Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1019))

Abstract

Drug Resistant Tuberculosis (DRTB) is an emerging problem world-wide. In order to control the disease and decrease the number of cases overtime a prompt diagnosis followed by an appropriate treatment should be provided to patients. Phenotypic DST based on liquid automated culture has greatly reduced the time needed to generate reliable data but has the drawback to be expensive and prone to contamination in the absence of appropriate infrastructures. In the past 10 years molecular biology tools have been developed. Those tools target the main mutations responsible for DRTB and are now globally accessible in term of cost and infrastructures needed for the implementation. The dissemination of the Xpert MTB/rif has radically increased the capacity to perform the detection of rifampicin resistant TB cases. One of the main challenges for the large scale implementation of molecular based tests is the emergence of conflicting results between phenotypic and genotypic tests. This mines the confidence of clinicians in the molecular tests and delays the initiation of an appropriate treatment. A new technique is revolutionizing the genotypic approach to DST: the WGS by Next-Generation Sequencing technologies. This methodology promises to become the solution for a rapid access to universal DST, able indeed to overcome the limitations of the current phenotypic and genotypic assays. Today the use of the generated information is still challenging in decentralized facilities due to the lack of automation for sample processing and standardization in the analysis.

The growing knowledge of the molecular mechanisms at the basis of drug resistance and the introduction of high-performing user-friendly tools at peripheral level should allow the very much needed accurate diagnosis of DRTB in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alangaden GJ, Kreiswirth BN, Aouad A, Khetarpal M, Igno FR, Moghazeh SL, Manavathu EK, Lerner SA (1998) Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 42(5):1295–1297

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida D, Ioerger T, Tyagi S, Li SY, Mdluli K, Andries K, Grosset J, Sacchettini J, Nuermberger E (2016) Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis. Antimicrob Agents Chemother 60(8):4590–4599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andre E, Goeminne L, Cabibbe A, Beckert P, Kabamba Mukadi B, Mathys V, Gagneux S, Niemann S, Van Ingen J, Cambau E (2016) Consensus numbering system for the rifampicin resistance-associated rpoB gene mutations in pathogenic mycobacteria. Clin Microbiol Infect 23:167–172. pii: S1198-743X(16)30393–7

    Article  PubMed  CAS  Google Scholar 

  • Andries K, Verhasselt P, Guillemont J, Göhlmann HW, Neefs JM, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, de Chaffoy D, Huitric E, Hoffner S, Cambau E, Truffot-Pernot C, Lounis N, Jarlier V (2005) A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis. Science 307(5707):223–227

    Article  CAS  PubMed  Google Scholar 

  • Andries K, Villellas C, Coeck N, Thys K, Gevers T, Vranckx L, Lounis N, de Jong BC, Koul A (2014) Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS One 9(7):e102135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arentz M, Sorensen B, Horne DJ, Walson JL (2013) Systematic review of the performance of rapid rifampicin resistance testing for drug-resistant tuberculosis. PLoS One 8(10):e76533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arinaminpathy N, Dowdy D (2015) Understanding the incremental value of novel diagnostic tests for tuberculosis. Nature 528(7580):S60–S67. https://doi.org/10.1038/nature16045

    Article  PubMed  Google Scholar 

  • Aubry A, Veziris N, Cambau E, Truffot-Pernot C, Jarlier V, Fisher LM (2006) Novel gyrase mutations in quinolone-resistant and -hypersusceptible clinical isolates of Mycobacterium tuberculosis: functional analysis of mutant enzymes. Antimicrob Agents Chemother 50(1):104–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avalos E, Catanzaro D, Catanzaro A, Ganiats T, Brodine S, Alcaraz J, Rodwell T (2015) Frequency and geographic distribution of gyrA and gyrB mutations associated with fluoroquinolone resistance in clinical Mycobacterium tuberculosis isolates: a systematic review. PLoS One 10(3):e0120470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Banerjee A, Dubnau E, Quemard A, Balasubramanian V, Um KS, Wilson T, Collins D, de Lisle G, Jacobs WR Jr (1994) inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263(5144):227–230

    Article  CAS  PubMed  Google Scholar 

  • Banerjee A, Sugantino M, Sacchettini JC, Jacobs WR Jr (1998) The mabA gene from the inhA operon of Mycobacterium tuberculosis encodes a 3-ketoacyl reductase that fails to confer isoniazid resistance. Microbiology 144(Pt 10):2697–2704

    Article  CAS  PubMed  Google Scholar 

  • Baquero F (2001) Low-level antibacterial resistance: a gateway to clinical resistance. Drug Resist Updat 4(2):93–105

    Article  CAS  PubMed  Google Scholar 

  • Beckert P, Hillemann D, Kohl TA, Kalinowski J, Richter E, Niemann S, Feuerriegel S (2012) rplC T460C identified as a dominant mutation in linezolid-resistant Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 56(5):2743–2745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berrada ZL, Lin SG, Rodwell TC, Nguyen D, Schecter GF, Pham L, Janda JM, Elmaraachli W, Catanzaro A, Desmond E (2016) Rifabutin and rifampin resistance levels and associated rpoB mutations in clinical isolates of Mycobacterium tuberculosis complex. Diagn Microbiol Infect Dis 85:177–181. pii: S0732–8893(16)30001–3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bloemberg GV, Keller PM, Stucki D, Trauner A, Borrell S, Latshang T, Coscolla M, Rothe T, Hömke R, Ritter C, Feldmann J, Schulthess B, Gagneux S, Böttger EC (2015) Acquired resistance to Bedaquiline and Delamanid in therapy for tuberculosis. N Engl J Med 373(20):1986–1988

    Article  PubMed  PubMed Central  Google Scholar 

  • Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN, Fujiwara P, Grzemska M, Hopewell PC, Iseman MD, Jasmer RM, Koppaka V, Menzies RI, O’Brien RJ, Reves RR, Reichman LB, Simone PM, Starke JR, Vernon AA, American Thoracic Society, Centers for Disease Control and Prevention and the Infectious Diseases Society (2003) American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med 167(4):603–662

    Article  PubMed  Google Scholar 

  • Bodmer T, Zürcher G, Imboden P, Telenti A (1995) Mutation position and type of substitution in the beta-subunit of the RNA polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 35(2):345–348

    Article  CAS  PubMed  Google Scholar 

  • Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, Allen J, Tahirli R, Blakemore R, Rustomjee R, Milovic A, Jones M, O'Brien SM, Persing DH, Ruesch-Gerdes S, Gotuzzo E, Rodrigues C, Alland D, Perkins MD (2010) Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med 363(11):1005–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S, Pankhurst LJ, Anson L, de Cesare M, Piazza P, Votintseva AA, Golubchik T, Wilson DJ, Wyllie DH, Diel R, Niemann S, Feuerriegel S, Kohl TA, Ismail N, Omar SV, Smith EG, Buck D, McVean G, Walker AS, Peto TE, Crook DW, Iqbal Z (2015) Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis. Nat Commun 6:10063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brandis G, Wrande M, Liljas L, Hughes D (2012) Fitness-compensatory mutations in rifampicin-resistant RNA polymerase. Mol Microbiol 85(1):142–151

    Article  CAS  PubMed  Google Scholar 

  • Brossier F, Guindo D, Pham A, Reibel F, Sougakoff W, Veziris N, Aubry A, French National Reference Center for Mycobacteria (Members of the French National Reference Center for Mycobacteria: Christine Bernard, Emmanuelle Cambau, Vincent Jarlier, Faiza Mougari, Laurent Raskine, Jérôme Robert) (2016) Performance of the New V2.0 of the GenoType MTBDRsl test for the detection of resistance to second-line drugs in multidrug-resistant Mycobacterium tuberculosis complex strains. J Clin Microbiol 54:1573–1580. pii: JCM.00051–16. [Epub ahead of print]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell PJ, Morlock GP, Sikes RD, Dalton TL, Metchock B, Starks AM, Hooks DP, Cowan LS, Plikaytis BB, Posey JE (2011) Molecular detection of mutations associated with first- and second-line drug resistance compared with conventional drug susceptibility testing of mycobacterium tuberculosis. Antimicrob Agents Chemother 55(5):2032–2041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canetti G, Froman S, Grosset J, Haudoroy P, Langerová M, Mahler HT, Meissner G, Mitchison DA, Sula L (1963) Mycobacteria: laboratory methods for testing drug susceptibility and resistance. Bull WHO 29:565–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Canetti G, Fox W, Khomenco A, Mahler HT, Menon NK, Mitchison DA, Rist N, Šmelev NA (1969) Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull WHO 41:21–43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caws M, Drobniewski FA (2001) Molecular techniques in the diagnosis of Mycobacterium tuberculosis and the detection of drug resistance. Ann N Y Acad Sci 953:138–145

    Article  CAS  PubMed  Google Scholar 

  • Chakravorty S, Simmonds AM, Parmar H, Cao Y et al (2017) The New Xpert MTB/RIF Ultra: Improving Detection of Mycobacterium tuberculosis and Resistance to Rifampin in an Assay Suitable for Point-of-Care Testing. mBio 8(4):e00812–e00817

    Article  PubMed  PubMed Central  Google Scholar 

  • Chien JY, Chiu WY, Chien ST, Chiang CJ, CJ Y, Hsueh PR (2016) Mutations in gyrA and gyrB among fluoroquinolone- and multidrug-resistant mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 60(4):2090–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi KP, Bair TB, Bae YM, Daniels L (2001) Use of transposon Tn5367 mutagenesis and a nitroimidazopyran-based selection system to demonstrate a requirement for fbiA and fbiB in coenzyme F(420) biosynthesis by Mycobacterium Bovis BCG. J Bacteriol 183(24):7058–7066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coeck N, de Jong BC, Diels M, de Rijk P, Ardizzoni E, Van Deun A, Rigouts L (2016) Correlation of different phenotypic drug susceptibility testing methods for four fluoroquinolones in mycobacterium tuberculosis. J Antimicrob Chemother 71(5):1233–1240

    Article  PubMed  PubMed Central  Google Scholar 

  • Coker RJ (2004) Review: multidrug-resistant tuberculosis: public health challenges. Tropical Med Int Health 9(1):25–40

    Article  Google Scholar 

  • Coll F, McNerney R, Preston MD, Guerra-Assunção JA, Warry A, Hill-Cawthorne G, Mallard K (2015) Nair M4, Miranda a, Alves a, Perdigão J, Viveiros M, Portugal I, Hasan Z, Hasan R, Glynn JR, Martin N, pain a, Clark TG. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences. Genome Med 7(1):51

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Collins LA, Franzblau SG (1997) Microplate Alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 41:1004–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Comas I, Borrell S, Roetzer A, Rose G, Malla B, Kato-Maeda M, Galagan J, Niemann S, Gagneux S (2011) Whole-genome sequencing of rifampicin-resistant mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nat Genet 44(1):106–110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • da Silva PE, Von Groll A, Martin A, Palomino JC (2011) Efflux as a mechanism for drug resistance in mycobacterium tuberculosis. FEMS Immunol Med Microbiol 63(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Dartois V, Barry CE 3rd (2013) A medicinal chemists’ guide to the unique difficulties of lead optimization for tuberculosis. Bioorg Med Chem Lett 23(17):4741–4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dartois V, Saito K, Warrier T, Nathan C (2016) New evidence for the complexity of the population structure of mycobacterium tuberculosis increases the diagnostic and biologic challenges. Am J Respir Crit Care Med 194(12):1448–1451

    Article  PubMed  Google Scholar 

  • De Rossi E, Aínsa JA, Riccardi G (2006) Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 30(1):36–52

    Article  PubMed  CAS  Google Scholar 

  • de Vos M, Müller B, Borrell S, Black PA, van Helden PD, Warren RM, Gagneux S, Victor TC (2013) Putative compensatory mutations in the rpoC gene of rifampin-resistant mycobacterium tuberculosis are associated with ongoing transmission. Antimicrob Agents Chemother 57(2):827–832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denkinger CM, Schumacher SG, Boehme CC, N D, Pai M, Steingart KR (2014) Xpert MTB/RIF assay for the diagnosis of extrapulmonary tuberculosis: a systematic review and meta-analysis. Eur Respir J 44(2):435–446

    Article  PubMed  Google Scholar 

  • Denkinger CM, Dolinger D, Schito M, Wells W, Cobelens F, Pai M, Zignol M, Cirillo DM, Alland D, Casenghi M, Gallarda J, Boehme CC, Perkins MD (2015) Target product profile of a molecular drug-susceptibility test for use in microscopy centers. J Infect Dis 211(Suppl 2):S39–S49

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowdy DW, Chaisson RE, Maartens G, Corbett EL, Dorman SE (2008) Impact of enhanced tuberculosis diagnosis in South Africa: a mathematical model of expanded culture and drug susceptibility testing. Proc Natl Acad Sci U S A 105(32):11293–11298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drobniewski F, Cooke M, Jordan J, Casali N, Mugwagwa T, Broda A, Townsend C, Sivaramakrishnan A, Green N, Jit M, Lipman M, Lord J, White PJ, Abubakar I (2015) Systematic review, meta-analysis and economic modelling of molecular diagnostic tests for antibiotic resistance in tuberculosis. Health Technol Assess 19(34):1–188. vii-viii

    Article  PubMed  PubMed Central  Google Scholar 

  • Emmart EW (1945) The tuberculostatic action of streptothricin and streptomycin with special reference to the action of streptomycin on the chorioallantoic membrane of the chick embryo. Public Health Rep 60:1415–1421

    Article  CAS  PubMed  Google Scholar 

  • Escribano I, Rodríguez JC, Llorca B, García-Pachon E, Ruiz M, Royo G (2007) Importance of the efflux pump systems in the resistance of Mycobacterium tuberculosis to fluoroquinolones and linezolid. Chemotherapy 53(6):397–401

    Article  CAS  PubMed  Google Scholar 

  • Farhat MR, Mitnick CD, Franke MF, Kaur D, Sloutsky A, Murray M, Jacobson KR (2015) Concordance of Mycobacterium tuberculosis fluoroquinolone resistance testing: implications for treatment. Int J Tuberc Lung Dis 19(3):339–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhat MR, Jacobson KR, Franke MF, Kaur D, Sloutsky A, Mitnick CD, Murray M (2016a) Gyrase mutations are associated with variable levels of fluoroquinolone resistance in Mycobacterium tuberculosis. J Clin Microbiol 54(3):727–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farhat MR, Sultana R, Iartchouk O, Bozeman S, Galagan J, Sisk P, Stolte C, Nebenzahl-Guimaraes H, Jacobson K, Sloutsky A, Kaur D, Posey J, Kreiswirth BN, Kurepina N, Rigouts L, Streicher EM, Victor TC, Warren RM, van Soolingen D, Murray M (2016b) Genetic determinants of drug resistance in mycobacterium tuberculosis and their diagnostic value. Am J Respir Crit Care Med 194(5):621–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feuerriegel S, Köser CU, Baù D, Rüsch-Gerdes S, Summers DK, Archer JA, Marti-Renom MA, Niemann S (2011) Impact of Fgd1 and ddn diversity in Mycobacterium tuberculosis complex on in vitro susceptibility to PA-824. Antimicrob Agents Chemother 55(12):5718–5722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feuerriegel S, Köser CU, Niemann S (2014) Phylogenetic polymorphisms in antibiotic resistance genes of the Mycobacterium tuberculosis complex. J Antimicrob Chemother 69(5):1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Feuerriegel S, Schleusener V, Beckert P, Kohl TA, Miotto P, Cirillo DM, Cabibbe AM, Niemann S, Fellenberg K (2015) PhyResSE: a web tool delineating Mycobacterium tuberculosis antibiotic resistance and lineage from whole-genome sequencing data. J Clin Microbiol 53(6):1908–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flandrois JP, Lina G, Dumitrescu O (2014) MUBII-TB-DB: a database of mutations associated with antibiotic resistance in Mycobacterium tuberculosis. BMC Bioinformatics 15:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • García de Viedma D (2003) Rapid detection of resistance in Mycobacterium tuberculosis: a review discussing molecular approaches. Clin Microbiol Infect 9(5):349–359

    Article  PubMed  Google Scholar 

  • Georghiou SB, Magana M, Garfein RS, Catanzaro DG, Catanzaro A, Rodwell TC (2012) Evaluation of genetic mutations associated with Mycobacterium tuberculosis resistance to amikacin, kanamycin and capreomycin: a systematic review. PLoS One 7(3):e33275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilchrist CA, Turner SD, Riley MF, Petri WA Jr, Hewlett EL (2015) Whole-genome sequencing in outbreak analysis. Clin Microbiol Rev 28(3):541–563

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillespie SH (2002) Evolution of drug resistance in Mycobacterium tuberculosis: clinical and molecular perspective. Antimicrob Agents Chemother 46(2):267–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilpin C, Korobitsyn A, Weyer K (2016) Current tools available for the diagnosis of drug-resistant tuberculosis. Ther Adv Infectious Dis 3:1–7

    Google Scholar 

  • Goldstein BP (2014) Resistance to rifampicin: a review. J Antibiot (Tokyo) 67(9):625–630

    Article  CAS  Google Scholar 

  • Guernsey BG, Alexander MR (1978) Tuberculosis: review of treatment failure, relapse and drug resistance. Am J Hosp Pharm 35(6):690–698

    CAS  PubMed  Google Scholar 

  • Hall L, Jude KP, Clark SL, Dionne K, Merson R, Boyer A, Parrish NM, Wengenack NL (2012) Evaluation of the Sensititre MycoTB plate for susceptibility testing of the Mycobacterium tuberculosis complex against first- and second-line agents. J Clin Microbiol 50(11):3732–3734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms A, Maisonneuve E, Gerdes K (2016) Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354(6318):aaf4268

    Article  PubMed  CAS  Google Scholar 

  • Hartkoorn RC, Uplekar S, Cole ST (2014) Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrob Agents Chemother 58(5):2979–2981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • He L, Wang X, Cui P, Jin J, Chen J, Zhang W, Zhang Y (2015) ubiA (Rv3806c) encoding DPPR synthase involved in cell wall synthesis is associated with ethambutol resistance in Mycobacterium tuberculosis. Tuberculosis (Edinb) 95(2):149–154

    Article  CAS  Google Scholar 

  • Hillemann D, Rüsch-Gerdes S, Richter E (2008) In vitro-selected linezolid-resistant Mycobacterium tuberculosis mutants. Antimicrob Agents Chemother 52(2):800–801

    Article  CAS  PubMed  Google Scholar 

  • Hoshide M, Qian L, Rodrigues C, Warren R, Victor T, Evasco HB 2nd, Tupasi T, Crudu V, Douglas JT (2014) Geographical differences associated with single-nucleotide polymorphisms (SNPs) in nine gene targets among resistant clinical isolates of Mycobacterium tuberculosis. J Clin Microbiol 52(5):1322–1329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huh HJ, Jeong BH, Jeon K, Koh WJ, Ki CS, Lee NY (2014) Performance evaluation of the Xpert MTB/RIF assay according to its clinical application. BMC Infect Dis 14:589

    Article  PubMed  PubMed Central  Google Scholar 

  • Huitric E, Verhasselt P, Koul A, Andries K, Hoffner S, Andersson DI (2010) Rates and mechanisms of resistance development in Mycobacterium tuberculosis to a novel diarylquinoline ATP synthase inhibitor. Antimicrob Agents Chemother 54(3):1022–1028

    Article  CAS  PubMed  Google Scholar 

  • Imperiale BR, Di Giulio ÁB, Adrián Cataldi A, Morcillo NS (2014) Evaluation of Mycobacterium tuberculosis cross-resistance to isoniazid, rifampicin and levofloxacin with their respective structural analogs. J Antibiot (Tokyo) 67(11):749–754

    Article  CAS  Google Scholar 

  • Jamieson FB, Guthrie JL, Neemuchwala A, Lastovetska O, Melano RG, Mehaffy C (2014) Profiling of rpoB mutations and MICs for rifampin and rifabutin in Mycobacterium tuberculosis. J Clin Microbiol 52(6):2157–2162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang GL, Chen X, Song Y, Zhao Y, Huang H, Kam KM (2013) First proficiency testing of second-line anti-tuberculosis drug susceptibility testing in 12 provinces of China. Int J Tuberc Lung Dis 17(11):1491–1494

    Article  PubMed  Google Scholar 

  • Jo KW, Lee SD, Kim WS, Kim DS, Shim TS (2014) Treatment outcomes and moxifloxacin susceptibility in ofloxacin-resistant multidrug-resistant tuberculosis. Int J Tuberc Lung Dis 18(1):39–43

    Article  PubMed  Google Scholar 

  • Johansen SK, Maus CE, Plikaytis BB, Douthwaite S (2006) Capreomycin binds across the ribosomal subunit interface using tlyA-encoded 2′-O-methylations in 16S and23S rRNAs. Mol Cell 23(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Jones D, Metzger HJ, Schatz A, Waksman SA (1944) Control of gram-negative bacteria in experimental animals by streptomycin. Science 100(2588):103–105

    Article  CAS  PubMed  Google Scholar 

  • Kam KM, Yip CW, Cheung TL, Tang HS, Leung OC, Chan MY (2006) Stepwise decrease in moxifloxacin susceptibility amongst clinical isolates of multidrug-resistant Mycobacterium tuberculosis: correlation with ofloxacin susceptibility. Microb Drug Resist 12(1):7–11

    Article  CAS  PubMed  Google Scholar 

  • Kambli P, Ajbani K, Sadani M, Nikam C, Shetty A, Udwadia Z, Rodwell TC, Catanzaro A, Rodrigues C (2015) Correlating minimum inhibitory concentrations of ofloxacin and moxifloxacin with gyrA mutations using the genotype MTBDRsl assay. Tuberculosis (Edinb) 95(2):137–141

    Article  CAS  Google Scholar 

  • Kambli P, Ajbani K, Nikam C, Sadani M, Shetty A, Udwadia Z, Georghiou SB, Rodwell TC, Catanzaro A, Rodrigues C (2016) Correlating rrs and eis promoter mutations in clinical isolates of Mycobacterium tuberculosis with phenotypic susceptibility levels to the second-line injectables. Int J Mycobacteriol 5(1):1–6

    Article  PubMed  Google Scholar 

  • Kelley CL, Rouse DA, Morris SL (1997) Analysis of ahpC gene mutations in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 41(9):2057–2058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kent PT, Kubica GP (1985) Antituberculosis chemotherapy and drug susceptibility testing. In: Kent PT, Kubica GP (eds) Public health mycobacteriology. A guide for the level III laboratory. U.S. Department of Health and Human Services, Atlanta, pp 159–184

    Google Scholar 

  • Kik SV, Denkinger CM, Casenghi M, Vadnais C, Pai M (2014) Tuberculosis diagnostics: which target product profiles should be prioritised? Eur Respir J 44(2):537–540

    Article  PubMed  Google Scholar 

  • Kim SJ (2005) Drug-susceptibility testing in tuberculosis: methods and reliability of results. Eur Respir J 25(3):564–569

    Article  CAS  PubMed  Google Scholar 

  • Köser CU, Bryant JM, Becq J, Török ME, Ellington MJ, Marti-Renom MA, Carmichael AJ, Parkhill J, Smith GP, Peacock SJ (2013) Whole-genome sequencing for rapid susceptibility testing of M. tuberculosis. N Engl J Med 369(3):290–292. https://doi.org/10.1056/NEJMc1215305. No abstract available

    Article  PubMed  CAS  Google Scholar 

  • Kronvall G (2010) Normalized resistance interpretation as a tool for establishing epidemiological MIC susceptibility breakpoints. J Clin Microbiol 48(12):4445–4452

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee AS, Teo AS, Wong SY (2001) Novel mutations in ndh in isoniazid-resistant Mycobacterium tuberculosis isolates. Antimicrob Agents Chemother 45(7):2157–2159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemaitre N, Sougakoff W, Truffot-Pernot C, Jarlier V (1999) Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother 43(7):1761–1763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ling DI, Zwerling AA, Pai M (2008) GenoType MTBDR assays for the diagnosis of multidrug-resistant tuberculosis: a meta-analysis. Eur Respir J 32(5):1165–1174

    Article  CAS  PubMed  Google Scholar 

  • Lingaraju S, Rigouts L, Gupta A, Lee J, Umubyeyi AN, Davidow AL, German S, Cho E, Lee JI, Cho SN, Kim CT, Alland D, Safi H (2016) Geographic differences in the contribution of ubiA mutations to high-level Ethambutol Resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother. pii: AAC.03002-15. [Epub ahead of print]

    Google Scholar 

  • Lippincott CK, Miller MB, Van Rie A, Weber DJ, Sena AC, Stout JE (2015) The complexities of Xpert® MTB/RIF interpretation. Int J Tuberc Lung Dis 19(3):273–275

    Article  CAS  PubMed  Google Scholar 

  • Louw GE, Warren RM, Gey van Pittius NC, McEvoy CR, Van Helden PD, Victor TC (2009) A balancing act: efflux/influx in mycobacterial drug resistance. Antimicrob Agents Chemother 53(8):3181–3189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madison B, Robinson-Dunn B, George I et al (2002) Multicenter evaluation of ethambutol susceptibility testing of Mycobacterium tuberculosis by agar proportion and radiometric methods. J Clin Microbiol 40:3976–3979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makafe GG, Cao Y, Tan Y, Julius M, Liu Z, Wang C, Njire MM, Cai X, Liu T, Wang B, Pang W, Tan S, Zhang B, Yew WW, Lamichhane G, Guo J, Zhang T (2016) Role of the Cys154Arg substitution in ribosomal protein L3 in Oxazolidinone resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 60(5):3202–3206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malik S, Willby M, Sikes D, Tsodikov OV, Posey JE (2012) New insights into fluoroquinolone resistance in Mycobacterium tuberculosis: functional genetic analysis of gyrA and gyrB mutations. PLoS One 7(6):e39754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manjunatha UH, Boshoff H, Dowd CS, Zhang L, Albert TJ, Norton JE, Daniels L, Dick T, Pang SS, Barry CE 3rd (2006) Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103(2):431–436

    Article  CAS  PubMed  Google Scholar 

  • Martínez JL, Coque TM, Baquero F (2015) What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol 13(2):116–123

    Article  PubMed  CAS  Google Scholar 

  • Marttila HJ, Soini H (2003) Molecular detection of resistance to antituberculous therapy. Clin Lab Med 23(4):823–841. v-vi

    Article  PubMed  Google Scholar 

  • Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, Shimokawa Y, Komatsu M (2006) OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3(11):e466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maus CE, Plikaytis BB, Shinnick TM (2005) Molecular analysis of cross-resistance to capreomycin, kanamycin, amikacin, and viomycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 49(8):3192–3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miotto P, Cabibbe AM, Feuerriegel S, Casali N, Drobniewski F, Rodionova Y, Bakonyte D, Stakenas P, Pimkina E, Augustynowicz-Kopeć E, Degano M, Ambrosi A, Hoffner S, Mansjö M, Werngren J, Rüsch-Gerdes S, Niemann S, Cirillo DM (2014) Mycobacterium tuberculosis pyrazinamide resistance determinants: a multicenter study. MBio 5(5):e01819-14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Miotto P, Cirillo DM, Migliori GB (2015) Drug resistance in Mycobacterium tuberculosis: molecular mechanisms challenging fluoroquinolones and pyrazinamide effectiveness. Chest 147(4):1135–1143

    Article  PubMed  Google Scholar 

  • Moore DA, Mendoza D, Gilman RH, Evans CA, Hollm Delgado MG, Guerra J, Caviedes L, Vargas D, Ticona E, Ortiz J, Soto G, Serpa J (2004) Microscopic observation drug susceptibility assay, a rapid, reliable diagnostic test for multidrug-resistant tuberculosis suitable for use in resource-poor settings. J.Clin.Microbiol. 42:4432–4437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan M, Kalantri S, Flores L, Pai M (2005) A commercial line probe assay for the rapid detection of rifampicin resistance in Mycobacterium tuberculosis: a systematic review and meta-analysis. BMC Infect Dis 5:62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nathan C (2012) Fresh approaches to anti-infective therapies. Sci Transl Med 4(140):140sr2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nathavitharana RR, Hillemann D, Schumacher SG, Schlueter B, Ismail N, Vally Omar S, Sikhondze W, Havumaki J, Valli E, Boehme C, Denkinger CM (2016) A Multi-Center Non-inferiority Evaluation of Hain GenoType MTBDRplus Version 2 and Nipro NTM+MDRTB lineprobe assays for the diagnosis of Rifampin and Isoniazid Resistance. J Clin Microbiol. pii: JCM.00251-16. [Epub ahead of print]

    Google Scholar 

  • Nosova EY, Bukatina AA, Isaeva YD, Makarova MV, Galkina KY, Moroz AM (2013) Analysis of mutations in the gyrA and gyrB genes and their association with the resistance of Mycobacteriumtuberculosis to levofloxacin, moxifloxacin and gatifloxacin. J Med Microbiol 62(Pt 1):108–113

    Article  CAS  PubMed  Google Scholar 

  • Okamoto S, Tamaru A, Nakajima C, Nishimura K, Tanaka Y, Tokuyama S, Suzuki Y, Ochi K (2007) Loss of a conserved 7-methylguanosine modification in 16S rRNA confers low-level streptomycin resistance in bacteria. Mol Microbiol 63(4):1096–1106

    Article  CAS  PubMed  Google Scholar 

  • Pandey B, Grover S, Tyagi C, Goyal S, Jamal S, Singh A, Kaur J, Grover A (2016) Molecular principles behind pyrazinamide resistance due to mutations in panD gene in Mycobacterium tuberculosis. Gene 581(1):31–42

    Article  CAS  PubMed  Google Scholar 

  • Pankhurst LJ, del Ojo Elias C, Votintseva AA, Walker TM, Cole K, Davies J, Fermont JM, Gascoyne-Binzi DM, Kohl T, Kong C, Lemaitre N, Niemann S, Paul J, Rogers TR, Roycroft E, Smith G, Supply P, Tang P, Wilcox MH, Wordsworth S, Wyllie D, Xu L, Crook W, Rapid DW (2016) Comprehensive, and affordable mycobacterial diagnosis with whole-genome sequencing: a prospective study. Lancet Respir Med 4(1):49–58. https://doi.org/10.1016/S2213-2600(15)00466-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsons LM, Somoskövi A, Gutierrez C, Lee E, Paramasivan CN, Abimiku A, Spector S, Roscigno G, Nkengasong J (2011) Laboratory diagnosis of tuberculosis in resource-poor countries: challenges and opportunities. Clin Microbiol Rev 24(2):314–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel RJ, Fries JW, Piessens WF, Wirth DF (1990) Sequence analysis and amplification by polymerase chain reaction of a cloned DNA fragment for identification of Mycobacterium tuberculosis. J Clin Microbiol 28(3):513–518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Piersimoni C, Mustazzolu A, Giannoni F, Bornigia S, Gherardi G, Fattorini L (2013) Prevention of false resistance results obtained in testing the susceptibility of Mycobacterium tuberculosis to pyrazinamide with the Bactec MGIT 960 system using a reduced inoculum. J Clin Microbiol 51(1):291–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Punina NV, Makridakis NM, Remnev MA, Topunov AF (2015) Whole-genome sequencing targets drug-resistant bacterial infections. Hum Genomics 9:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramaswamy S, Musser JM (1998) Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuber Lung Dis 79(1):3–29

    Article  CAS  PubMed  Google Scholar 

  • Ramirez-Busby SM, Valafar F (2015) Systematic review of mutations in pyrazinamidase associated with pyrazinamide resistance in Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 59(9):5267–5277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeves AZ, Campbell PJ, Sultana R, Malik S, Murray M, Plikaytis BB, Shinnick TM, Posey JE (2013) Aminoglycoside cross-resistance in Mycobacterium tuberculosis due to mutations in the 5′ untranslated region of whiB7. Antimicrob Agents Chemother 57(4):1857–1865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigouts L, Gumusboga M, de Rijk WB, Nduwamahoro E, Uwizeye C, de Jong B, Van Deun A (2013) Rifampin resistance missed in automated liquid culture system for Mycobacterium tuberculosis isolates with specific rpoB mutations. J Clin Microbiol 51(8):2641–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rigouts L, Coeck N, Gumusboga M, de Rijk WB, Aung KJ, Hossain MA, Fissette K, Rieder HL, Meehan CJ, de Jong BC, Van Deun A (2016) Specific gyrA gene mutations predict poor treatment outcome in MDR-TB. J Antimicrob Chemother 71(2):314–323

    Article  CAS  PubMed  Google Scholar 

  • Rueda J, Realpe T, Mejia GI, Zapata E, Rozo JC, Ferro BE, Robledo J (2015) Genotypic analysis of genes associated with independent resistance and cross-resistance toIsoniazid and Ethionamide in Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 59(12):7805–7810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rufai SB, Kumar P, Singh A, Prajapati S, Balooni V, Singh S (2014) Comparison of Xpert MTB/RIF with line probe assay for detection of rifampin-monoresistant Mycobacterium tuberculosis. J Clin Microbiol 52(6):1846–1852. https://doi.org/10.1128/JCM.03005-13. Epub 2014 Mar 19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rüsch-Gerdes S, Domehl C, Nardi G, Gismondo MR, Welscher HM, Pfyffer GE (1999) Multicenter evaluation of the mycobacteria growth indicator tube for testing susceptibility of Mycobacterium tuberculosis to first-line drugs. J Clin Microbiol 37(1):45–48

    PubMed  PubMed Central  Google Scholar 

  • Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, McNeil M, Peterson SN, Chatterjee D, Fleischmann R, Alland D (2013) Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-β-D-arabinose biosynthetic and utilization pathway genes. Nat Genet 45(10):1190–1197

    Article  CAS  PubMed  Google Scholar 

  • Sanchez-Padilla E, Merker M, Beckert P, Jochims F, Dlamini T, Kahn P, Bonnet M, Niemann S (2015) Detection of drug-resistant tuberculosis by Xpert MTB/RIF in Swaziland. N Engl J Med 372(12):1181–1182

    Article  CAS  PubMed  Google Scholar 

  • Saraav I, Pandey K, Misra R, Singh S, Sharma M, Sharma S (2017) Characterization of MymA protein as a flavin-containing monooxygenase and as a target of isoniazid. Chem Biol Drug Des 89(1):152–160

    Article  CAS  PubMed  Google Scholar 

  • Schena E, Nedialkova L, Borroni E, Battaglia S, Cabibbe AM, Niemann S, Utpatel C, Merker M, Trovato A, Hofmann-Thiel S, Hoffmann H, Cirillo DM (2016) Delamanid susceptibility testing of Mycobacterium tuberculosis using the resazurin microtitre assay and the BACTEC™ MGIT™ 960 system. J Antimicrob Chemother 71(6):1532–1539. https://doi.org/10.1093/jac/dkw044

    Article  CAS  PubMed  Google Scholar 

  • Schito M, Dolinger DL (2015) A collaborative approach for “ReSeq-ing” Mycobacterium tuberculosis drug resistance: convergence for drug and diagnostic developers. EBioMedicine 2(10):1262–1265

    Article  PubMed  PubMed Central  Google Scholar 

  • Segala E, Sougakoff W, Nevejans-Chauffour A, Jarlier V, Petrella S (2012) New mutations in the mycobacterial ATP synthase: new insights into the binding of the diarylquinoline TMC207 to the ATP synthase C-ring structure. Antimicrob Agents Chemother 56(5):2326–2334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert M, Catanzaro D, Catanzaro A, Rodwell TC (2015) Genetic mutations associated with isoniazid resistance in Mycobacterium tuberculosis: a systematic review. PLoS One 10(3):e0119628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seifert M, Georghiou SB, Catanzaro D, Rodrigues C, Crudu V, Victor TC, Garfein RS, Catanzaro A, Rodwell TC (2016) MTBDRplus and MTBDRsl assays: absence of wild-type probe hybridization and implications for detection of drug-resistant tuberculosis. J Clin Microbiol 54(4):912–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh P, Jain A, Dixit P, Prakash S, Jaiswal I, Venkatesh V, Singh M (2015) Prevalence of gyrA and B gene mutations in fluoroquinolone-resistant and -sensitive clinical isolates of Mycobacterium tuberculosis and their relationship with MIC of ofloxacin. J Antibiot (Tokyo) 68(1):63–66

    Article  CAS  Google Scholar 

  • Sintchenko V, Chew WK, Jelfs PJ, Gilbert GL (1999) Mutations in rpoB gene and rifabutin susceptibility of multidrug-resistant Mycobacterium tuberculosis strains isolated in Australia. Pathology 31(3):257–260

    Article  CAS  PubMed  Google Scholar 

  • Slayden RA, Barry CE 3rd (2000) The genetics and biochemistry of isoniazid resistance in mycobacterium tuberculosis. Microbes Infect 2(6):659–669

    Article  CAS  PubMed  Google Scholar 

  • Smith DG, Waskman SA (1947) Tuberculostatic and tuberculocidal action of streptomycin. J Bacteriol 54(1):67

    CAS  PubMed  Google Scholar 

  • Smith T, Wolff KA, Nguyen L (2013) Molecular biology of drug resistance in Mycobacterium tuberculosis. Curr Top Microbiol Immunol 374:53–80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Somoskovi A, Salfinger M (2015) The race is on to shorten the turnaround time for diagnosis of multidrug-resistant tuberculosis. J Clin Microbiol 53(12):3715–3718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sreevatsan S, Pan X, Stockbauer KE, Williams DL, Kreiswirth BN, Musser JM (1996) Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob Agents Chemother 40(4):1024–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sreevatsan S, Pan X, Zhang Y, Deretic V, Musser JM (1997) Analysis of the oxyR-ahpC region in isoniazid-resistant and -susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother 41(3):600–606

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starks AM, Avilés E, Cirillo DM, Denkinger CM, Dolinger DL, Emerson C, Gallarda J, Hanna D, Kim PS, Liwski R, Miotto P, Schito M, Zignol M (2015) Collaborative effort for a centralized worldwide tuberculosis relational sequencing data platform. Clin Infect Dis 61(Suppl 3):S141–S146

    Article  PubMed Central  Google Scholar 

  • Steiner A, Stucki D, Coscolla M, Borrell S, Gagneux S (2014) KvarQ: targeted and direct variant calling from fastq reads of bacterial genomes. BMC Genomics 15:881

    Article  PubMed  PubMed Central  Google Scholar 

  • Steingart KR, Schiller I, Horne DJ, Pai M, Boehme CC, Dendukuri N (2014) Xpert® MTB/RIF assay for pulmonary tuberculosis and rifampicin resistance in adults. Cochrane Database Syst Rev 1:CD009593

    Google Scholar 

  • Stover CK, Warrener P, VanDevanter DR, Sherman DR, Arain TM, Langhorne MH, Anderson SW, Towell JA, Yuan Y, McMurray DN, Kreiswirth BN, Barry CE, Baker WRA (2000) Small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature 405(6789):962–966

    Article  CAS  PubMed  Google Scholar 

  • Tagliani E, Cabibbe AM, Miotto P, Borroni E, Toro JC, Mansjö M, Hoffner S, Hillemann D, Zalutskaya A, Skrahina A, Cirillo DM (2015) Diagnostic performance of the new version (v2.0) of GenoType MTBDRsl assay for detection of resistance to fluoroquinolones and second-line injectable drugs: a multicenter study. J Clin Microbiol 53(9):2961–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T (1993) Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 341(8846):647–650

    Article  CAS  PubMed  Google Scholar 

  • Telenti A, Philipp WJ, Sreevatsan S, Bernasconi C, Stockbauer KE, Wieles B, Musser JM, Jacobs WR Jr (1997) The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 3(5):567–570

    Article  CAS  PubMed  Google Scholar 

  • Theron G, Peter J, Richardson M, Barnard M, Donegan S, Warren R, Steingart KR, Dheda K (2014) The diagnostic accuracy of the GenoType® MTBDRsl assay for the detection of resistance to second-line anti-tuberculosis drugs. Cochrane Database Syst Rev 10:CD010705

    Google Scholar 

  • Torrea G, Coeck N, Desmaretz C, Van De Parre T, Van Poucke T, Lounis N, de Jong BC, Rigouts L (2015) Bedaquiline susceptibility testing of Mycobacterium tuberculosis in an automated liquid culture system. J Antimicrob Chemother 70(8):2300–2305

    Article  CAS  PubMed  Google Scholar 

  • Tortoli E, Benedetti M, Fontanelli A, Simonetti MT (2002) Evaluation of automated BACTEC MGIT 960 system for testing susceptibility of Mycobacterium tuberculosis to four major antituberculous drugs: comparison with the radiometric BACTEC 460TB method and the agar plate method of proportion. JClinMicrobiol 40:607–610

    CAS  Google Scholar 

  • Uys PW, Warren R, van Helden PD, Murray M, Victor TC (2009) Potential of rapid diagnosis for controlling drug-susceptible and drug-resistant tuberculosis in communities where Mycobacterium tuberculosis infections are highly prevalent. J Clin Microbiol 47(5):1484–1490

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Deun A, Aung KJ, Hossain A, de Rijk P, Gumusboga M, Rigouts L, de Jong BC (2015) Disputed rpoB mutations can frequently cause important rifampicin resistance among newtuberculosis patients. Int J Tuberc Lung Dis 19(2):185–190

    Article  PubMed  Google Scholar 

  • van Doorn HR, Claas EC, Templeton KE, van der Zanden AG, te Koppele Vije A, de Jong MD, Dankert J, Kuijper EJ (2003) Detection of a point mutation associated with high-level isoniazid resistance in Mycobacterium tuberculosis by using real-time PCR technology with 3′-minor groove binder-DNA probes. J Clin Microbiol 41(10):4630–4635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vilchèze C, Weisbrod TR, Chen B, Kremer L, Hazbón MH, Wang F, Alland D, Sacchettini JC, Jacobs WR Jr (2005) Altered NADH/NAD+ ratio mediates coresistance to isoniazid and ethionamide in mycobacteria. Antimicrob Agents Chemother 49(2):708–720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD (2013) Dynamic persistence of antibiotic-stressed mycobacteria. Science 339(6115):91–95

    Article  CAS  PubMed  Google Scholar 

  • Walker T, Kohl T, Omar S, Hedge J, Del Ojo E, Bradley P, Iqbal Z, Feuerriegel S, Niehaus K, Wilson D, Clifton D, Kapatai G, Ip C, Bowden C, Drobniewski F, Allix-Béguec C, Gaudin C, Parkhill J, Diel R, Supply P, Crook D, Smith G, Walker S, Ismail N, Niemann S, Peto T (2015) Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study. The Lancet Infectious Diseases 15:1193. https://doi.org/10.1016/S1473-3099(15)00062-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells WA, Boehme CC, Cobelens FG, Daniels C, Dowdy D, Gardiner E, Gheuens J, Kim P, Kimerling ME, Kreiswirth B, Lienhardt C, Mdluli K, Pai M, Perkins MD, Peter T, Zignol M, Zumla A, Schito M (2013) Alignment of new tuberculosis drug regimens and drug susceptibility testing: a framework for action. Lancet Infect Dis 13(5):449–458

    Article  PubMed  PubMed Central  Google Scholar 

  • Whitfield MG, Soeters HM, Warren RM, York T, Sampson SL, Streicher EM, van Helden PD, van Rie A (2015) A global perspective on pyrazinamide resistance: systematic review and meta-analysis. PLoS One 10(7):e0133869

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willby M, Sikes RD, Malik S, Metchock B, Posey JE (2015) Correlation between GyrA substitutions and ofloxacin, levofloxacin, and moxifloxacin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 59(9):5427–5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williamson DA, Basu I, Bower J, Freeman JT, Henderson G, Roberts SA (2012) An evaluation of the Xpert MTB/RIF assay and detection of false-positive rifampicin resistance in Mycobacterium tuberculosis. Diagn Microbiol Infect Dis 74(2):207–209. https://doi.org/10.1016/j.diagmicrobio.2012.06.013. Epub 2012 Jul 20

    Article  CAS  PubMed  Google Scholar 

  • Witney AA, Gould KA, Arnold A, Coleman D, Delgado R, Dhillon J, Pond MJ, Pope CF, Planche TD, Stoker NG, Cosgrove CA, Butcher PD, Harrison TS, Hinds J (2015) Clinical application of whole-genome sequencing to inform treatment for multidrug-resistant tuberculosis cases. J Clin Microbiol 53(5):1473–1483

    Article  PubMed  PubMed Central  Google Scholar 

  • Wong SY, Lee JS, Kwak HK, Via LE, Boshoff HI, Barry CE 3rd (2011) Mutations in gidB confer low-level streptomycin resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 55(6):2515–2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • World Health Organization (2004) Anti-tuberculosis drug resistance in the world, Third global report. WHO, Geneva. ISBN 92 4 156285 4. WHO/HTM/TB/2004.343

    Google Scholar 

  • World Health Organization (2008) Molecular line probe assays for rapid screening of patients at risk of multi-drug resistant tuberculosis (MDR-TB), Expert group report. WHO, Geneva

    Google Scholar 

  • World Health Organization (2012a) Tuberculosis laboratory biosafety manual. WHO, Geneva. ISBN 978 92 4 150463 8

    Google Scholar 

  • World Health Organization (2012b) Summary of outcomes from WHO expert group meeting on drug susceptibility testing. 4th annual GLI meeting 17 April 2012

    Google Scholar 

  • World Health Organization (2013) Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampicin resistance: Xpert MTB/RIF assay for the: diagnosis of pulmonary and extrapulmonary TB in adults and children, Policy update. WHO, Geneva. ISBN: 978 92 4 150633 5. WHO/HTM/TB/2013.16

    Google Scholar 

  • World Health Organization, UNITAID (2015) Tuberculosis. Diagnostics technology and market land-scape, 4th ed. Geneva

    Google Scholar 

  • World Health Organization (2016) The use of molecular line probe assays for the detection of resistance to second-line antituberculosis drugs, Policy guidance. WHO, Geneva. ISBN 978 92 4 150963 3

    Google Scholar 

  • World Health Organization, UNITAID (2015) Tuberculosis diagnostics technology and market landscape, 4th edn. WHO, Geneva

    Google Scholar 

  • Xu Y, Jia H, Huang H, Sun Z, Zhang Z (2015) Mutations found in embCAB, embR, and ubiA genes of ethambutol-sensitive and -resistant Mycobacterium tuberculosis clinical isolates from China. Biomed Res Int 2015:951706

    PubMed  PubMed Central  Google Scholar 

  • Xu J, Wang B, Hu M, Huo F, Guo S, Jing W, Nuermberger E, Lu Y (2017) Primary clofazimine and bedaquiline resistance among isolates from patients with multidrug-resistant tuberculosis. Antimicrob Agents Chemother 61(6):pii: e00239-17. doi:https://doi.org/10.1128/AAC.00239-17. Print 2017 Jun

  • Yang J, Liu Y, Bi J, Cai Q, Liao X, Li W, Guo C, Zhang Q, Lin T, Zhao Y, Wang H, Liu J, Zhang X, Lin D (2015) Structural basis for targeting the ribosomal protein S1 of Mycobacterium tuberculosis by pyrazinamide. Mol Microbiol 95(5):791–803

    Article  CAS  PubMed  Google Scholar 

  • Youmans GP, Williston EH et al (1946) Increase in resistance of tubercle bacilli to streptomycin; a preliminary report. Proc Staff Meet Mayo Clin 21:126

    CAS  PubMed  Google Scholar 

  • Yu X, Ma YF, Jiang GL, Chen ST, Wang GR, Huang HR (2016) Sensititre® MYCOTB MIC plate for drug susceptibility testing of Mycobacterium tuberculosis complex isolates. Int J Tuberc Lung Dis 20(3):329–334

    Article  CAS  PubMed  Google Scholar 

  • Zaunbrecher MA, Sikes RD Jr, Metchock B, Shinnick TM, Posey JE (2009) Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycinresistance in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 106(47):20004–20009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zetola NM, Shin SS, Tumedi KA, Moeti K, Ncube R, Nicol M, Collman RG, Klausner JD, Modongo C (2014) Mixed Mycobacterium tuberculosis complex infections and false-negative results for rifampin resistance by GeneXpert MTB/RIF are associated with poor clinical outcomes. J Clin Microbiol 52(7):2422–2429. https://doi.org/10.1128/JCM.02489-13. Epub 2014 Apr 30

  • Zhang Y, Mitchison D (2003) The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis 7(1):6–21

    CAS  PubMed  Google Scholar 

  • Zhang Y, Yew WW (2015) Mechanisms of drug resistance in Mycobacterium tuberculosis: update 2015. Int J Tuberc Lung Dis 19(11):1276–1289

    Article  CAS  PubMed  Google Scholar 

  • Zignol M, Dean AS, Alikhanova N, Andres S, Cabibbe AM, Cirillo DM et al (2016) Population-based resistance of Mycobacterium tuberculosis isolates to pyrazinamide and fluoroquinolones: results from a multicountry surveillance project. Lancet Infect Dis 16(10):1185–1192. https://doi.org/10.1016/S1473-3099(16)30190-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela M. Cirillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cirillo, D.M., Miotto, P., Tortoli, E. (2017). Evolution of Phenotypic and Molecular Drug Susceptibility Testing. In: Gagneux, S. (eds) Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Advances in Experimental Medicine and Biology, vol 1019. Springer, Cham. https://doi.org/10.1007/978-3-319-64371-7_12

Download citation

Publish with us

Policies and ethics