Skip to main content

Cavity Ring-Up Spectroscopy for Dissipative and Dispersive Sensing in a Whispering Gallery Mode Resonator

  • Chapter
  • First Online:
Exploring the World with the Laser

Abstract

In whispering gallery mode resonator sensing applications, the conventional way to detect a change in the parameter to be measured is by observing the steady-state transmission spectrum through the coupling waveguide. Alternatively, sensing based on cavity ring-up spectroscopy, i.e. CRUS, can be achieved transiently. In this work, we investigate CRUS using coupled mode equations and find analytical solutions with a large spectral broadening approximation of the input pulse. The relationships between the frequency detuning, coupling gap and ring-up peak height are determined and experimentally verified using an ultrahigh Q-factor silica microsphere. This work shows that distinctive dispersive and dissipative transient sensing can be realised by simply measuring the peak height of the CRUS signal, which may improve the data collection rate.

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. C.Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T.W. Hänsch, N. Picqué, T.J. Kippenberg, Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat Commun 4, 1345 (2013)

    Article  Google Scholar 

  2. Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, S. Nic Chormaic, Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator. Opt. Lett. 41, 5266 (2016)

    Google Scholar 

  3. J. Alnis, A. Schliesser, C.Y. Wang, J. Hofer, T.J. Kippenberg, T.W. Hänsch, Thermal-noise-limited crystalline whispering-gallery-mode resonator for laser stabilization. Phys Rev A 84, 011804 (2011)

    Article  ADS  Google Scholar 

  4. I. Fescenko, J. Alnis, A. Schliesser, C.Y. Wang, T.J. Kippenberg, T.W. Hänsch, Dual-mode temperature compensation technique for laser stabilization to a crystalline whispering gallery mode resonator. Opt. Express 20, 19185–19193 (2012)

    Article  ADS  Google Scholar 

  5. R. Madugani, Y. Yang, V.H. Le, J.M. Ward, S. Nic Chormaic, Linear laser tuning using a pressure-sensitive microbubble resonator. IEEE Photonics Technol. Lett. 28, 1134–1137 (2016)

    Article  ADS  Google Scholar 

  6. J.M. Ward, N. Dhasmana, S. Nic Chormaic, Hollow core, whispering gallery resonator sensors. Eur. Phys. J. Spec. Top. 223, 1917–1935 (2014)

    Article  Google Scholar 

  7. M.R. Foreman, J.D. Swaim, F. Vollmer, Whispering gallery mode sensors. Adv. Opt. Photonics 7, 168 (2015)

    Article  Google Scholar 

  8. N.M. Hanumegowda, C.J. Stica, B.C. Patel, I. White, X. Fan, Refractometric sensors based on microsphere resonators. Appl. Phys. Lett. 87, 201107 (2005)

    Article  ADS  Google Scholar 

  9. I.M. White, H. Oveys, X. Fan, Liquid-core optical ring-resonator sensors. Opt. Lett. 31, 1319 (2006)

    Article  ADS  Google Scholar 

  10. C.-H. Dong, L. He, Y.-F. Xiao, V.R. Gaddam, S.K. Ozdemir, Z.-F. Han, G.-C. Guo, L. Yang, Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing. Appl. Phys. Lett. 94, 231119 (2009)

    Article  ADS  Google Scholar 

  11. Y.-Z. Yan, C.-L. Zou, S.-B. Yan, F.-W. Sun, Z. Ji, J. Liu, Y.-G. Zhang, L. Wang, C.-Y. Xue, W.-D. Zhang, Z.-F. Han, J.-J. Xiong, Packaged silica microsphere–taper coupling system for robust thermal sensing application. Opt. Express 19, 5753–5759 (2011)

    Article  ADS  Google Scholar 

  12. J.M. Ward, Y. Yang, S. Nic Chormaic, Highly sensitive temperature measurements with liquid-core microbubble resonators. IEEE Photonics Technol. Lett. 25, 2350–2353 (2013)

    Article  ADS  Google Scholar 

  13. R. Henze, T. Seifert, J. Ward, O. Benson, Tuning whispering gallery modes using internal aerostatic pressure. Opt. Lett. 36, 4536–4538 (2011)

    Article  ADS  Google Scholar 

  14. Y. Yang, S. Saurabh, J.M. Ward, S. Nic Chormaic, High-Q, ultrathin-walled microbubble resonator for aerostatic pressure sensing. Opt. Express 24, 294 (2016)

    Article  ADS  Google Scholar 

  15. M. Sumetsky, Y. Dulashko, R.S. Windeler, Super free spectral range tunable optical microbubble resonator. Opt. Lett. 35, 1866–1868 (2010)

    Article  ADS  Google Scholar 

  16. R. Madugani, Y. Yang, J.M. Ward, J.D. Riordan, S. Coppola, V. Vespini, S. Grilli, A. Finizio, P. Ferraro, S. Nic Chormaic, Terahertz tuning of whispering gallery modes in a PDMS stand-alone, stretchable microsphere. Opt. Lett. 37, 4762 (2012)

    Article  ADS  Google Scholar 

  17. B.-B. Li, W.R. Clements, X.-C. Yu, K. Shi, Q. Gong, Y.-F. Xiao, Single nanoparticle detection using split-mode microcavity Raman lasers. Proc. Natl. Acad. Sci. 111, 14657–14662 (2014)

    Article  ADS  Google Scholar 

  18. S.K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S.H. Huang, G.L. Long, L. Yang, Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. 111, E3836–E3844 (2014)

    Article  Google Scholar 

  19. F. Vollmer, S. Arnold, D. Keng, Single virus detection from the reactive shift of a whispering-gallery mode. Proc. Natl. Acad. Sci. USA 105, 20701–20704 (2008)

    Article  ADS  Google Scholar 

  20. L. He, S.K. Ozdemir, J. Zhu, W. Kim, L. Yang, Detecting single viruses and nanoparticles using whispering gallery microlasers. Nat. Nanotechnol. 6, 428–432 (2011)

    Article  ADS  Google Scholar 

  21. Y. Hu, L. Shao, S. Arnold, Y.-C. Liu, C.-Y. Ma, Y.-F. Xiao, Mode broadening induced by nanoparticles in an optical whispering-gallery microcavity. Phys. Rev. A 90, 043847 (2014)

    Article  ADS  Google Scholar 

  22. B.-Q. Shen, X.-C. Yu, Y. Zhi, L. Wang, D. Kim, Q. Gong, Y.-F. Xiao, Detection of single nanoparticles using the dissipative interaction in a high-Q microcavity. Phys. Rev. Appl. 5, 024011 (2016)

    Article  ADS  Google Scholar 

  23. J. Knittel, J.D. Swaim, D.L. McAuslan, G.A. Brawley, W.P. Bowen, Back-scatter based whispering gallery mode sensing. Sci. Rep. 3, 2974 (2013)

    Article  ADS  Google Scholar 

  24. E. Gavartin, P. Verlot, T.J. Kippenberg, A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol. 7, 509–514 (2012)

    Article  ADS  Google Scholar 

  25. G. Bahl, K.H. Kim, W. Lee, J. Liu, X. Fan, T. Carmon, Brillouin cavity optomechanics with microfluidic devices. Nat. Commun. 4, 1994 (2013)

    Article  ADS  Google Scholar 

  26. L. Stern, I. Goykhman, B. Desiatov, U. Levy, Frequency locked micro disk resonator for real time and precise monitoring of refractive index. Opt. Lett. 37, 1313–1315 (2012)

    Article  ADS  Google Scholar 

  27. S. Rosenblum, Y. Lovsky, L. Arazi, F. Vollmer, B. Dayan, Cavity ring-up spectroscopy for ultrafast sensing with optical microresonators. Nat. Commun. 6, 6788 (2015)

    Article  ADS  Google Scholar 

  28. F.-J. Shu, C.-L. Zou, A.K. Özdemir, L. Yang, G.-C. Guo, Transient microcavity sensor. Opt. Express 23, 30067–30078 (2015)

    Article  ADS  Google Scholar 

  29. A.A. Savchenkov, A.B. Matsko, M. Mohageg, L. Maleki, Ringdown spectroscopy of stimulated Raman scattering in a whispering gallery mode resonator. Opt. Lett. 32, 497–499 (2007)

    Article  ADS  Google Scholar 

  30. A.A. Savchenkov, A.B. Matsko, V.S. Ilchenko, L. Maleki, Optical resonators with ten million finesse. Opt. Express 15, 6768–6773 (2007)

    Article  ADS  Google Scholar 

  31. C. Dong, C. Zou, J. Cui, Y. Yang, Z. Han, G. Guo, Ringing phenomenon in silica microspheres. Chin. Opt. Lett. 7, 299–301 (2009)

    Article  Google Scholar 

  32. A. Rasoloniaina, V. Huet, T.K.N. Nguyên, E. Le Cren, M. Mortier, L. Michely, Y. Dumeige, P. Féron, Controling the coupling properties of active ultrahigh-Q WGM microcavities from undercoupling to selective amplification. Sci. Rep. 4, 4023 (2014)

    Article  Google Scholar 

  33. M.-Y. Ye, M.-X. Shen, X.-M. Lin, Ringing phenomenon based whispering-gallery-mode sensing. Sci. Rep. 6, 19597 (2016)

    Article  ADS  Google Scholar 

  34. M.L. Gorodetsky, V.S. Ilchenko, Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes. J. Opt. Soc. Am. B 16, 147 (1999)

    Article  ADS  Google Scholar 

  35. C.-L. Zou, Y. Yang, C.-H. Dong, Y.-F. Xiao, X.-W. Wu, Z.-F. Han, G.-C. Guo, Taper–microsphere coupling with numerical calculation of coupled-mode theory. J. Opt. Soc. Am. B 25, 1895 (2008)

    Article  ADS  Google Scholar 

  36. T.J. Kippenberg, S.M. Spillane, K.J. Vahala, Modal coupling in traveling-wave resonators. Opt. Lett. 27, 1669 (2002)

    Article  ADS  Google Scholar 

  37. K. Srinivasan, O. Painter, Mode coupling and cavity-quantum-dot interactions in a fiber-coupled microdisk cavity. Phys. Rev. A 75, 023814 (2007)

    Article  ADS  Google Scholar 

  38. R. Madugani, Y. Yang, J.M. Ward, V.H. Le, S. Nic Chormaic, Optomechanical transduction and characterization of a silica microsphere pendulum via evanescent light. Appl. Phys. Lett. 106, 241101 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Okinawa Institute of Science and Technology Graduate University. Y.Y. and R.M. made equal contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Yang .

Editor information

Editors and Affiliations

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yang, Y., Madugani, R., Kasumie, S., Ward, J.M., Nic Chormaic, S. (2018). Cavity Ring-Up Spectroscopy for Dissipative and Dispersive Sensing in a Whispering Gallery Mode Resonator. In: Meschede, D., Udem, T., Esslinger, T. (eds) Exploring the World with the Laser. Springer, Cham. https://doi.org/10.1007/978-3-319-64346-5_34

Download citation

Publish with us

Policies and ethics