On the Fully Automation of the Vibrating String Experiment

  • Javier Tajuelo
  • Jacobo Sáenz
  • Jaime Arturo de la TorreEmail author
  • Luis de la Torre
  • Ignacio Zúñiga
  • José Sánchez
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 22)


This work explains how to develop a fully functional virtual and remote laboratory (VRL) for a vibrating string of length L with both ends fixed. This laboratory is common in undergraduate studies of vibrations and waves. We propose the construction of a virtual laboratory built with Easy Java/Javascript Simulations. This virtual lab allows to explore the dependence between the frequency of the vibrating string and the physical parameters of the experiment. This work also explains how to build a remote laboratory using LEGO MindstormsTM, Arduino, and a LabVIEW specific software to control all the components. The remote laboratory exhibits the same behavior of a classical hands-on lab, allowing the user to measure different physical quantities and their dependence with the fundamental frequency of the vibration. Both the virtual and the remote labs are accessible through UNILabs: a Content Manager System created to host VRL on the cloud.


Virtual lab Remote lab Physics 



Financial support from the Vice Chancellor for Academic Affairs and Quality at UNED under grants GID2016-9-1 and GID2016-25-1 is acknowledged.


  1. 1.
    Bermudez-Ortega, J., Besada-Portas, E., Lopez-Orozco, J.A., Bonache-Seco, J.A., de la Cruz, J.M.: Remote web-based control laboratory for mobile devices based on EJsS, Raspberry Pi and Node.js. In: 3rd IFAC Workshop on Internet Based Control Education, Brescia, Italy, vol. 48, pp. 158–163. IFAC-PapersOnLine, November 2015Google Scholar
  2. 2.
    Brinson, J.R.: Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: a review of the empirical research. Comput. Educ. 87, 218–237 (2015)CrossRefGoogle Scholar
  3. 3.
    Chacón, J., Vargas, H., Farias, G., Sánchez, J., Dormido, S.: EJS, JIL Server, and LabVIEW: an architecture for rapid development of remote labs. IEEE Trans. Learn. Technol. 8(4), 393–401 (2015). doi: 10.1109/TLT.2015.2389245 CrossRefGoogle Scholar
  4. 4.
    Chang, G.-W., Yeh, Z.-M., Chang, H.-M., Pan, S.-Y.: Teaching photonics laboratory using remote-control web technologies. IEEE Trans. Educ. 48(4), 642–651 (2005)CrossRefGoogle Scholar
  5. 5.
    Chaos, D., Chacon, J., Lopez-Orozco, J.A., Dormido, S.: Virtual and remote robotic laboratory using EJS, MATLAB and LabVIEW. Sensors 13(2), 2595–2612 (2013)CrossRefGoogle Scholar
  6. 6.
    Christian, W., Esquembre, F.: Modeling physics with easy java simulations. Phys. Teach. 45, 475–480 (2007)CrossRefGoogle Scholar
  7. 7.
    Christian, W., Esquembre, F., Barbato, L.: Open source physics. Science 334(6059), 1077–1078 (2011)CrossRefGoogle Scholar
  8. 8.
    de la Torre, L., Guinaldo, M., Heradio, R., Dormido, S.: The ball and beam system: a case study of virtual and remote lab enhancement with Moodle. IEEE Trans. Ind. Inform. 11(4), 934–945 (2015)CrossRefGoogle Scholar
  9. 9.
    de la Torre, L., Heradio, R., Jara, C., Sanchez Moreno, J., Dormido, S., Torres, F., Candelas, F.: Providing collaborative support to virtual and remote laboratories. IEEE Trans. Learn. Technol. 6, 312–323 (2013)CrossRefGoogle Scholar
  10. 10.
    de la Torre, L., Sanchez, J.P., Dormido, S.: What remote labs can do for you. Phys. Today 69, 48–53 (2016)CrossRefGoogle Scholar
  11. 11.
    de la Torre, L., Sanchez, J.P., Heradio, R., Carreras, C., Yuste, M., Sanchez, J., Dormido, S.: UNEDLabs - an example of EJS labs integration into Moodle. In: World Conference on Physics Education (2012)Google Scholar
  12. 12.
    Farias, G., Keyser, R.D., Dormido, S., Esquembre, F.: Developing networked control labs a MATLAB and easy java simulations approach. IEEE Trans. Industr. Electron. 57, 3266–3275 (2010)CrossRefGoogle Scholar
  13. 13.
    French, A.P.: Vibrations and Waves. CRC Press, Boca Raton (1971)Google Scholar
  14. 14.
    Galan, D., Heradio, R., de la Torre, L., Dormido, S., Esquembre, F.: Automated experiments on EjsS laboratories. In: International Conference on Remote Engineering and Virtual Instrumentation, Madrid, Spain, pp. 78–85, February 2016Google Scholar
  15. 15.
    Gravier, C., Fayolle, J., Bayard, B., Ates, M., Lardon, J.: State of the art about remote laboratories paradigms - foundations of ongoing mutations. Int. J. Online Eng. 4(1), 19–25 (2008)Google Scholar
  16. 16.
    Heradio, R., de la Torre, L., Galan, D., Cabrerizo, F.J., Herrera-Viedma, E., Dormido, S.: Virtual and remote labs in education: a bibliometric analysis. Comput. Educ. 98, 14–38 (2016)CrossRefGoogle Scholar
  17. 17.
    Heradio, R., de la Torre, L., Sanchez, J., Dormido, S.: Making EJS applications at the OSP digital library available from Moodle. In: International Conference on Remote Engineering and Virtual Instrumentation, Porto, Portugal, pp. 112–116, February 2014Google Scholar
  18. 18.
    Heradio, R., de la Torre, L., Dormido, S.: Virtual and remote labs in control education: a survey. Annu. Rev. Control 42, 1–10 (2016)CrossRefGoogle Scholar
  19. 19.
    Pastor, R., Sanchez, J., Dormido, S.: Web-based virtual lab and remote experimentation using easy java simulations. In: Proceedings of the 16th IFAC World Congress (2005)Google Scholar
  20. 20.
    Wannous, M., Nakano, H.: NVLab, a networking virtual web-based laboratory that implements virtualization and virtual network computing tech. IEEE Trans. Learn. Technol. 3(2), 129–138 (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Javier Tajuelo
    • 1
  • Jacobo Sáenz
    • 2
  • Jaime Arturo de la Torre
    • 1
    Email author
  • Luis de la Torre
    • 2
  • Ignacio Zúñiga
    • 1
  • José Sánchez
    • 2
  1. 1.Dept. Física FundamentalUNEDMadridSpain
  2. 2.Department of Computer Sciences and Automatic ControlUNEDMadridSpain

Personalised recommendations