Skip to main content

Primary Exposure and Effects in Non-target Animals

  • Chapter
  • First Online:
Book cover Anticoagulant Rodenticides and Wildlife

Part of the book series: Emerging Topics in Ecotoxicology ((ETEP,volume 5))

Abstract

The toxicity of anticoagulant rodenticides to non-target species is one of the root concerns over wide-scale use of these compounds. Compared with the numerous studies documenting secondary exposure in predators, there have been relatively few studies on primary exposure in non-targets. We consider why primary exposure of non-targets occurs, which species are most likely to be exposed, how and why exposure magnitude varies, and whether exposure results in ecologically significant effects. Species groups or trophic guilds most at risk of primary exposure include invertebrates, reptiles, birds and mammals. Relatively little is known about exposure and particularly effects in invertebrates and reptiles although recent studies suggest that anticoagulants may impact invertebrates, presumably through different toxic pathways to those that result in vertebrate toxicity. Amongst higher vertebrates, primary exposure occurs in some bird species but there is little information on extent and importance. There are more studies on non-target mammals and it is granivorous species that are most likely to feed on bait and accumulate residues, as might be predicted given their ecological and trophic similarities to target species. However, studies suggest a surprisingly high degree of exposure in shrews, although it is unclear the extent to which this is primary and/or secondary. Overall, arguably the most striking aspect of primary exposure in mammals is the large-scale variation both in the proportion of animals exposed and the magnitude of residues accumulated. We consider the multiple abiotic and biotic factors that may drive this, including the direct and indirect effects of resistance in target species. In terms of ecologically significant effects, primary exposure clearly does cause acute mortalities in non-target vertebrates and these have been associated with significant population impacts on intensively baited islands where there has been limited or no potential for immigration. Localised population impacts have also been documented in mainland small mammals but most non-targets are likely to be r-selected species. Population declines may therefore be expected to be relatively short-term, provided baiting is episodic, as population numbers can recover through high intrinsic rate of reproduction in survivors, reduced density-dependent mortality, and immigration. However, prolonged or permanent baiting may potentially result in long-term depletion of resident non-target populations that is ameliorated only by immigration; such areas may act as population sinks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert CA, Wilson LK, Mineau P, Trudeau S, Elliott JE (2010) Anticoagulant rodenticides in three owl species from Western Canada, 1988–2003. Arch Environ Contam Toxicol 58(2):451–459. doi:10.1007/s00244-009-9402-z

    Article  CAS  Google Scholar 

  • Baert K, Stuyck J, Breyne P, Maes D, Casaer J (2012) Distribution of anticoagulant resistance in the brown rat in Belgium. Belg J Zool 142(1):39–48

    Google Scholar 

  • Baldwin RA, Quinn N, Davis DH, Engeman RM (2014) Effectiveness of rodenticides for managing invasive roof rats and native deer mice in orchards. Environl Sci Pollut Res 21(9):5795–5802. doi:10.1007/s11356-014-2525-4

    Article  CAS  Google Scholar 

  • Berny P, Alves L, Simon V, Rossi S (2005) Anticoagulant rodenticide poisoning in ruminants: evidence from field cases. Revue De Medecine Veterinaire 156(8–9):449–454

    Google Scholar 

  • Berny P, Esther A, Jacob J, Prescott C (2014) Risk mitigation measures for anticoagulant rodenticides as biocidal products: final report. European Union, Luxembourg, p 104. doi:10.2779/241180. https://circabc.europa.eu/sd/a/352bffd8-babc-4af8-9d0c-a1c87a3c3afc/Final%20Report%20RMM.pdf

    Google Scholar 

  • Berny P, Mastain O, Decors A, Poulsen V, Moinet M, Dunoyer C (2010a) The SAGIR network in France: a 40-year active and passive toxicovigilance scheme for pesticide poisoning in wildlife. Toxicol Lett 196:S322–S322. doi:10.1016/j.toxlet.2010.03.1017

    Article  Google Scholar 

  • Berny P, Velardo J, Pulce C, D'Amico A, Kammerer M, Lasseur R (2010b) Prevalence of anticoagulant rodenticide poisoning in humans and animals in France and substances involved. Clinical Toxicol 48(9):935–941. doi:10.3109/15563650.2010.533678

    Article  Google Scholar 

  • Bowie MH, Ross JG (2006) Identification of weta foraging on brodifacoum bait and the risk of secondary poisoning for birds on Quail Island, Canterbury, New Zealand. N Z J Ecol 30(2):219–228

    Google Scholar 

  • Brakes CR, Smith RH (2005) Exposure of non-target small mammals to rodenticides: short-term effects, recovery and implications for secondary poisoning. J Appl Ecol 42(1):118–128

    Article  CAS  Google Scholar 

  • Brown P, Charlton A, Cuthbert M, Barnett L, Ross L, Green M, Gillies L, Shaw K, Fletcher M (1996) Identification of pesticide poisoning in wildlife. J Chromatogr A 754(1–2):463–478

    Article  CAS  Google Scholar 

  • Buckle A (2013) Anticoagulant resistance in the United Kingdom and a new guideline for the management of resistant infestations of Norway rats (Rattus norvegicus Berk.) Pest Manag Sci 69(3):334–341. doi:10.1002/ps.3309

    Article  CAS  Google Scholar 

  • Buckle AP, Eason CT (2015) Control methods:chemical. In: Buckle AP, Smith RH (eds) Rodent pests and their control, 2nd edn. CAB International, Wallingford, pp 123–154

    Google Scholar 

  • Capizzi D, Bertolino S, Mortelliti A (2014) Rating the rat: global patterns and research priorities in impacts and management of rodent pests. Mamm Rev 44(2):148–162. doi:10.1111/mam.12019

    Article  Google Scholar 

  • Coeurdassier M, Poirson C, Paul JP, Rieffel D, Michelat D, Reymond D, Legay P, Giraudoux P, Scheifler R (2012) The diet of migrant Red Kites Milvus milvus during a Water Vole Arvicola terrestris outbreak in eastern France and the associated risk of secondary poisoning by the rodenticide bromadiolone. Ibis 154(1):136–146. doi:10.1111/j.1474-919X.2011.01193.x

    Article  Google Scholar 

  • Cox P, Smith RH (1992) Rodenticide ecotoxicology: pre-lethal effects of anticoagulants on rat behaviour. In: Borrecco JE, Marsh RE (eds) 15th Vertebrate Pest Conference. University of California, Davis, pp 165–170

    Google Scholar 

  • Cox PR, Smith RH (1990) Rodenticide ecotoxicology – assessing nontarget population effects. Funct Ecol 4(3):315–320

    Article  Google Scholar 

  • Dawson A, Bankes J, Garthwaite DG (2003) Pesticide Usage Survey Report 175: Rodenticide usage on farms in Great Britain growing arable crops 2000. MAFF Publications, London

    Google Scholar 

  • Dennis GC, Gartrell BD (2015) Nontarget mortality of New Zealand lesser short-tailed bats (Mystacina tuberculata) caused by diphacinone. J Wildl Dis 51(1):177–186. doi:10.7580/2013-07-160

    Article  Google Scholar 

  • Doolittle RF, Feng DF (1987) RReconstructing the evolution of vertebrate blood-coagulation from a consideration of the amino-acid sequences of clotting proteins. Cold Spring Harb Symp Quant Biol 52:869–874

    Article  CAS  Google Scholar 

  • Dowding CV, Shore RF, Worgan A, Baker PJ, Harris S (2010) Accumulation of anticoagulant rodenticides in a non-target insectivore, the European hedgehog (Erinaceus europaeus). Environ Pollut 158(1):161–166. doi:10.1016/j.envpol.2009.07.017

    Article  CAS  Google Scholar 

  • Eason CT, Spurr EB (1995) Review of the toxicity and impacts of brodifacoum on non-target wildlife in New Zealand. N Z J Zool 22(4):371–379

    Article  Google Scholar 

  • Elliott JE, Hindmarch S, Albert CA, Emery J, Mineau P, Maisonneuve F (2014) Exposure pathways of anticoagulant rodenticides to nontarget wildlife. Environ Monit Assess 186(2):895–906. doi:10.1007/s10661-013-3422-x

    Article  CAS  Google Scholar 

  • Endepols S, Klemann N, Jacob J, Buckle AP (2012) Resistance tests and field trials with bromadiolone for the control of Norway rats (Rattus norvegicus) on farms in Westphalia, Germany. Pest Manag Sci 68(3):348–354. doi:10.1002/ps.2268

    Article  CAS  Google Scholar 

  • Erickson W, Urban D (2004) Potential risks of nine rodenticides to birds and non-traget mammals: a comparative approach. United States Environmental Protection Agency, http://www.fwspubs.org/doi/suppl/10.3996/052012-JFWM-042/suppl_file/10.3996_052012-jfwm-042.s4.pdf, Washington, DC

  • Feng AYT, Himsworth CG (2014) The secret life of the city rat: a review of the ecology of urban Norway and black rats (Rattus norvegicus and Rattus rattus). Urban Ecosystems 17(1):149–162. doi:10.1007/s11252-013-0305-4

    Article  Google Scholar 

  • Garthwaite DG, De'Ath A, Thomas MR (1999) Pesticide Usage Survey Report 154: Rodenticide usage in Great Britain on farms growing grassland and fodder crops 1997. MAFF Publications, London

    Google Scholar 

  • Geduhn A, Esther A, Schenke D, Mattes H, Jacob J (2014) Spatial and temporal exposure patterns in non-target small mammals during brodifacoum rat control. Sci Tot Environ 496:328–338. doi:10.1016/j.scitotenv.2014.07.049

    Article  CAS  Google Scholar 

  • Gerlach J, Florens V (2000) Considering molluscs in rodent eradication projects. Tentacle-the newsletter of the IUCN/SSC mollusc specialist group. http://www.hawaii.edu/cowielab/tentacle/tentacle_9pdf Last. Accessed 05 Dec 2015 9:7–8

  • Giraudoux P, Tremollieres C, Barbier B, Defaut R, Rieffel D, Bernard N, Lucota E, Berny P (2006) Persistence of bromadiolone anticoagulant rodenticide in Arvicola terrestris populations after field control. Environ Res 102(3):291–298. doi:10.1016/j.envres.2006.02.008

    Article  CAS  Google Scholar 

  • Gomez-Canela C, Barata C, Lacorte S (2014) Occurrence, elimination, and risk of anticoagulant rodenticides and drugs during wastewater treatment. Environ Sci Pollut Res 21(11):7194–7203. doi:10.1007/s11356-014-2714-1

    Article  CAS  Google Scholar 

  • Hardy AR, Fletcher MR, Stanley PI (1986) Pesticides and wildlife: Twenty years of vertebrate wildlife incidence investigations by MAFF. State Vet J 40:182–192

    Google Scholar 

  • Harris S, Yalden DW (eds) (2008) Mammals of the British Isles: Handbbok, 4th edn. The Mammal Society, Southampton

    Google Scholar 

  • Hindmarch S, Elliott JE (2014) Comparing the diet of great horned owls (Bubo virginianus) in rural and urban areas of southwestern British Columbia. Can Field-Nat 128(4):393–399

    Article  Google Scholar 

  • Hoare JM, Hare KM (2006) The impact of brodifacoum on non-target wildlife: gaps in knowledge. N Z J Ecol 30(2):157–167

    Google Scholar 

  • Howald G (1997) The risk of non-target species poisoning from brodifacoum used to eradicate rats from langara Island, British columbia, Canada. MS Thesis, University of British Columbia, Vancouver, BC, 159 pp

    Google Scholar 

  • Howald G, Ross J, Buckle AP (2015) Rodent control and island conservation. In: Buckle AP, Smith RH (eds) Rodent pests and their control, 2nd edn. CAB International, Wallingford, pp 366–396

    Google Scholar 

  • Howald GR, Mineau P, Elliott JE, Cheng KM (1999) Brodifacoum poisoning of avian scavengers during rat control on a seabird colony. Ecotoxicology 8(6):431–447

    Article  CAS  Google Scholar 

  • Jacquot M, Coeurdassier M, Couval G, Renaude R, Pleydell D, Truchetet D, Raoul F, Giraudoux P (2013) Using long-term monitoring of red fox populations to assess changes in rodent control practices. J Appl Ecol 50(6):1406–1414. doi:10.1111/1365-2664.12151

    Article  Google Scholar 

  • Johnson IP, Flowerdew JR, Hare R (1991) Effects of broadcasting and of drilling methiocarb molluscicide pellets on field populations of wood mice, Apodemus sylvaticus. Bull Environ Contam Toxicol 46:84–91

    Article  CAS  Google Scholar 

  • Jokic G, Vuksa M, Elezovic I, Dedovic S, Kataranovski D (2012) Application of grain baits to control common vole Microtus arvalis (Pallas, 1778) in alfalfa crops, Serbia. Arch Biol Sci 64(2):629–637. doi:10.2298/abs1202629j

    Article  Google Scholar 

  • Khan AA, Munir S, Shakoori AR (1998) Development of under-ground baiting technique for control of rats in rice fields in Pakistan. Int Biodeterior Biodegrad 42(2–3):129–134. doi:10.1016/s0964-8305(98)00007-9

    Article  Google Scholar 

  • Lima LL, Salmon TP (2010) Assessing some potential environmental impacts from agricultural anticoagulant uses. Proc Vert Pest Conf 24:199–203

    Google Scholar 

  • Liu J, Xiong K, Ye X, Zhang J, Yang Y, Ji L (2015) Toxicity and bioaccumulation of bromadiolone to earthworm Eisenia fetida. Chemosphere 135:250–256. doi:10.1016/j.chemosphere.2015.04.058

    Article  CAS  Google Scholar 

  • Loof TG, Schmidt O, Herwald H, Theopold U (2011) Coagulation systems of invertebrates and vertebrates and their roles in innate immunity: the same side of two coins? J Innate Immunity 3(1):34–40. doi:10.1159/000321641

    Article  CAS  Google Scholar 

  • Lopez-Perea JJ, Camarero PR, Molina-Lopez RA, Parpal L, Obon E, Sola J, Mateo R (2015) Interspecific and geographical differences in anticoagulant rodenticide residues of predatory wildlife from the Mediterranean region of Spain. Sci Total Environ 511:259–267. doi:10.1016/j.scitotenv.2014.12.042

    Article  CAS  Google Scholar 

  • Lund M (2015) Commensal rodents. In: Buckle AP, Smith RH (eds) Rodent pests and their control, 2nd edn. CAB International, Wallingford, pp 19–32

    Google Scholar 

  • Luque-Larena JJ, Mougeot F, Vinuela J, Jareno D, Arroyo L, Lambin X, Arroyo B (2013) Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl Ecol 14(5):432–441. doi:10.1016/j.baae.2013.04.006

    Article  Google Scholar 

  • Luttik R, Clook MA, Taylor MR, Hart ADM (1999) Regulatory aspects of the ecotoxicological risk assessment of rodenticides. In: Cowan DP, Feare CJ (eds) Advances in vertebrate pest management. Filander Verlag, Fürth, pp 369–385

    Google Scholar 

  • Macdonald DW, Tew TE, Todd IA, Garner JP, Johnson PJ (2000) Arable habitat use by wood mice (Apodemus sylvaticus). 3. A farm-scale experiment on the effects of crop rotation. J Zool 250:313–320

    Article  Google Scholar 

  • Masuda BM, Fisher P, Beaven B (2015) Residue profiles of brodifacoum in coastal marine species following an island rodent eradication. Ecotoxicol Environ Saf 113:1–8. doi:10.1016/j.ecoenv.2014.11.013

    Article  CAS  Google Scholar 

  • Masuda BM, Fisher P, Jamieson IG (2014) Anticoagulant rodenticide brodifacoum detected in dead nestlings of an insectivorous passerine. N Z J Ecol 38(1):110–115

    Google Scholar 

  • Meerburg BG, van Gent-Pelzer MPE, Schoelitsz B, van der Lee TAJ (2014) Distribution of anticoagulant rodenticide resistance in Rattus norvegicus in the Netherlands according to Vkorc1 mutations. Pest Manag Sci 70(11):1761–1766. doi:10.1002/ps.3809

    Article  CAS  Google Scholar 

  • Merson MH, Byers RE, Kaukeinen DE (1984) Residues of the rodenticide brodifacoum in voles and raptors after orchard treatment. J Wildl Manag 48(1):212–216

    Article  CAS  Google Scholar 

  • Meyer AN, Kaukeinen DE (2015) Rodent control in prcatice: protection of humans and animal health. In: Buckle AP, Smith RH (eds) Rodent pests and their control, 2nd edn. CAB International, Wallingford, pp 231–246

    Google Scholar 

  • Montaz J, Jacquot M, Coeurdassier M (2014) Scavenging of rodent carcasses following simulated mortality due to field applications of anticoagulant rodenticide. Ecotoxicology 23(9):1671–1680. doi:10.1007/s10646-014-1306-7

    Article  CAS  Google Scholar 

  • Moran S (2001) The efficacy of the flocoumafen wax block bait to control the field rodents Microtus guentheri and Meriones tristrami. Crop Prot 20(6):529–533

    Article  CAS  Google Scholar 

  • Morzillo AT, Mertig AG (2011) Urban resident attitudes toward rodents, rodent control products, and environmental effects. Urban Ecosystems 14(2):243–260. doi:10.1007/s11252-010-0152-5

    Article  Google Scholar 

  • Murphy G Oldbury DJ (2002) Rat control by local authorities within the United Kingdom. In: Jones SC, Zhai J, Robinson WH (eds) Fourth International Confernce on Urban Pests, Charleston, USA, pp 413–420

    Google Scholar 

  • Myllymäki A, Pihlava J-H, Tuuri H (1999) Predicting the exposure and risk to predators and scavengers associated with using single-dose second-generation anticoagulants against field rodents. In: Cowan DP, Feare CJ (eds) Advances in vertebrate pest management. Filander Verlag, Fürth, pp 387–404

    Google Scholar 

  • Newton I, Wyllie I, Freestone P (1990) Rodenticides in British barn owls. Environ Pollut 68(1–2):101–117

    Article  CAS  Google Scholar 

  • Ogilvie SC, Pierce RJ, Wright GRG, Booth LH, Eason CT (1997) Brodifacoum residue analysis in water, soil, invertebrates, and birds after rat eradication on Lady Alice Island. N Z J Ecol 21(2):195–197

    Google Scholar 

  • Pain DJ, Brooke MD, Finnie JK, Jackson A (2000) Effects of brodifacoum on the land crab of Ascension island. J Wildl Manag 64(2):380–387

    Article  Google Scholar 

  • Pelz H-J, Prescott CV (2015) Resistance to anticoagulant rodenticides. In: Buckle AP, Smith RH (eds) Rodent pests and their Control, 2nd edn. CAB International, Wallingford, pp 187–208

    Google Scholar 

  • Pitt WC, Berentsen AR, Shiels AB, Volker SF, Eisemann JD, Wegmann AS, Howald GR (2015) Non-target species mortality and the measurement of brodifacoum rodenticide residues after a rat (Rattus rattus) eradication on Palmyra Atoll, tropical Pacific. Biol Conserv 185:36–46. doi:10.1016/j.biocon.2015.01.008

    Article  Google Scholar 

  • Pryde MA, Pickerell G, Coats G, Hill GS, Greene TC, Murphy EC (2013) Observations of South Island Robins eating Racumin (R), a toxic paste used for rodent control. N Z J Zool 40(3):255–259. doi:10.1080/03014223.2012.727442

    Article  Google Scholar 

  • Rattner BA, Lazarus RS, Elliott JE, Shore RF, van den Brink N (2014) Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environ Sci Technol 48(15):8433–8445. doi:10.1021/es501740n

    Article  CAS  Google Scholar 

  • Riley SPD, Bromley C, Poppenga RH, Uzal FA, Whited L, Sauvajot RM (2007) Anticoagulant exposure and notoedric mange in bobcats and mountain lions in urban southern California. J Wildl Manag 71(6):1874–1884. doi:10.2193/2005-615

    Article  Google Scholar 

  • Ruder MG, Poppenga RH, Bryan JA, Bain M, Pitman J, Keel MK (2011) Intoxication of nontarget wildlife with rodenticides in Northwestern Kansas. J Wildl Dis 47(1):212–216

    Article  Google Scholar 

  • Sage M, Coeurdassier M, Defaut R, Gimbert F, Berny P, Giraudoux P (2008) Kinetics of bromadiolone in rodent populations and implications for predators after field control of the water vole, Arvicola terrestris. Sci Tol Environ 407(1):211–222. doi:10.1016/j.scitotenv.2008.09.003

    Article  CAS  Google Scholar 

  • Salmon TP, Dochtermann NA (2006) Rodenticide grain bait ingredient acceptance by Norway rats (Rattus norvegicus), California ground squirrels (Spermophilus beecheyi) and pocket gophers (Thomomys bottae). Pest Manag Sci 62(7):678–683. doi:10.1002/ps.1224

    Article  CAS  Google Scholar 

  • Sanchez-Barbudo IS, Camarero PR, Mateo R (2012) Primary and secondary poisoning by anticoagulant rodenticides of non-target animals in Spain. Sci Tol Environ 420:280–288. doi:10.1016/j.scitotenv.2012.01.028

    Article  CAS  Google Scholar 

  • Saucy F, Meylan A, Poitry R (2001) Lessons from 18 years of use of anticoagulants against fossorial Arvicola terrestris in Switzerland. In: Pelz H-J, Cowan DP, Feare CJ (eds) Advances in vertebrate pest management II. Filander Verlag, Fürth, pp 71–90

    Google Scholar 

  • Serieys LEK, Armenta TC, Moriarty JG, Boydston EE, Lyren LM, Poppenga RH, Crooks KR, Wayne RK, Riley SPD (2015) Anticoagulant rodenticides in urban bobcats: exposure, risk factors and potential effects based on a 16-year study. Ecotoxicology 24(4):844–862. doi:10.1007/s10646-015-1429-5

    Article  CAS  Google Scholar 

  • Shore RF, Pereira MG, Potter ED, Walker LA (2015) Monitoring rodenticide residues in wildlife. In: Buckle AP, Smith RH (eds) Rodent pests and their control, 2nd edn. CAB International, Wallingford, pp 346–365

    Google Scholar 

  • Smith RH, Shore RF (2015) Environmnetal impacts of rodenticides. In: Buckle AP, Smith RH (eds) Rodent pests and their control, 2nd edn. CAB International, Wallingford, pp 330–345

    Google Scholar 

  • Spurr EB, Drew KW (1999) Invertebrates feeding on baits used for vertebrate pest control in New Zealand. N Z J Ecol 23:167–173

    Google Scholar 

  • Spurr EB, Maitland MJ, Taylor GE, Wright GRG, Radford CD, Brown LE (2005) Residues of brodifacoum and other anticoagulant pesticides in target and non-target species, Nelson Lakes National Park, New Zealand. N Z J Zool 32(4):237–249

    Article  Google Scholar 

  • Sterner RT, Goldade DA, Mauldin RE (1998) Zinc phosphide residues in gray-tailed voles (Microtus canicaudus) fed fixed particles of a 2% grain bait. Int Biodeterior Biodegrad 42(2–3):109–113

    Article  CAS  Google Scholar 

  • Thomas PJ, Mineau P, Shore RF, Champoux L, Martin PA, Wilson LK, Fitzgerald G, Elliott JE (2011) Second generation anticoagulant rodenticides in predatory birds: Probabilistic characterisation of toxic liver concentrations and implications for predatory bird populations in Canada. Environ Int 37(5):914–920 and corrigendum 940, 236. doi:10.1016/j.envint.2011.03.010

  • Tobin ME, Sugihara RT, Koehler AE (1997) Bait placement and acceptance by rats in macadamia orchards. Crop Prot 16(6):507–510. doi:10.1016/s0261-2194(97)00035-5

    Article  Google Scholar 

  • Tosh DG, McDonald RA, Bearhop S, Llewellyn NR, Montgomery WI, Shore RF (2012) Rodenticide exposure in wood mouse and house mouse populations on farms and potential secondary risk to predators. Ecotoxicology 21(5):1325–1332. doi:10.1007/s10646-012-0886-3

    Article  CAS  Google Scholar 

  • Tosh DG, Shore RF, Jess S, Withers A, Bearhop S, Montgomery WI, McDonald RA (2011) User behaviour, best practice and the risks of non-target exposure associated with anticoagulant rodenticide use. J Environ Managt 92(6):1503–1508. doi:10.1016/j.jenvman.2010.12.014

    Article  Google Scholar 

  • Towns DR, Broome KG (2003) From small Maria to massive Campbell: forty years of rat eradications from New Zealand islands. N Z J Zool 30(4):377–398

    Article  Google Scholar 

  • Townsend MG, Entwisle P, Hart ADM (1995) Use of two halogenated biphenyls as indicators of nontarget exposure during rodenticide treatments. Bull Environ Contam Toxicol 54(4):526–533

    Article  CAS  Google Scholar 

  • van den Brink NW, Arblaster JA, Bowman SR, Conder JM, Elliott JE, Johnson MS, Muir DCG, Natal-da-Luz T, Rattner BA, Sample BE, Shore RF (2016) Use of terrestrial field studies in the derivation of bioaccumulation potential of chemicals. Integr Environ Assess Manag 12(1):135–145. doi:10.1002/ieam.1717

    Article  Google Scholar 

  • Vandenbroucke V, Bousquet-Melou A, De Backer P, Croubels S (2008) Pharmacokinetics of eight anticoagulant rodenticides in mice after single oral administration. J Vet Pharmacol Therapeut 31(5):437–445. doi:10.1111/j.1365-2885.2008.00979.x

    Article  CAS  Google Scholar 

  • Vein J, Grandemange A, Cosson JF, Benoit E, Berny PJ (2011) Are water vole resistant to anticoagulant rodenticides following field treatments? Ecotoxicology 20(6):1432–1441. doi:10.1007/s10646-011-0700-7

    Article  CAS  Google Scholar 

  • Vyas NB (2017) Rodenticide incidents of exposure and adverse effects on non-raptor birds. Sci Total Environ 609:68–76. https://doi.org/10.1016/j.scitotenv.2017.07.004

    Google Scholar 

  • Vyas NB, Rattner BA (2012) Critique on the use of the standardized avian acute oral toxicity test for first generation anticoagulant rodenticides. Hum Ecol Risk Assess 18(5):1069–1077. doi:10.1080/10807039.2012.707934

    Article  CAS  Google Scholar 

  • Walker LA, Bailey LJ, Shore RF (2002) The importance of the gut and its contents in prey as a source of cadmium to predators. Environ Toxicol Chem 21(1):76–80

    Article  CAS  Google Scholar 

  • Walker LA, Shore RF, Turk A, Pereira MG, Best J (2008) The Predatory Bird Monitoring Scheme: identifying chemical risks to top predators in Britain. Ambio 37(6):466–471

    Article  Google Scholar 

  • Wanless RM, Cooper J, Slabber MJ, Ryan PG (2010) Risk assessment of birds foraging terrestrially at Marion and Gough Islands to primary and secondary poisoning by rodenticides. Wildlife Res 37(6):524–530. doi:10.1071/wr10005

    Article  CAS  Google Scholar 

  • WHO (1995) Environmental health criteria 175: anticoagulant rodenticides. International Programme on Chemical Safety Environmental Health Criteria. WHO, Geneva

    Google Scholar 

  • Winters AM, Rumbeiha WK, Winterstein SR, Fine AE, Munkhtsog B, Hickling GJ (2010) Residues in Brandt’s voles (Microtus brandti) exposed to bromadiolone-impregnated baits in Mongolia. Ecotoxicol Environ Saf 73(5):1071–1077. doi:10.1016/j.ecoenv.2010.02.021

    Article  CAS  Google Scholar 

  • Witmer GW, Moulton RS, Baldwin RA (2014) An efficacy test of cholecalciferol plus diphacinone rodenticide baits for California voles (Microtus californicus Peale) to replace ineffective chlorophacinone baits. Internat J Pest Manage 60(4):275–278. doi:10.1080/09670874.2014.969361

    Article  CAS  Google Scholar 

  • Wolton RJ, Flowerdew JR (1985) Spatial distribution and movements of wood mice, yellow-necked mice and bank voles. Symp Zoo Soc Lond 55:249–275

    Google Scholar 

  • Wood BJ, Singleton GR (2015) Rodents in agriculture and forestry. In: Buckle AP, Smith RH (eds) Rodent pests and their Control, 2nd edn. CAB International, Wallingford, pp 33–80

    Google Scholar 

  • Wood DA, Phillipson J (1977) The utilisation of poison hoppers designed for grey squirrel (Sciurus carolinensis) control. Biol Conserv 11:119–127

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Shore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shore, R.F., Coeurdassier, M. (2018). Primary Exposure and Effects in Non-target Animals. In: van den Brink, N., Elliott, J., Shore, R., Rattner, B. (eds) Anticoagulant Rodenticides and Wildlife. Emerging Topics in Ecotoxicology, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-64377-9_6

Download citation

Publish with us

Policies and ethics