Remote Acoustic Monitoring System for Noise Sensing

  • Unai Hernandez-JayoEmail author
  • Rosa Ma Alsina-Pagès
  • Ignacio Angulo
  • Francesc Alías
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 22)


The concept of smart cities comprises a wide range of control and actuators systems aimed to improve the habitability and perception that citizens have of cities. A smart city covers many of these systems, ranging from applications that facilitate the governance of cities and encourage citizens’ participation to services focused on improving their quality of life. Among them, we can highlight those using Information and Communication Technologies (ICT) to improve the environment of the city. Besides deploying air quality monitoring systems, smart cities are beginning to include other ICT-based systems, such as the work in progress proposed in this paper, which is aimed to remotely monitor noise levels at different points of the city using the public bus system as mobile sensors network.



The authors would like to thank project ACM2016/06 entitled “Towards the development of low cost ubiquitous sensors networks for real time acoustic monitoring in urban mobility” from the II Convocatoria del Programa de Ayudas a Proyectos de Investigación Aristos Campus Mundus 2016. Francesc Alías and Rosa Ma Alsina-Pagès also would like to thank the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement (Generalitat de Catalunya) under grant ref. 2014 - SGR - 0590.


  1. 1.
    European Union Transport Themes, Clean Transport and Urban Mobility. Accessed Nov 2016
  2. 2.
    World Demographics Profile 2012. Index Mundi. Accessed Nov 2016
  3. 3.
    World Urbanization Prospects: 2014 Revision. United Nations DESA’s Population Division. Accessed Nov 2016
  4. 4.
    EU Directive: Directive 2002/49/EC of the European Parliament and the Council of 25 June 2002 relating to the assessment and management of environmental noise. Official J. Eur. Commun., L 189/12 (2002). European UnionGoogle Scholar
  5. 5.
    Night Noise Guidelines for Europe. World Health Organization 2009. Accessed Nov 2016
  6. 6.
    Basten, T., Wessels, P.: An overview of sensor networks for environmental noise monitoring. In: Proceedings of the 21st International Congress on Sound and Vibration, Beijing, China (2014)Google Scholar
  7. 7.
    Hong, P.D., Lee, Y.W.: A grid portal for monitoring of the urban environment using the MSU. In: Proceedings of the International Conference on Advanced Communication Technology, Phoenix Park, Korea (2009)Google Scholar
  8. 8.
    Zhao, S., Nguyen, T.N.T., Jones, D.L.: Large region acoustic source mapping using movable arrays. In: Proceedings of the International Conference on Acoustic, Speech and Signal Processing, Brisbane, Australia, pp. 2589–2593 (2015)Google Scholar
  9. 9.
    Dekonick, L., Botteldoren, D., int Panis, L.: Sound sensor network based assessment of traffic, noise and air pollution. In: Proceedings of EURONOISE, Maastrich, The Netherlands, pp. 2321–2326 (2015)Google Scholar
  10. 10.
    Dekoninck, L., Botteldooren, D., Panis, L.I., Hankey, S., Jain, G., Marshall, J.: Applicability of a noise-based model to estimate in-traffic exposure to black carbon and particle number concentrations in different cultures. Environ. Int. 74, 89–98 (2015)Google Scholar
  11. 11.
    Creixell, E., Haddad, K., Song, W., Chauhan, S., Valero, X.: A method for recognition of coexisting environmental sound sources based on the Fisher’s linear discriminant classifier. In: Proceedings of INTERNOISE, Innsbruck, Austria (2013)Google Scholar
  12. 12.
    Benetos, E., Lafay, G., Lagrange, M., Plumbley, M.: Detection of overlapping acoustic events using a temporally-constrained probabilistic model. In: Proceedings of the International Conference on Acoustic, Speech and Signal Processing, Shanghai, China, pp. 6450–6454 (2016)Google Scholar
  13. 13.
    Mesaros, A., Heittola, T., Virtanen, T.: Metrics for poliphonic sound event detection. Appl. Sci. 6, 162 (2016)CrossRefGoogle Scholar
  14. 14.
    Heittola, T., Mesaros, A., Virtanen, T., Gabbouj, M.: Supervised model training for overlapping sound events based on unsupervised source separation. In: Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2013, Vancouver, Canada, pp. 8677–8681 (2013)Google Scholar
  15. 15.
    Mesaros, A., Dikmen, O., Heittola, T., Virtanen, T.: Sound event detection in real life recordings using coupled matrix factorization of spectral representations and class activity annotations. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, Australia, vol. 817, pp. 151–155 (2015 )Google Scholar
  16. 16.
    Espi, M., Fujimoto, M., Kinoshita, K., Nakatani, T.: Exploiting spectro-temporal locality in deep learning based acoustic event detection. EURASIP J. Audio Speech Music Process. (2015). doi: 10.1186/s13636-015-0069-2
  17. 17.
    Melmstein, P.: Distance measures for speech recognition, psychological and instrumental. Patt. Recogn. Artif. Intell. (1976). C.H. Chen, Ed., Academic, New YorkGoogle Scholar
  18. 18.
    Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936). doi: 10.1111/j.1469-1809.1936.tb02137.x CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Unai Hernandez-Jayo
    • 1
    • 2
    Email author
  • Rosa Ma Alsina-Pagès
    • 3
  • Ignacio Angulo
    • 1
    • 2
  • Francesc Alías
    • 3
  1. 1.DeustoTech - Fundación DeustoBilbaoSpain
  2. 2.Facultad IngenieríaUniversidad de DeustoBilbaoSpain
  3. 3.GTM - Grup de Recerca en Tecnologies MèdiaLa Salle - Universitat Ramon LlullBarcelonaSpain

Personalised recommendations