Skip to main content

Optical Autler–Townes Spectroscopy in a Heteronuclear Mixture of Laser-Cooled Atoms

  • Chapter
  • First Online:
Exploring the World with the Laser

Abstract

We report on optical Autler–Townes spectroscopy in a heteronuclear mixture of \( {}^{87} \)Rb and \( {}^{176} \)Yb in a continuously loaded double-species magneto-optical trap. An excited vibrational level of Rb*Yb which is energetically close to the \( {5}^2{\mathrm{P}}_{1/2} \) state of Rb is coupled by a strong laser field to a vibrational level in the ground state of RbYb and probed by a weak probe laser field. The induced Autler–Townes splittings in the photoassociation spectra allow us to determine relative Franck–Condon factors of molecular transitions in RbYb.

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    In this paper, we follow the notation in [25] with \( \Delta {v}^{\prime }=0 \) being the most weakly bound state. In contrast, in [27] the vibrational state is labelled by \( v=-\Delta {v}^{\prime }+1 \).

    Fig. 1
    figure 1

    Relevant level structure (not to scale) of the RbYb molecule and detuning conventions as described in the text. Both the coupling and the PA probe laser are operated near the D1-line of Rb at \( 795\mathrm{nm} \). For clarity sake, not all molecular potentials converging onto the ground \( {}^2{\mathrm{S}}_{1/2} \) and the excited \( {}^2{\mathrm{P}}_{1/2} \) state of Rb are depicted but only representative ones for the ground and the excited molecular state, which converge to a specific hyperfine level of the atomic ground (F) or excited (\( {F}^{\prime } \)) state

References

  1. L.D. Carr, D. DeMille, R.V. Krems, J. Ye, Cold, and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009)

    Article  ADS  Google Scholar 

  2. G. Quéméner, P.S. Julienne, Ultracold molecules under control!. Chem. Rev. 112(9), 4949–5011 (2012)

    Article  Google Scholar 

  3. E.S. Shuman, J.F. Barry, D. DeMille, Laser cooling of a diatomic molecule. Nature 467(7317), 820–823 (2010)

    Article  ADS  Google Scholar 

  4. M.T. Hummon, M. Yeo, B.K. Stuhl, A.L. Collopy, Y. Xia, J. Ye, 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013)

    Article  ADS  Google Scholar 

  5. B. Hemmerling, E. Chae, A. Ravi, L. Anderegg, G.K. Drayna, N.R. Hutzler, A.L. Collopy, J. Ye, W. Ketterle, J.M. Doyle, Laser slowing of CaF molecules to near the capture velocity of a molecular MOT. J. Phys. B 49, 174001 (2016)

    Article  ADS  Google Scholar 

  6. T. Köhler, K. Góral, P.S. Julienne, Production of cold molecules via magnetically tunable Feshbach resonances. Rev. Mod. Phys. 78, 1311–1361 (2006)

    Article  ADS  Google Scholar 

  7. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82(2), 1225 (2010)

    Article  ADS  Google Scholar 

  8. K.M. Jones, E. Tiesinga, P.D. Lett, P.S. Julienne, Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev. Mod. Phys. 78, 483–535 (2006)

    Article  ADS  Google Scholar 

  9. K.-K. Ni, S. Ospelkaus, M.H.G. de Miranda, A. Pe’er, B. Neyenhuis, J.J. Zirbel, S. Kotochigova, P.S. Julienne, D.S. Jin, J. Ye, A high phase-space-density gas of polar molecules. Science 322(5899), 231–235 (2008)

    Article  ADS  Google Scholar 

  10. C. Ospelkaus, S. Ospelkaus, L. Humbert, P. Ernst, K. Sengstock, K. Bongs, Ultracold heteronuclear molecules in a 3D optical lattice. Phys. Rev. Lett. 97, 120402 (2006)

    Article  ADS  Google Scholar 

  11. S.A. Moses, J.P. Covey, M.T. Miecnikowski, B. Yan, B. Gadway, J. Ye, D.S. Jin, Creation of a low-entropy quantum gas of polar molecules in an optical lattice. Science 350(6261), 659–662 (2015)

    Article  ADS  Google Scholar 

  12. W. Cheng-Hsun, J.W. Park, P. Ahmadi, S. Will, M.W. Zwierlein, Ultracold fermionic Feshbach molecules of \( {}^{23}{\mathrm{Na}}^{40}K \). Phys. Rev. Lett. 109, 085301 (2012)

    Google Scholar 

  13. J.W. Park, S.A. Will, M.W. Zwierlein, Ultracold dipolar gas of fermionic \( {}^{23}\kern0.333333em {\mathrm{Na}}^{40}\kern0.333333em \mathrm{K}\kern0.333333em \) molecules in their absolute ground state. Phys. Rev. Lett. 114, 205302 (2015)

    Article  ADS  Google Scholar 

  14. T. Takekoshi, M. Debatin, R. Rameshan, F. Ferlaino, R. Grimm, H.-C. Nägerl, C.R.L. Sueur, J.M. Hutson, P.S. Julienne, S. Kotochigova, E. Tiemann, Towards the production of ultracold ground-state RbCs molecules: Feshbach resonances, weakly bound states, and the coupled-channel model. Phys. Rev. A 85, 032506 (2012)

    Article  ADS  Google Scholar 

  15. M.P. Köppinger, D.J. McCarron, D.L. Jenkin, P.K. Molony, H.-W. Cho, S.L. Cornish, C.R.L. Sueur, C.L. Blackley, J.M. Hutson, Production of optically trapped \( {}^{87}\kern0.333333em \mathrm{RbCs}\kern0.333333em \) Feshbach molecules. Phys. Rev. A 89, 033604 (2014)

    Article  ADS  Google Scholar 

  16. P.S. Zuchowski, J. Aldegunde, J.M. Hutson, Ultracold RbSr molecules can be formed by magnetoassociation. Phys. Rev. Lett. 105(15), 153201 (2010)

    Article  ADS  Google Scholar 

  17. D.A. Brue, J.M. Hutson, Prospects of forming ultracold molecules in \( {}^2\varSigma \) states by magnetoassociation of alkali-metal atoms with Yb. Phys. Rev. A 87, 052709 (2013)

    Article  ADS  Google Scholar 

  18. W. Dowd, R.J. Roy, R.K. Shrestha, A. Petrov, C. Makrides, S. Kotochigova, S. Gupta, Magnetic field dependent interactions in an ultracold Li–Yb(P-3(2)) mixture. New J. Phys. 17, 055007 (2015)

    Article  ADS  Google Scholar 

  19. J.M. Sage, S. Sainis, T. Bergeman, D. DeMille, Optical production of ultracold polar molecules. Phys. Rev. Lett. 94(20), 203001 (2005)

    Article  ADS  Google Scholar 

  20. J. Deiglmayr, A. Grochola, M. Repp, K. Mörtlbauer, C. Glück, J. Lange, O. Dulieu, R. Wester, M. Weidemüller, Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett. 101(13), 133004 (2008)

    Article  ADS  Google Scholar 

  21. A. Fioretti, D. Comparat, A. Crubellier, O. Dulieu, F. Masnou-Seeuws, P. Pillet, Formation of cold Cs-2 molecules through photoassociation. Phys. Rev. Lett. 80(20), 4402–4405 (1998)

    Article  ADS  Google Scholar 

  22. G. Reinaudi, C.B. Osborn, M. McDonald, S. Kotochigova, T. Zelevinsky, Optical production of stable ultracold \( {}^{88}\kern0.333333em {\mathrm{Sr}}_2 \) molecules. Phys. Rev. Lett. 109, 115303 (2012)

    Article  ADS  Google Scholar 

  23. K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon, T. Kishimoto, M. Ueda, S. Inouye, Coherent transfer of photoassociated molecules into the rovibrational ground state. Phys. Rev. Lett. 105(20), 203001 (2010)

    Article  ADS  Google Scholar 

  24. S. Stellmer, B. Pasquiou, R. Grimm, F. Schreck, Creation of ultracold \( \kern0.333333em {\mathrm{Sr}}_2 \) molecules in the electronic ground state. Phys. Rev. Lett. 109, 115302 (2012)

    Article  ADS  Google Scholar 

  25. N. Nemitz, F. Baumer, F. Münchow, S. Tassy, A. Görlitz, Production of heteronuclear molecules in an electronically excited state by photoassociation in a mixture of ultracold Yb and Rb. Phys. Rev. A 79(6), 061403(R) (2009)

    Article  ADS  Google Scholar 

  26. C. Bruni, A. Görlitz, Observation of hyperfine interaction in photoassociation spectra of ultracold RbYb. Phys. Rev. A 94(1), 022503 (2016)

    Article  ADS  Google Scholar 

  27. M. Borkowski, P.S. Żuchowski, R. Ciuryło, P.S. Julienne, D. Kedziera, Ł. Mentel, P. Tecmer, F. Münchow, C. Bruni, A. Görlitz, Scattering lengths in isotopologues of the RbYb system. Phys. Rev. A 88, 052708 (2013)

    Article  ADS  Google Scholar 

  28. F. Münchow, C. Bruni, M. Madalinski, A. Görlitz, Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys. Chem. Chem. Phys. 13, 18734–18737 (2011)

    Article  Google Scholar 

  29. S.H. Autler, C.H. Townes, Stark effect in rapidly varying fields. Phys. Rev. 100(2), 703–722 (1955)

    Article  ADS  Google Scholar 

  30. E.R.I. Abraham, W.I. McALexander, C.A. Sackett, R.G. Hulet, Spectroscopic determination of the s-wave scattering length of lithium. Phys. Rev. Lett. 74, 1315 (1995)

    Article  ADS  Google Scholar 

  31. U. Schlöder, T. Deuschle, C. Silber, C. Zimmermann, Autler–Townes splitting in two-color photoassociation of \( {}^6 \)Li. Phys. Rev. A 68(5), 051403 (2003)

    Article  ADS  Google Scholar 

  32. B.J. DeSalvo, J.A. Aman, C. Gaul, T. Pohl, S. Yoshida, J. Burgdörfer, K.R.A. Hazzard, F.B. Dunning, T.C. Killian, Rydberg-blockade effects in Autler–Townes spectra of ultracold strontium. Phys. Rev. A 93, 022709 (2016)

    Article  ADS  Google Scholar 

  33. J.W. Park, S.A. Will, M.W. Zwierlein, Two-photon pathway to ultracold ground state molecules of (NaK)-Na-23-K-40. New J. Phys. 17, 075016 (2015)

    Article  ADS  Google Scholar 

  34. L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, W. König, T.W. Hänsch, A compact grating-stabilized diode laser system for atomic physics. Opt. Commun. 117, 541 (1995)

    Article  ADS  Google Scholar 

  35. J.L. Bohn, P.S. Julienne, Semianalytic treatment of two-color photoassociation spectroscopy and control of cold atoms. Phys. Rev. A 54(6), R4637–R4640 (1996)

    Article  ADS  Google Scholar 

  36. Y.N. Martinez de Escobar, P.G. Mickelson, P. Pellegrini, S.B. Nagel, A. Traverso, M. Yan, R. Cote, T.C. Killian, Two-photon photoassociative spectroscopy of ultracold Sr-88. Phys. Rev. A 78, 062708 (2008)

    Google Scholar 

Download references

Acknowledgements

A. G. wants to say thanks to Ted Hänsch for introducing him to laser spectroscopy and ultracold atoms, the topics that still guide his research today. He is grateful that Ted Hänsch convinced him as a young diploma student that it would offer great perspectives to learn about lasers and atoms in his group and he was right. It is amazing to see that after almost 25-year- home-built ECDL diode lasers in the Hänsch design are as abundant in laboratories worldwide as ever including the laboratory of A. G. where the knowledge about lasers that A. G. has acquired during his diploma and Ph.D. thesis in the Hänsch laboratories is still transferred to Bachelor students.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Görlitz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruni, C., Münchow, F., Görlitz, A. (2018). Optical Autler–Townes Spectroscopy in a Heteronuclear Mixture of Laser-Cooled Atoms. In: Meschede, D., Udem, T., Esslinger, T. (eds) Exploring the World with the Laser. Springer, Cham. https://doi.org/10.1007/978-3-319-64346-5_4

Download citation

Publish with us

Policies and ethics