvicola terrestris. Sci Total Environ 407:211–222. doi:10.1016/j.scitotenv.2008.09.003

    Article  CAS  Google Scholar 

  • Salmon TP, Dochtermann NA (2006) Rodenticide grain bait ingredient acceptance by Norway rats (Rattus norvegicus), California ground squirrels (Spermophilus beecheyi) and pocket gophers (Thomomys bottae). Pest Manag Sci 62(7):678–683. doi:10.1002/ps.1224

    Article  CAS  Google Scholar 

  • Sánchez-Barbudo IS, Camarero PR, Mateo R (2012) Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci Total Environ 420:280–288. doi:10.1016/j.scitotenv.2012.01.028

    Article  CAS  Google Scholar 

  • Serieys LEK, Armenta TC, Moriarty JG, Boydston EE, Lyren LM, Poppenga RH, Crooks KR, Wayne RK, Riley SPD (2015) Anticoagulant rodenticides in urban bobcats: exposure, risk factors and potential effects based on a 16-year study. Ecotoxicology 24:844–862

    Article  CAS  Google Scholar 

  • Sewell SR, Catterall CP (1998) Bushland modification and styles of urban development: their effects on birds in south-east Queensland. Wildl Res 25:41–63

    Article  Google Scholar 

  • Shore RF, Afsar A, Horne JA, Wright J (2000) Rodenticide and lead concentrations in red kites Milvus milvus. Centre for Ecology & Hydrology, Lancaster

    Google Scholar 

  • Shore RF, Birks JDS, Afsar A, Wienburg CL, Kitchener AC (2003) Spatial and temporal analysis of second-generation rodenticide residues in polecats (Mustela putorius) from throughout their range in Britain, 1992–1999. Environ Poll 122:183–193

    Article  CAS  Google Scholar 

  • Shore RF, Pereira MG, Potter ED, Walker LA (2015) Monitoring rodenticide residues in wildlife. In: Buckle AP, Smith RH (eds) Rodent pests and their control, 2nd edn. CAB International, Wallingford, pp 346–365

    Google Scholar 

  • Singleton GR (2003) Impacts of rodents on rice production in Asia. IRRI Discussion Paper Series No 45. International Rice Research Institute, Los Baños, Philippines

    Google Scholar 

  • Singleton GR, Belmain SR, Brown PR, Hardy B (2010) Rodent outbreaks: ecology and impacts. International Rice Researh Institute, Los Baños. http://ageconsearch.umn.edu/bitstream/164492/2/Rodentoutbreaks.pdf

    Google Scholar 

  • Sorace A, Gustin M (2009) Distribution of generalist and specialist along urban gradients. Landsc Urban Plan 90:111–118. doi:10.1016/j.landurbplan.2008.10.019

    Article  Google Scholar 

  • Spurr EB, Drew KW (1999) Invertebrates feeding on baits used for vertebrate pest control in New Zealand. N Z J Ecol 23:167–173

    Google Scholar 

  • Stansley W, Cummings M, Vudathala D, Murphy LA (2014) Anticoagulant rodenticides in red-tailed hawks, Buteo jamaicensis, and great horned owls, Bubo virginianus, from New Jersey, USA, 2008–2010. Bull Environ Contam Toxicol 92:6–9

    Article  CAS  Google Scholar 

  • Stenseth NC, Leirs H, Skonhoft A, Davis SA, Pech RP, Andreassen HP, Singleton GR, Lima M, Machang’u RS, Makundi RH, Zhang Z, Brown PR, Shi D, Wan X (2003) Mice, rats, and people: the bio-economics of agricultural rodent pests. Front Ecol Environ 1:367–375. doi:10.1890/1540-9295(2003)001[0367:MRAPTB]2.0.CO;2

    Article  Google Scholar 

  • Stephenson BM, Minot EO, Armstrong DP (1999) Fate of moreporks (Ninox novaeseelandiae) during a pest control operation on Mokoia Island, Lake Rotorua, North Island, New Zealand. New Zeal J Ecol 233–240

    Google Scholar 

  • Stone WB, Okoniewski JC, Stedelin JR (1999) Poisoning of wildlife with anticoagulant rodenticides in New York. J Wildl Dis 35:187–193

    Article  CAS  Google Scholar 

  • Stone WB, Okoniewski JC, Stedelin JR (2003) Anticoagulant rodenticides and raptors: recent findings from New York, 1998–2001. Bull Environ Contam Toxicol 70:34–40

    Article  CAS  Google Scholar 

  • Taylor IR (1994) Barn owls. Predator–prey relationships and conservation. Cambridge Univ. Press, Cambridge

    Google Scholar 

  • Teta P, Hercolini C, Cueto G (2012) Variation in the diet of western barn owls (Tyto alba) along an urban–rural gradient. Wilson J Ornithol 124:589–596

    Article  Google Scholar 

  • Thomas PJ, Mineau P, Shore RF, Champoux L, Martin PA, Wilson LK, Fitzgerald G, Elliott JE (2011) Second generation anticoagulant rodenticides in predatory birds: probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environ Int 37:914–920

    Article  CAS  Google Scholar 

  • Tosh DG, Shore RF, Jess S, Withers A, Bearhop S, Montgomery WI, McDonald RA (2011) User behaviour, best practice and the risks of non-target exposure associated with anticoagulant rodenticide use. J Environ Manag 92:1503–1508

    Article  Google Scholar 

  • Tosh DG, McDonald RA, Bearhop S, Llewellyn NR, Montgomery WI, Shore RF (2012) Rodenticide exposure in wood mouse and house mouse populations on farms and potential secondary risk to predators. Ecotoxicology 21:1325–1332. doi:10.1007/s10646-012-0886-3

    Article  CAS  Google Scholar 

  • Townsend MG, Entwisle P, Hart ADM (1995) Use of two halogenated biphenyls as indicators of nontarget exposure during rodenticide treatments. Bull Environ Contam Toxicol 54:526–533

    Article  CAS  Google Scholar 

  • Tuyttens FAM, Stuyck JJJM (2002) Effectiveness and efficiency of chlorophacinone poisoning for the control of muskrat (Ondathra zibethicus) populations. N Z J Ecol 29:33–40

    Google Scholar 

  • US EPA (United States Environmental Protection Agency) (2009) Rozol EPA Registration No. 7173-286. http://www.liphatech.com/uploads/files/pdf/US/Labels/Rozol/ENG_RZ_PrairieDogBait_WY_Label.pdf Accessed 12 December 2015

  • US EPA (United States Environmental Protection Agency) (2011) Risks of non-compliant rodenticides to nontarget wildlife. Background paper for scientific advisory panel on notice of intent to cancel non-RMD compliant rodenticide products. http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPP2011-0718-0006. Accessed 12 December 2015

  • US Fish and Wildlife Service (2016) Environmental Conservation Online System: Black-footed ferret (Mustela nigripes) http://ecos.fws.gov/ecp0/profile/speciesProfile?spcode=A004. Accessed 29 July 2016

  • Vennesland RG, Butler RW (2011) Great blue heron (Ardea herodias). Poole A (Ed) The birds of North America online. Ithaca: Cornell Lab of Ornithology. Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/. Accessed 5 January 2016

  • Vyas NB, Hulse CS, Rice CP (2012) Chlorophacinone residues in mammalian prey at a black-tailed prairie dog colony. Environ Toxicol Chem 31:2513–2516

    Article  CAS  Google Scholar 

  • Vyas NB, Hulse CS, Meteyer CU, Rice CP (2013) Evidence of songbird intoxication from Rozol® application at a black-tailed prairie dog colony. J Fish Wildl Manag 4(1):97–103

    Article  Google Scholar 

  • Walker LA, Turk A, Long SM, Wienburg CL, Best J, Shore RF (2008) Second generation anticoagulant rodenticides in tawny owls (Strix aluco) from Great Britain. Sci Total Environ 392:93–98

    Article  CAS  Google Scholar 

  • Walker LA, Chaplow JS, Moeckel C, Pereira MG, Potter ED, Shore RF (2014) Anticoagulant rodenticides in predatory birds 2012: a predatory bird monitoring scheme (PBMS) report. Centre for Ecology & Hydrology, Lancaster

    Google Scholar 

  • Walsh MG (2014) Rat sightings in New York City are associated with neighborhood sociodemographics, housing characteristics, and proximity to open public space. Peer J 2:e533. https://doi.org/10.7717/peerj.533

    Article  Google Scholar 

  • Way JG, Cifuni SM, Eatough DL, Strauss EG (2006) Rat poison kills a pack of eastern coyotes. Canis latrans, in an urban area. Can Field Nat 120:478–480

    Article  Google Scholar 

  • Wells MC, Bekoff M (1982) Predation by wild coyotes: behavioral and ecological analyses. J Mammal 631:118–127. doi:10.2307/1380678

    Article  Google Scholar 

  • White J, Wood B, Bassett S (2015) Absence of domestic animals fed to urban red-tailed hawks (Buteo jamaicensis) nestlings in Reno-Sparks, Nevada. Paper presented at the Raptor Research Conference, Sacramento, CA, USA 2015

    Google Scholar 

  • Whitlon DS, Sadowski JA, Suttie JW (1978) Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry 17:1371–1377

    Article  CAS  Google Scholar 

  • Wiggins DA, Holt DW, Leasure SM (2006) Short-eared owl (Asio flammeus). In Poole A (Ed) The birds of North America online. Ithaca: Cornell Lab of Ornithology. Retrieved from the Birds of North America Online: http://bna.birds.cornell.edu/bna/

  • Wood DA, Phillipson J (1977) The utilisation of poison hoppers designed for grey squirrel (Sciurus carolinensis) control. Biol Conserv 11:119–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofi Hindmarch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hindmarch, S., Elliott, J.E. (2018). Ecological Factors Driving Uptake of Anticoagulant Rodenticides in Predators. In: van den Brink, N., Elliott, J., Shore, R., Rattner, B. (eds) Anticoagulant Rodenticides and Wildlife. Emerging Topics in Ecotoxicology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-64377-9_9

Download citation

Publish with us

Policies and ethics