Skip to main content

From Quantum Transitions to Electronic Motions

  • Chapter
  • First Online:
Exploring the World with the Laser

Abstract

Laser spectroscopy and chronoscopy permit precision measurement of quantum transitions and captures atomic-scale dynamics, respectively. Frequency- and time-domain metrology ranks among the supreme laser disciplines in fundamental science. For decades, these fields evolved independently, without interaction and synergy between them. This has changed profoundly with controlling the position of the equidistant frequency spikes of a mode-locked laser oscillator. By the self-referencing technique invented by Theodor Hänsch, the comb can be coherently linked to microwaves and used for precision measurements of energy differences between quantum states. The resultant optical frequency synthesis has revolutionized precision spectroscopy. Locking the comb lines to the resonator round-trip frequency by the same approach has given rise to laser pulses with controlled field oscillations. This article reviews, from a personal perspective, how the bridge between frequency- and time-resolved metrology emerged on the turn of the millennium and how synthesized several-cycle laser fields have been instrumental in establishing the basic tools and techniques for attosecond science.

Dedicated to the 75th birthday of Theodor W. Hänsch.

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. T.W. Hänsch, Nobel lecture: passion for precision. Rev. Mod. Phys. 78, 1297 (2006)

    Article  ADS  Google Scholar 

  2. A.H. Zewail, Femtochemistry: atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660 (2000). (Nobel Lecture)

    Article  Google Scholar 

  3. F. Krausz, The birth of attosecond physics and its coming of age. Phys. Scr. 91, 063011 (2016)

    Article  ADS  Google Scholar 

  4. T. Udem, Phasenkohärente optische Frequenzmessungen am Wasserstoffatom. Thesis, Ludwig-Maximilians Univ (1997)

    Google Scholar 

  5. J. Reichert, R. Holzwarth, T. Udem, T.W. Hänsch, Measuring the frequency of light with modelocked lasers. Opt. Commun. 172, 59 (1999)

    Article  ADS  Google Scholar 

  6. Th Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Accurate measurement of large optical frequency differences with a mode-locked laser. Opt. Lett. 24, 881 (1999)

    Article  ADS  Google Scholar 

  7. Th Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser. Phys. Rev. Lett. 82, 3568 (1999)

    Article  ADS  Google Scholar 

  8. H.R. Telle, G. Steinmeyer, A.E. Dunlop, D.H. Sutter, U. Keller, Carrier-envelope offset phase control: a novel concept for absolute optical frequency measurement and ultrashort pulse generation. Appl. Phys. B 69, 327 (1999)

    Article  ADS  Google Scholar 

  9. D.J. Jones et al., Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635 (2000)

    Article  ADS  Google Scholar 

  10. S.A. Diddams et al., Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb. Phys. Rev. Lett. 84, 5102 (2000)

    Article  ADS  Google Scholar 

  11. J. Reichert et al., Phase coherent vacuum-ultraviolet to radio frequency comparison with a modelocked laser. Phys. Rev. Lett. 84, 3232 (2000)

    Article  ADS  Google Scholar 

  12. M. Niering et al., Measurement of the hydrogen 1S–2S transition frequency by phase coherent comparison with a microwave cesium fountain clock. Phys. Rev. Lett. 84, 5496 (2000)

    Article  ADS  Google Scholar 

  13. R. Holzwarth et al., Optical frequency synthesizer for precision spectroscopy. Phys. Rev. Lett. 85, 2264 (2000)

    Article  ADS  Google Scholar 

  14. J. Ye et al., Accuracy comparison of absolute optical frequency measurement between harmonic generation synthesis and a frequency division femtosecond-comb. Phys. Rev. Lett. 85, 3797 (2000)

    Article  ADS  Google Scholar 

  15. T. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233 (2002)

    Article  ADS  Google Scholar 

  16. L. Xu et al., Route to phase control of ultrashort light pulses. Opt. Lett. 21, 2008 (1996)

    Article  ADS  Google Scholar 

  17. A. Apolonski et al., Controlling the phase evolution of few-cycle light pulses. Phys. Rev. Lett. 85, 740 (2000)

    Article  ADS  Google Scholar 

  18. A. Baltuska et al., Attosecond control of electronic processes by intense light fields. Nature 421, 611 (2003)

    Article  ADS  Google Scholar 

  19. X.F. Li, A. L’Huillier, M. Ferray, L.A. Lompre, G. Mainfray, Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39, 5751 (1989)

    Article  ADS  Google Scholar 

  20. M. Hentschel et al., Attosecond metrology. Nature 414, 509 (2001)

    Article  ADS  Google Scholar 

  21. R. Kienberger et al., Atomic transient recorder. Nature 427, 817 (2004)

    Article  ADS  Google Scholar 

  22. E. Goulielmakis et al., Direct measurement of light waves. Science 305, 1267 (2004)

    Article  ADS  Google Scholar 

  23. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  24. A. Sommer et al., Attosecond nonlinear polarization and light-matter energy transfer in solids. Nature 534, 86 (2016)

    Article  ADS  Google Scholar 

  25. H. Fattahi et al., Third-generation femtosecond technology. Optica 1, 45 (2014)

    Article  Google Scholar 

  26. C. Kealhofer et al., All-optical control and metrology of electron pulses. Science 352, 429 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

Open access funding provided by Max Planck Society. I gratefully thank Mandy Singh for her support in preparing this manuscript for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Krausz .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krausz, F. (2018). From Quantum Transitions to Electronic Motions. In: Meschede, D., Udem, T., Esslinger, T. (eds) Exploring the World with the Laser. Springer, Cham. https://doi.org/10.1007/978-3-319-64346-5_5

Download citation

Publish with us

Policies and ethics