Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1019))

Abstract

This chapter reviews the use of mathematical and computational models to facilitate understanding of the epidemiology and evolution of Mycobacterium tuberculosis. First, we introduce general epidemiological models, and describe their use with respect to epidemiological dynamics of a single strain and of multiple strains of M. tuberculosis. In particular, we discuss multi-strain models that include drug sensitivity and drug resistance. Second, we describe models for the evolution of M. tuberculosis within and between hosts, and how the resulting diversity of strains can be assessed by considering the evolutionary relationships among different strains. Third, we discuss developments in integrating evolutionary and epidemiological models to analyse M. tuberculosis genetic sequencing data. We conclude the chapter with a discussion of the practical implications of modelling – particularly modelling strain diversity – for controlling the spread of tuberculosis, and future directions for research in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Statistical consistency of a phylogenetic method means that when given infinitely long genetic sequences, the method –employing the model under which the sequences evolved– will recover the true underlying phylogeny.

  2. 2.

    BEAST2 started out as a re-design of BEAST1, but over the course of time the two platforms continued to evolve independently with new features being implemented in both.

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pečerska, J., Wood, J., Tanaka, M.M., Stadler, T. (2017). Mathematical Models for the Epidemiology and Evolution of Mycobacterium tuberculosis . In: Gagneux, S. (eds) Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Advances in Experimental Medicine and Biology, vol 1019. Springer, Cham. https://doi.org/10.1007/978-3-319-64371-7_15

Download citation

Publish with us

Policies and ethics