Skip to main content

Playing Tricks to Ions

  • Chapter
  • First Online:
Exploring the World with the Laser
  • 2424 Accesses

Abstract

Ted Hänsch’s career is defined by breaking new ground in experimental physics. Curiosity, vivid imagination, deep understanding, patience and tenacity are part of the winning formula, but perhaps an equally important ingredient may be Ted’s favorite past-time of exploring new tricks in his “Spiellabor” (play-lab), that often resurfaced as key ingredients in rather serious experiments later. On the occasion of Ted’s 75th birthday, a few past and potential future experiments with trapped ions are playfully surveyed here. Some of these tricks are already part of the trade, some are currently emerging and a few are mostly speculation today. Maybe some of the latter will be realized and even prove useful in the future.

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. R.G. Brewer, R.G. DeVoe, R. Kallenbach, Planar ion microtraps. Phys. Rev. A 46, R6781–R6784 (1992)

    Article  ADS  Google Scholar 

  2. T.W. Hänsch, Paul Traps. https://www.youtube.com/watch?v=bkYXNeJ8IP0 (1991)

  3. T.W. Hänsch, Ballet music seems to nicely disguise that the spores don’t really move in rhythm with it. Private Communication (1991)

    Google Scholar 

  4. C.A. Schrama, E. Peik, W.W. Smith, H. Walther, Novel miniature ion traps. Opt. Commun. 101, 32–36 (1993)

    Article  ADS  Google Scholar 

  5. W. Paul, Electromagnetic traps for charged and neutral particles. Rev. Mod. Phys. 62, 531–540 (1990)

    Article  ADS  Google Scholar 

  6. H.S. Margolis et al., Hertz-level measurement of the optical clock frequency in a single \( {}^{88} \)Sr\( {}^{+} \) ion. Science 306, 1355–1358 (2004)

    Article  ADS  Google Scholar 

  7. N. Huntemann, C. Sanner, B. Lipphardt, C. Tamm, E. Peik, Single-ion atomic clock with \( 3\times {10}^{-18} \) systematic uncertainty. Phys. Rev. Lett. 116, 063001 (2016)

    Article  ADS  Google Scholar 

  8. Sandia National Laboratories, High Optical Access Trap 2.0. http://prod.sandia.gov/techlib/access-control.cgi/2016/160796r.pdf (2016)

  9. J. Chiaverini et al., Surface electrode architecture for ion-trap quantum information porcessing. Quantum Inf. Comput. 5, 419–439 (2005)

    MathSciNet  MATH  Google Scholar 

  10. S. Seidelin et al., Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006)

    Article  ADS  Google Scholar 

  11. J.M. Amini et al., Toward scalable ion traps for quantum information processing. New J. Phys. 12, 033031 (2010)

    Article  ADS  Google Scholar 

  12. C. Ospelkaus et al., Microwave quantum logic gates for trapped ions. Nature 476, 181–184 (2011)

    Article  ADS  Google Scholar 

  13. A.C. Wilson et al., Tunable spinspin interactions and entanglement of ions in separate potential wells. Nature 512, 57–60 (2014)

    Article  ADS  Google Scholar 

  14. R. Schmied, J.H. Wesenberg, D. Leibfried, Optimal surface-electrode trap lattices for quantum simulation with trapped ions. Phys. Rev. Lett. 102, 233002 (2009)

    Article  ADS  Google Scholar 

  15. M. Mielenz et al., Arrays of individually controlled ions suitable for two-dimensional quantum simulations. Nat. Commun. 7, 11839 (2016)

    Article  ADS  Google Scholar 

  16. R. Maiwald et al., Stylus ion trap for enhanced access and sensing. Nat. Phys. 5, 551–554 (2009)

    Article  Google Scholar 

  17. N. Lindlein et al., A new 4\( \pi \) geometry optimized for focusing on an atom with a dipole-like radiation pattern. Laser Phys. 17, 927–934 (2007)

    Article  ADS  Google Scholar 

  18. C.L. Arrington et al., Micro-fabricated stylus ion trap. Rev. Sci. Instrum. 84, 085001 (2013)

    Article  ADS  Google Scholar 

  19. P.O. Schmidt et al., Spectroscopy using quantum logic. Science 309, 749–752 (2005)

    Article  ADS  Google Scholar 

  20. J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995)

    Article  ADS  Google Scholar 

  21. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003)

    Article  ADS  Google Scholar 

  22. A. Sørensen, K. Mølmer, Quantum computation with ions in thermal motion. Phys. Rev. Lett. 82, 1971–1974 (1999)

    Article  ADS  Google Scholar 

  23. D. Leibfried et al., Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004)

    Article  ADS  Google Scholar 

  24. T.R. Tan et al., Multi-element logic gates for trapped-ion qubits. Nature 528, 380–383 (2015)

    Article  ADS  Google Scholar 

  25. S. Ding, D.N. Matsukevich, Quantum logic for the control and manipulation of molecular ions using a frequency comb. New J. Phys. 14, 023028 (2012)

    Article  ADS  Google Scholar 

  26. D. Leibfried, Quantum state preparation and control of single molecular ions. New J. Phys. 14, 023029 (2012)

    Article  ADS  Google Scholar 

  27. C.W. Chou, C. Kurz, P. Plessow, D. Leibrandt, D. Leibfried (in preparation)

    Google Scholar 

  28. H. Loh et al., Precision spectroscopy of polarized molecules in an ion trap. Science 342, 1220–1222 (2013)

    Article  ADS  Google Scholar 

  29. J.C.J. Koelemeij, B. Roth, S. Schiller, Blackbody thermometry with cold molecular ions and application to ion-based frequency standards. Phys. Ref. A 76, 023413 (2007)

    Article  ADS  Google Scholar 

  30. J.P. Gauyacq, A.G. Borisov, M. Bauer, Excited states in the alkali/noble metal surface systems: a model system for the study of charge transfer dynamics at surfaces. Prog. Surf. Sci. 82, 244–292 (2007). doi:10.1016/j.progsurf.2007.03.006

    Article  ADS  Google Scholar 

  31. S.W. Hell, Nanoscopy with focused light (nobel lecture). Angew. Chem. Int. Ed. 54, 8054–8066 (2015)

    Article  Google Scholar 

  32. M. Niemann, A.-G. Paschke, T. Dubielzig, S. Ulmer, C. Ospelkaus, CPT test with (anti)proton magnetic moments based on quantum logic cooling and readout, ed. by V. Alan Kostolecky. Proceedings of the Sitxth Meeting on CPT and Lorentz Symmetry, World Scientific Publishing, Singapore (2014)

    Google Scholar 

  33. A.L. Schawlow, A diatomic molecule is a molecule with an atom too many, Private Communication (1955)

    Google Scholar 

  34. V.I. Korobov, J.C.J. Koelemeij, L. Hilico, J.-P. Karr, Theoretical hyperfine structure of the molecular hydrogen ion at the 1 ppm level. Phys. Rev. Lett. 116, 053003 (2016)

    Article  ADS  Google Scholar 

  35. W. Ubachs, J. Koelemeij, K. Eikema, E. Salumbides, Physics beyond the standard model from hydrogen spectroscopy. J. Mol. Spectrosc. 320, 1–12 (2016)

    Article  ADS  Google Scholar 

  36. K.B. Jefferts, Rotational Hfs spectra of H\( {}_2^{+} \) molecular ions. Phys. Rev. Lett. 20, 39–41 (1968)

    Article  ADS  Google Scholar 

  37. A. Carrington, I.R. McNab, C.A. Montgomerie, Spectroscopy of the hydrogen molecular ion. J. Phys. B: At. Mol. Opt. Phys. 22, 3551 (1989)

    Article  ADS  Google Scholar 

  38. C. Haase, M. Beyer, C. Jungen, F. Merkt, The fundamental rotational interval of para-H\( {}_2^{+} \) by MQDT-assisted Rydberg spectroscopy of H\( {}_2 \). J. Chem. Phys. 142, 064310 (2015)

    Article  ADS  Google Scholar 

  39. J. Biesheuvel, J.-Ph. Karr, L. Hilico, K.S.E. Eikema, W. Ubachs, J.C.J. Koelemeij, Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+. Nat. Comm. 7, 10385 (2016). doi:10.1038/ncomms10385

    Article  ADS  Google Scholar 

  40. K.R. Brown et al., Coupled quantized mechanical oscillators. Nature 471, 196–199 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Experiments, concepts and ideas are never created out of a vacuum. Most of what is described here and is not referenced as prior work was conceived and grown in the environment of the NIST Ion Storage Group, which therefore owns a great deal of the credit. However, all misconceptions and oversights are solely my own fault. I would like to acknowledge Jim Bergquist, John Bollinger, James Chou, David Hume, Wayne Itano, David Leibrandt, Andrew Wilson and Dave Wineland as well as all the post-docs, grad students and summer students and the administrative and technical staff of the Time and Frequency Division at NIST, a list of persons that is impossible to reproduce here, let alone to give them their proper share of the credit. Thanks for all your contributions, help and inspiration, I owe you big-time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietrich Leibfried .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leibfried, D. (2018). Playing Tricks to Ions. In: Meschede, D., Udem, T., Esslinger, T. (eds) Exploring the World with the Laser. Springer, Cham. https://doi.org/10.1007/978-3-319-64346-5_8

Download citation

Publish with us

Policies and ethics