Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1019))

Abstract

PE and PPE are two large families of proteins typical of mycobacteria whose structural genes in the Mycobacterium tuberculosis complex (MTBC) occupy about 7% of the total genome. The most ancestral PE and PPE proteins are expressed by genes that belong to the same operon and in most cases are found inserted in the esx clusters, encoding a type VII secretion system. Duplication and expansion of pe and ppe genes, coupled with intragenomic and intergenomic recombination events, led to the emergence of the polymorphic pe_pgrs and ppe_mptr genes in the MTBC genome. The role and function of these proteins, and particularly of the polymorphic subfamilies, remains elusive, although it is widely accepted that PE and PPE proteins may represent a specialized collection used by MTBC to interact with the complex host immune system of mammals. In this chapter, we summarize what has been discovered since the identification of these genes in 1998, focusing on M. tuberculosis genetic variability, host-pathogen interaction and TB pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdallah AM, Verboom T, Weerdenburg EM, Gey van Pittius NC, Mahasha PW, Jimenez C et al (2009) PPE and PE_PGRS proteins of Mycobacterium marinum are transported via the type VII secretion system ESX-5. Mol Microbiol 73:329–340

    Article  CAS  PubMed  Google Scholar 

  • Adindla S, Guruprasad L (2003) Sequence analysis corresponding to the PPE and PE proteins in Mycobacterium tuberculosis and other genomes. J Biosci 28:169–179

    Article  CAS  PubMed  Google Scholar 

  • Ahmed A, Das A, Mukhopadhyay S (2015) Immunoregulatory functions and expression patterns of PE/PPE family members: roles in pathogenicity and impact on anti-tuberculosis vaccine and drug design. IUBMB Life 67:414–427

    Article  CAS  PubMed  Google Scholar 

  • Akhter Y, Ehebauer MT, Mukhopadhyay S, Hasnain SE (2012) The PE/PPE multigene family codes for virulence factors and is a possible source of mycobacterial antigenic variation: perhaps more? Biochimie 94:110–116

    Article  CAS  PubMed  Google Scholar 

  • Ates LS, Houben EN, Bitter W (2016) Type VII secretion: a highly versatile secretion system. Microbiol Spectr 4

    Google Scholar 

  • Balaji KN, Goyal G, Narayana Y, Srinivas M, Chaturvedi R, Mohammad S (2007) Apoptosis triggered by Rv1818c, a PE family gene from Mycobacterium tuberculosis is regulated by mitochondrial intermediates in T cells. Microbes Infect 9:271–281

    Article  CAS  PubMed  Google Scholar 

  • Bansal K, Elluru SR, Narayana Y, Chaturvedi R, Patil SA, Kaveri SV et al (2010a) PE_PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells. J Immunol 184:3495–3504

    Article  CAS  PubMed  Google Scholar 

  • Bansal K, Sinha AY, Ghorpade DS, Togarsimalemath SK, Patil SA, Kaveri SV et al (2010b) Src homology 3-interacting domain of Rv1917c of Mycobacterium tuberculosis induces selective maturation of human dendritic cells by regulating PI3K-MAPK-NF-kappaB signaling and drives Th2 immune responses. J Biol Chem 285:36511–36522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banu S, Honore N, Saint-Joanis B, Philpott D, Prevost MC, Cole ST (2002) Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens? Mol Microbiol 44:9–19

    Article  CAS  PubMed  Google Scholar 

  • Basu S, Pathak SK, Banerjee A, Pathak S, Bhattacharyya A, Yang Z et al (2007) Execution of macrophage apoptosis by PE_PGRS33 of Mycobacterium tuberculosis is mediated by Toll-like receptor 2-dependent release of tumor necrosis factor-alpha. J Biol Chem 282:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Bertholet S, Ireton GC, Ordway DJ, Windish HP, Pine SO, Kahn M et al (2010) A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis. Sci Transl Med 2:53ra74

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhat KH, Ahmed A, Kumar S, Sharma P, Mukhopadhyay S (2012) Role of PPE18 protein in intracellular survival and pathogenicity of Mycobacterium tuberculosis in mice. PLoS One 7:e52601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bottai D, Di LM, Majlessi L, Frigui W, Simeone R, Sayes F et al (2012) Disruption of the ESX-5 system of Mycobacterium tuberculosis causes loss of PPE protein secretion, reduction of cell wall integrity and strong attenuation. Mol Microbiol 83:1209

    Article  CAS  Google Scholar 

  • Brennan MJ, Delogu G (2002) The PE multigene family: a ‘molecular mantra’ for mycobacteria. Trends Microbiol 10:246–249

    Article  CAS  PubMed  Google Scholar 

  • Brennan MJ, Delogu G, Chen Y, Bardarov S, Kriakov J, Alavi M, Jacobs WR Jr (2001) Evidence that mycobacterial PE_PGRS proteins are cell surface constituents that influence interactions with other cells. Infect Immun 69:7326–7333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadieux N, Parra M, Cohen H, Maric D, Morris SL, Brennan MJ (2011) Induction of cell death after localization to the host cell mitochondria by the Mycobacterium tuberculosis PE_PGRS33 protein. Microbiology 157:793–804

    Article  CAS  PubMed  Google Scholar 

  • Cascioferro A, Delogu G, Colone M, Sali M, Stringaro A, Arancia G et al (2007) PE is a functional domain responsible for protein translocation and localization on mycobacterial cell wall. Mol Microbiol 66:1536–1547

    CAS  PubMed  Google Scholar 

  • Cascioferro A, Daleke MH, Ventura M, Dona V, Delogu G, Palu G et al (2011) Functional dissection of the PE domain responsible for translocation of PE_PGRS33 across the mycobacterial cell wall. PLoS One 6:e27713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakhaiyar P, Nagalakshmi Y, Aruna B, Murthy KJ, Katoch VM, Hasnain SE (2004) Regions of high antigenicity within the hypothetical PPE major polymorphic tandem repeat open-reading frame, Rv2608, show a differential humoral response and a low T cell response in various categories of patients with tuberculosis. J Infect Dis 190:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Chatrath S, Gupta VK, Dixit A, Garg LC (2011) The Rv1651c-encoded PE-PGRS30 protein expressed in Mycobacterium smegmatis exhibits polar localization and modulates its growth profile. FEMS Microbiol Lett 322:194–199

    Article  CAS  PubMed  Google Scholar 

  • Chatrath S, Gupta VK, Garg LC (2014) The PGRS domain is responsible for translocation of PE_PGRS30 to cell poles while the PE and the C-terminal domains localize it to the cell wall. FEBS Lett 588:990–994

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi R, Bansal K, Narayana Y, Kapoor N, Sukumar N, Togarsimalemath SK et al (2010) The multifunctional PE_PGRS11 protein from Mycobacterium tuberculosis plays a role in regulating resistance to oxidative stress. J Biol Chem 285:30389–30403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Zhao Q, Li W, Xie J (2013) Mycobacterium tuberculosis PE_PGRS17 promotes the death of host cell and cytokines secretion via Erk kinase accompanying with enhanced survival of recombinant Mycobacterium smegmatis. J Interf Cytokine Res 33:452–458

    Article  CAS  Google Scholar 

  • Choudhary RK, Mukhopadhyay S, Chakhaiyar P, Sharma N, Murthy KJ, Katoch VM, Hasnain SE (2003) PPE antigen Rv2430c of Mycobacterium tuberculosis induces a strong B-cell response. Infect Immun 71:6338–6343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen I, Parada C, Acosta-Gio E, Espitia C (2014) The PGRS Domain from PE_PGRS33 of Mycobacterium tuberculosis is Target of Humoral Immune Response in Mice and Humans. Front Immunol 5:236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [see comments] [published erratum appears in Nature 1998 Nov 12;396(6707):190]. Nature 393:537–544

    Article  CAS  PubMed  Google Scholar 

  • Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K et al (2010) Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nat Genet 42:498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copin R, Coscolla M, Seiffert SN, Bothamley G, Sutherland J, Mbayo G et al (2014) Sequence diversity in the pe_pgrs genes of Mycobacterium tuberculosis is independent of human T cell recognition. MBio 5:e00960–e00913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daim S, Kawamura I, Tsuchiya K, Hara H, Kurenuma T, Shen Y et al (2011) Expression of the Mycobacterium tuberculosis PPE37 protein in Mycobacterium smegmatis induces low tumour necrosis factor alpha and interleukin 6 production in murine macrophages. J Med Microbiol 60:582–591

    Article  CAS  PubMed  Google Scholar 

  • Daleke MH, Cascioferro A, de Pundar K, Ummels R, Abdallah AM, van der Wel N et al (2011) Conserved PE and PPE protein domains target LipY lipases of pathogenic mycobacteria to the cell surface via ESX-5. J Biol Chem

    Google Scholar 

  • De Maio F, Maulucci G, Minerva M, Anoosheh S, Palucci I, Iantomasi R et al (2014) Impact of protein domains on PE_PGRS30 polar localization in Mycobacteria. PLoS One 9:e112482

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Souza GA, Wiker HG (2011) A proteomic view of mycobacteria. Proteomics 11:3118–3127

    Article  PubMed  CAS  Google Scholar 

  • Delogu, G, Brennan, MJ (2001) Comparative Immune Response to PE and PE_PGRS Antigens of Mycobacterium tuberculosis. Infect Immun 69: 5606–5611

    Google Scholar 

  • Delogu G, Pusceddu C, Bua A, Fadda G, Brennan MJ, Zanetti S (2004) Rv1818c-encoded PE_PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure. Mol Microbiol 52:725–733

    Article  CAS  PubMed  Google Scholar 

  • Delogu G, Sanguinetti M, Pusceddu C, Bua A, Brennan MJ, Zanetti S, Fadda G (2006) PE_PGRS proteins are differentially expressed by Mycobacterium tuberculosis in host tissues. Microbes Infect 8:2061–2067

    Article  CAS  PubMed  Google Scholar 

  • Delogu G, Cole ST, Brosch R (2008) The PE and PPE protein families of mycobacterium tuberculosis. In: Kaufmann SH, Rubin E (eds) Handbook of tuberculosis. Wiley-VCH Verlag GmbH%Co. KGaA, Weinheim, pp 131–150

    Google Scholar 

  • Delogu, G, Manganelli, R, Brennan, MJ (2014) Critical research concepts in tuberculosis vaccine development. Clin Microbiol Infect 20 Suppl 5: 59–65

    Google Scholar 

  • Dheenadhayalan V, Delogu G, Brennan MJ (2006) Expression of the PE_PGRS 33 protein in Mycobacterium smegmatis triggers necrosis in macrophages and enhanced mycobacterial survival. Microbes Infect 8:262–272

    Article  CAS  PubMed  Google Scholar 

  • Dillon DC, Alderson MR, Day CH, Lewinsohn DM, Coler R, Bement T et al (1999) Molecular characterization and human T-cell responses to a member of a novel Mycobacterium tuberculosis mtb39 gene family. Infect Immun 67:2941–2950

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dona V, Ventura M, Sali M, Cascioferro A, Provvedi R, Palu G et al (2013) The PPE domain of PPE17 is responsible for its surface localization and can be used to express heterologous proteins on the mycobacterial surface. PLoS One 8:e57517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong D, Wang D, Li M, Wang H, Yu J, Wang C et al (2012) PPE38 modulates the innate immune response and is required for Mycobacterium marinum virulence. Infect Immun 80:43–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ekiert DC, Cox JS (2014) Structure of a PE-PPE-EspG complex from Mycobacterium tuberculosis reveals molecular specificity of ESX protein secretion. Proc Natl Acad Sci U S A 111:14758–14763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fishbein S, van Wyk N, Warren RM, Sampson SL (2015) Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 96:901–916

    Article  CAS  PubMed  Google Scholar 

  • Gao Q, Kripke KE, Saldanha AJ, Yan W, Holmes S, Small PM (2005) Gene expression diversity among Mycobacterium tuberculosis clinical isolates. Microbiology 151:5–14

    Article  CAS  PubMed  Google Scholar 

  • Gey van Pittius NC, Sampson SL, Lee H, Kim Y, van Helden PD, Warren RM (2006) Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golby P, Hatch KA, Bacon J, Cooney R, Riley P, Allnutt J et al (2007) Comparative transcriptomics reveals key gene expression differences between the human and bovine pathogens of the Mycobacterium tuberculosis complex. Microbiology 153:3323–3336

    Article  CAS  PubMed  Google Scholar 

  • Gold B, Rodriguez GM, Marras SAE, Pentecost M, Smith I (2001) The Mycobacterium tuberculosis IdeR is a dual functional regulator that controls transcription of genes involved in iron acquisition, iron storage and survival in macrophages. Mol Microbiol 42:851–865

    Article  CAS  PubMed  Google Scholar 

  • Goldstone RM, Goonesekera SD, Bloom BR, Sampson SL (2009) The transcriptional regulator Rv0485 modulates the expression of a pe and ppe gene pair and is required for Mycobacterium tuberculosis virulence. Infect Immun 77:4654–4667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert AM, Talarico S, Yang D, Durmaz R, Marrs CF, Zhang L et al (2007) DNA polymorphisms in the pepA and PPE18 genes among clinical strains of Mycobacterium tuberculosis: implications for vaccine efficacy. Infect Immun 75:5798–5805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homolka S, Ubben T, Niemann S (2016) High sequence variability of the ppE18 gene of clinical Mycobacterium tuberculosis complex strains potentially impacts effectivity of vaccine candidate M72/AS01E. PLoS One 11:e0152200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iantomasi R, Sali M, Cascioferro A, Palucci I, Zumbo A, Soldini S et al (2012) PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cell Microbiol 14:356–367

    Article  CAS  PubMed  Google Scholar 

  • Karboul A, Gey van Pittius NC, Namouchi A, Vincent V, Sola C, Rastogi N et al (2006) Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE_PGRS duplicated gene pair. BMC Evol Biol 6:107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karboul A, Mazza A, Gey van Pittius NC, Ho JL, Brousseau R, Mardassi H (2008) Frequent homologous recombination events in Mycobacterium tuberculosis PE/PPE multigene families: potential role in antigenic variability. J Bacteriol 190:7838–7846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan N, Alam K, Nair S, Valluri VL, Murthy KJ, Mukhopadhyay S (2008) Association of strong immune responses to PPE protein Rv1168c with active tuberculosis. Clin Vaccine Immunol 15:974–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korotkova N, Freire D, Phan TH, Ummels R, Creekmore CC, Evans TJ et al (2014) Structure of the Mycobacterium tuberculosis type VII secretion system chaperone EspG5 in complex with PE25-PPE41 dimer. Mol Microbiol 94:367–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruh NA, Troudt J, Izzo A, Prenni J, Dobos KM (2010) Portrait of a pathogen: the Mycobacterium tuberculosis proteome in vivo. PLoS One 5:e13938

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee JH, Karakousis PC, Bishai WR (2008) Roles of SigB and SigF in the Mycobacterium tuberculosis sigma factor network. J Bacteriol 190:699–707

    Article  CAS  PubMed  Google Scholar 

  • Lindestam Arlehamn CS, Gerasimova A, Mele F, Henderson R, Swann J, Greenbaum JA et al (2013) Memory T cells in latent Mycobacterium tuberculosis infection are directed against three antigenic islands and largely contained in a CXCR3+CCR6+ Th1 subset. PLoS Pathog 9:e1003130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McEvoy CR, van Helden PD, Warren RM, Gey van Pittius NC (2009) Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region. BMC Evol Biol 9:237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McEvoy CR, Cloete R, Muller B, Schurch AC, van Helden PD, Gagneux S et al (2012) Comparative analysis of Mycobacterium tuberculosis pe and ppe genes reveals high sequence variation and an apparent absence of selective constraints. PLoS One 7:e30593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meszaros B, Toth J, Vertessy BG, Dosztanyi Z, Simon I (2011) Proteins with complex architecture as potential targets for drug design: a case study of Mycobacterium tuberculosis. PLoS Comput Biol 7:e1002118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra KC, de Chastellier C, Narayana Y, Bifani P, Brown AK, Besra GS et al (2008) Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY. Infect Immun 76:127–140

    Article  CAS  PubMed  Google Scholar 

  • Mohareer K, Tundup S, Hasnain SE (2011) Transcriptional regulation of Mycobacterium tuberculosis PE/PPE genes: a molecular switch to virulence? J Mol Microbiol Biotechnol 21:97–109

    Article  CAS  PubMed  Google Scholar 

  • Mortier MC, Jongert E, Mettens P, Ruelle JL (2015) Sequence conservation analysis and in silico human leukocyte antigen-peptide binding predictions for the Mtb72F and M72 tuberculosis candidate vaccine antigens. BMC Immunol 16:63

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mukhopadhyay, S, Balaji, KN (2011) The PE and PPE proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 91: 441–447

    Google Scholar 

  • Nair S, Ramaswamy PA, Ghosh S, Joshi DC, Pathak N, Siddiqui I et al (2009) The PPE18 of Mycobacterium tuberculosis interacts with TLR2 and activates IL-10 induction in macrophage. J Immunol 183:6269–6281

    Article  CAS  PubMed  Google Scholar 

  • Namouchi A, Karboul A, Fabre M, Gutierrez MC, Mardassi H (2013) Evolution of smooth tubercle Bacilli PE and PE_PGRS genes: evidence for a prominent role of recombination and imprint of positive selection. PLoS One 8:e64718

    Article  PubMed  PubMed Central  Google Scholar 

  • Palucci I, Camassa S, Cascioferro A, Sali M, Anoosheh S, Zumbo A et al (2016) PE_PGRS33 Contributes to Mycobacterium tuberculosis Entry in Macrophages through Interaction with TLR2. PLoS One 11:e0150800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parra M, Cadieux N, Pickett T, Dheenadhayalan V, Brennan MJ (2006) A PE protein expressed by Mycobacterium avium is an effective T-cell immunogen. Infect Immun 74:786–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poulet S, Cole ST (1995) Characterization of the highly abundant polymorphic GC-rich-repetitive sequence (PGRS) present in Mycobacterium tuberculosis. Arch Microbiol 163:87–95

    Article  CAS  PubMed  Google Scholar 

  • Pourakbari B, Mamishi S, Marjani M, Rasulinejad M, Mariotti S, Mahmoudi S (2015) Novel T-cell assays for the discrimination of active and latent tuberculosis infection: the diagnostic value of PPE family. Mol Diagn Ther 19:309–316

    Article  CAS  PubMed  Google Scholar 

  • Pym AS, Brodin P, Brosch R, Huerre M, Cole ST (2002) Loss of RD1 contributed to the attenuation of the live tuberculosis vaccines Mycobacterium bovis BCG and Mycobacterium microti. Mol Microbiol 46:709–717

    Article  CAS  PubMed  Google Scholar 

  • Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J, Mollenkopf H et al (2006) Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74:1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishnan L, Federspiel NA, Falkow S (2000) Granuloma-Specific Expression of Mycobacterium Virulence Proteins from the Glycine-Rich PE-PGRS Family. Science 288:1436–1439

    Article  CAS  PubMed  Google Scholar 

  • Raman S, Hazra R, Dascher CC, Husson RN (2004) Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J Bacteriol 186:6605–6616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed SG, Coler RN, Dalemans W, Tan EV, DeLa Cruz EC, Basaraba RJ et al (2009) Defined tuberculosis vaccine, Mtb72F/AS02A, evidence of protection in cynomolgus monkeys. Proc Natl Acad Sci U S A 106:2301–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rehren G, Walters S, Fontan P, Smith I, Zarraga AM (2007) Differential gene expression between Mycobacterium bovis and Mycobacterium tuberculosis. Tuberculosis (Edinb) 87:347–359

    Article  CAS  Google Scholar 

  • Riley R, Pellegrini M, Eisenberg D (2008) Identifying cognate binding pairs among a large set of paralogs: the case of PE/PPE proteins of Mycobacterium tuberculosis. PLoS Comput Biol 4:e1000174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I (2002) ideR, An essential gene in mycobacterium tuberculosis: role of IdeR in iron-dependent gene expression, iron metabolism, and oxidative stress response. Infect Immun 70:3371–3381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano M, Rindi L, Korf H, Bonanni D, Adnet PY, Jurion F et al (2008) Immunogenicity and protective efficacy of tuberculosis subunit vaccines expressing PPE44 (Rv2770c). Vaccine 26:6053–6063

    Article  CAS  PubMed  Google Scholar 

  • Sali M, Di SG, Cascioferro A, Zumbo A, Nicolo C, Dona V et al (2010) Surface expression of MPT64 as a fusion with the PE domain of PE_PGRS33 enhances Mycobacterium bovis BCG protective activity against Mycobacterium tuberculosis in mice. Infect Immun 78:5202–5213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sassi M, Drancourt M (2014) Genome analysis reveals three genomospecies in Mycobacterium abscessus. BMC Genomics 15:359

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sayes F, Sun L, Di LM, Simeone R, Degaiffier N, Fiette L et al (2012) Strong immunogenicity and cross-reactivity of Mycobacterium tuberculosis ESX-5 type VII secretion: encoded PE-PPE proteins predicts vaccine potential. Cell Host Microbe 11:352–363

    Article  CAS  PubMed  Google Scholar 

  • Serafini A, Pisu D, Palu G, Rodriguez GM, Manganelli R (2013) The ESX-3 secretion system is necessary for iron and zinc homeostasis in Mycobacterium tuberculosis. PLoS One 8:e78351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simeone R, Bottai D, Brosch R (2009) ESX/type VII secretion systems and their role in host-pathogen interaction. Curr Opin Microbiol 12:4–10

    Article  CAS  PubMed  Google Scholar 

  • Singh KK, Zhang X, Patibandla AS, Chien P Jr, Laal S (2001) Antigens of Mycobacterium tuberculosis expressed during preclinical tuberculosis: serological immunodominance of proteins with repetitive amino acid sequences. Infect Immun 69:4185–4191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh KK, Dong Y, Patibandla SA, McMurray DN, Arora VK, Laal S (2005) Immunogenicity of the Mycobacterium tuberculosis PPE55 (Rv3347c) protein during incipient and clinical tuberculosis. Infect Immun 73:5004–5014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, PP, Parra, M, Cadieux, N, Brennan, MJ (2008) A comparative study of host response to three Mycobacterium tuberculosis PE_PGRS proteins. Microbiology 154: 3469–3479

    Google Scholar 

  • Singh SK, Tripathi DK, Singh PK, Sharma S, Srivastava KK (2013) Protective and survival efficacies of Rv0160c protein in murine model of Mycobacterium tuberculosis. Appl Microbiol Biotechnol 97:5825–5837

    Article  CAS  PubMed  Google Scholar 

  • Singh, P, Rao, RN, Reddy, JR, Prasad, R, Kotturu, SK, Ghosh, S, Mukhopadhyay, S (2016) PE11, a PE/PPE family protein of Mycobacterium tuberculosis is involved in cell wall remodeling and virulence. Sci Rep 6: 21624

    Google Scholar 

  • Skeiky YA, Ovendale PJ, Jen S, Alderson MR, Dillon DC, Smith S et al (2000) T cell expression cloning of a Mycobacterium tuberculosis gene encoding a protective antigen associated with the early control of infection. J Immunol 165:7140–7149

    Article  CAS  PubMed  Google Scholar 

  • Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, Brandt L, Dillon DC et al (2004) Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, Mtb72F, delivered as naked DNA or recombinant protein. J Immunol 172:7618–7628

    Article  CAS  PubMed  Google Scholar 

  • Solans L, Gonzalo-Asensio J, Sala C, Benjak A, Uplekar S, Rougemont J et al (2014) The PhoP-dependent ncRNA Mcr7 modulates the TAT secretion system in Mycobacterium tuberculosis. PLoS Pathog 10:e1004183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Soldini S, Palucci I, Zumbo A, Sali M, Ria F, Manganelli R et al (2011) PPE_MPTR genes are differentially expressed by Mycobacterium tuberculosis in vivo. Tuberculosis (Edinb)

    Google Scholar 

  • Spertini F, Audran R, Lurati F, Ofori-Anyinam O, Zysset F, Vandepapeliere P et al (2013) The candidate tuberculosis vaccine Mtb72F/AS02 in PPD positive adults: a randomized controlled phase I/II study. Tuberculosis (Edinb) 93:179–188

    Article  CAS  Google Scholar 

  • Stewart GR, Patel J, Robertson BD, Rae A, Young DB (2005) Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog 1:269–278

    Article  CAS  PubMed  Google Scholar 

  • Strong M, Sawaya MR, Wang S, Phillips M, Cascio D, Eisenberg D (2006) Toward the structural genomics of complexes: crystal structure of a PE/PPE protein complex from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 103:8060–8065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supply P, Marceau M, Mangenot S, Roche D, Rouanet C, Khanna V et al (2013) Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of Mycobacterium tuberculosis. Nat Genet 45:172–179

    Article  CAS  PubMed  Google Scholar 

  • Talarico S, Cave MD, Marrs CF, Foxman B, Zhang L, Yang Z (2005) Variation of the Mycobacterium tuberculosis PE_PGRS 33 gene among clinical isolates. J Clin Microbiol 43:4954–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talarico S, Cave MD, Foxman B, Marrs CF, Zhang L, Bates JH, Yang Z (2007) Association of Mycobacterium tuberculosis PE PGRS33 polymorphism with clinical and epidemiological characteristics. Tuberculosis (Edinb) 87:338–346

    Article  CAS  Google Scholar 

  • Talarico S, Zhang L, Marrs CF, Foxman B, Cave MD, Brennan MJ, Yang Z (2008) Mycobacterium tuberculosis PE_PGRS16 and PE_PGRS26 genetic polymorphism among clinical isolates. Tuberculosis (Edinb) 88:283–294

    Article  CAS  Google Scholar 

  • Tiwari B, Ramakrishnan UM, Raghunand TR (2015) The Mycobacterium tuberculosis protein pair PE9 (Rv1088)-PE10 (Rv1089) forms heterodimers and induces macrophage apoptosis through Toll-like receptor 4. Cell Microbiol 17:1653–1669

    Article  CAS  PubMed  Google Scholar 

  • Tsenova L, Harbacheuski R, Moreira AL, Ellison E, Dalemans W, Alderson MR et al (2006) Evaluation of the Mtb72F polyprotein vaccine in a rabbit model of tuberculous meningitis. Infect Immun 74:2392–2401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tufariello JM, Chapman JR, Kerantzas CA, Wong KW, Vilcheze C, Jones CM et al (2016) Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc Natl Acad Sci U S A 113:E348–E357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tundup S, Akhter Y, Thiagarajan D, Hasnain SE (2006) Clusters of PE and PPE genes of Mycobacterium tuberculosis are organized in operons: evidence that PE Rv2431c is co-transcribed with PPE Rv2430c and their gene products interact with each other. FEBS Lett 580:1285–1293

    Article  CAS  PubMed  Google Scholar 

  • Vipond J, Vipond R, Allen-Vercoe E, Clark SO, Hatch GJ, Gooch KE et al (2006) Selection of novel TB vaccine candidates and their evaluation as DNA vaccines against aerosol challenge. Vaccine 24:6340–6350

    Article  CAS  PubMed  Google Scholar 

  • Vordermeier HM, Hewinson RG, Wilkinson RJ, Wilkinson KA, Gideon HP, Young DB, Sampson SL (2012) Conserved immune recognition hierarchy of mycobacterial PE/PPE proteins during infection in natural hosts. PLoS One 7:e40890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voskuil MI, Schnappinger D, Rutherford R, Liu Y, Schoolnik GK (2004) Regulation of the Mycobacterium tuberculosis PE/PPE genes. Tuberculosis (Edinb) 84:256–262

    Article  CAS  Google Scholar 

  • Wang J, Huang Y, Zhang A, Zhu C, Yang Z, Xu H (2011) DNA polymorphism of Mycobacterium tuberculosis PE_PGRS33 gene among clinical isolates of pediatric TB patients and its associations with clinical presentation. Tuberculosis (Edinb) 91:287–292

    Article  CAS  Google Scholar 

  • Wu J, Liu W, He L, Huang F, Chen J, Cui P et al (2013) Sputum microbiota associated with new, recurrent and treatment failure tuberculosis. PLoS One 8:e83445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Wang J, Lei J, Zhang M, Yang Y, Chen Y, Wang H (2007) PPE protein (Rv3425) from DNA segment RD11 of Mycobacterium tuberculosis: a potential B-cell antigen used for serological diagnosis to distinguish vaccinated controls from tuberculosis patients. Clin Microbiol Infect 13:139–145

    Article  PubMed  Google Scholar 

  • Zumbo A, Palucci I, Cascioferro A, Sali M, Ventura M, D'Alfonso P et al (2013) Functional dissection of protein domains involved in the immunomodulatory properties of PE_PGRS33 of Mycobacterium tuberculosis. Pathog Dis 69: 232–239

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Delogu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Delogu, G., Brennan, M.J., Manganelli, R. (2017). PE and PPE Genes: A Tale of Conservation and Diversity. In: Gagneux, S. (eds) Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control. Advances in Experimental Medicine and Biology, vol 1019. Springer, Cham. https://doi.org/10.1007/978-3-319-64371-7_10

Download citation

Publish with us

Policies and ethics