Skip to main content

All Polarization-Maintaining Fiber Laser Architecture for Robust Femtosecond Pulse Generation

  • Chapter
  • First Online:
Exploring the World with the Laser

Abstract

We report on a novel architecture for robust mode-locked femtosecond fiber lasers using a nonlinear optical loop mirror with all polarization-maintaining fibers. Due to a nonreciprocal phase shift, the loop mirror can be operated in a compact and efficient reflection mode, offering the possibility to reach high repetition rates and easy implementation of tuning elements. In particular, longitudinal mode spacing and carrier-envelope offset frequency may be controlled in order to operate the laser as an optical frequency comb. We demonstrate femtosecond pulse generation at three different wavelengths (1030, 1565, and 2050 nm) using Ytterbium, Erbium, and co-doped Thulium–Holmium as gain media, respectively. Robust operation is achieved for a wide range of parameters, including repetition rates from 10 to 250 MHz.

This article is part of the topical collection “Enlightening the World with the Laser” - Honoring T. W. Hänsch guest edited by Tilman Esslinger, Nathalie Picqué, and Thomas Udem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. T. Udem, J. Reichert, R. Holzwarth, T.W. Hänsch, Absolute optical frequency measurement of the cesium D1 Line with a mode locked laser. Phys. Rev. Lett. 82, 3568–3571 (1999)

    Article  ADS  Google Scholar 

  2. E.P. Ippen, H.A. Haus, L.Y. Liu, Additive pulse mode locking. J. Opt. Soc. Am. B 6, 1736–1745 (1989)

    Article  ADS  Google Scholar 

  3. K. Kieu, F.W. Wise, All-fiber normal-dispersion femtosecond laser. Opt. Express 16, 11453–11458 (2008)

    Article  ADS  Google Scholar 

  4. N. Kuse, J. Jiang, C.-C. Lee, T.R. Schibli, M.E. Fermann, All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror. Opt. Express 24, 3095–3102 (2016)

    Article  ADS  Google Scholar 

  5. N. Raabe, M. Mero, Y. Song, W. Hänsel, R. Holzwarth, A. Sell, A. Zach, and G. Steinmeyer, Detecting determinism in laser noise: a novel diagnostic approach for ultrafast lasers. In Conference on Lasers and Electro-Optics (p. SM3I.5). (OSA, Washington, DC, 2016)

    Google Scholar 

  6. M. Hofer, M.E. Fermann, F. Haberl, M.H. Ober, A.J. Schmidt, Mode locking with cross-phase and self-phase modulation. Opt. Lett. 16, 502–504 (1991)

    Article  ADS  Google Scholar 

  7. K. Tamura, H.A. Haus, E.P. Ippen, Self-starting additive pulse mode-locked erbium fibre ring laser. Electron. Lett. 28, 2226–2228 (1992)

    Article  ADS  Google Scholar 

  8. I.N. Duling III, All-fiber ring soliton laser mode locked with a nonlinear mirror. Opt. Lett. 16, 539–541 (1991)

    Article  ADS  Google Scholar 

  9. M.E. Fermann, F. Haberl, M. Hofer, H. Hochreiter, Nonlinear amplifying loop mirror. Opt. Lett. 15, 752–754 (1990)

    Article  ADS  Google Scholar 

  10. H.A. Haus, E.P. Ippen, K. Tamura, Additive-pulse modelocking in fiber lasers. IEEE J. Quantum Electron. 30, 200–208 (1994)

    Article  ADS  Google Scholar 

  11. J.W. Nicholson, M. Andrejco, A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser. Opt. Express 14, 8160–8166 (2006)

    Article  ADS  Google Scholar 

  12. E. Baumann, F.R. Giorgetta, J.W. Nicholson, W.C. Swann, I. Coddington, N.R. Newbury, High-performance, vibration-immune, fiber-laser frequency comb. Opt. Lett. 34, 638–640 (2009)

    Article  ADS  Google Scholar 

  13. W. Hänsel, R. Holzwarth, R. Doubek, M. Mei, Laser with non-linear optical loop mirror. Eur. Pat. Appl. EP 2637265, A1 (2013)

    Google Scholar 

  14. T. Jiang, Y. Cui, P. Lu, C. Li, A. Wang, Z. Zhang, All PM fiber laser mode locked with a compact phase biased amplifier loop mirror. IEEE Photonics Technol. Lett. 28, 1786–1789 (2016)

    Article  ADS  Google Scholar 

  15. W. Hänsel, M. Giunta, K. Beha, M. Lezius, M. Fischer, R. Holzwarth, Ultra-low phase noise all-PM Er: fiber optical frequency comb. In Advanced Solid State Lasers (p. ATh4A.2). (OSA, Washington, DC, 2015)

    Google Scholar 

  16. H. Hoogland, S. Wittek, W. Hänsel, S. Stark, R. Holzwarth, Fiber chirped pulse amplifier at 2.08 μm emitting 383-fs pulses at 10 nJ and 7 MHz. Opt. Lett. 39, 6735–6738 (2014)

    Article  ADS  Google Scholar 

  17. H. Hoogland, J. McNeur, M. Kozák, P. Hommelhoff, R. Holzwarth, Compact ultrashort pulsed 2.05 µm all-PM fiber laser for dielectric laser acceleration of non-relativistic electrons. In Conference on Lasers and Electro-Optics, OSA Technical Digest (p. SF1I.7). (OSA, Washington, DC, 2016)

    Google Scholar 

  18. X. Xie, R. Bouchand, D. Nicolodi, M. Giunta, W. Hänsel, M. Lezius, A. Joshi, S. Datta, C. Alexandre, M. Lours, P.-A. Tremblin, G. Santarelli, R. Holzwarth, Y. Le Coq, Photonic microwave signals with zeptosecond-level absolute timing noise. Nat Photonics. doi:10.1038/nphoton.2016.215

  19. N. Kuse, C.-C. Lee, J. Jiang, C. Mohr, T.R. Schibli, M.E. Fermann, Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator. Opt. Express 23, 24342–24350 (2015)

    Article  ADS  Google Scholar 

  20. M. Giunta, W. Hänsel, K. Beha, M. Fischer, M. Lezius, R Holzwarth, Ultra low noise Er: fiber frequency comb comparison. In Conference on Lasers and Electro-Optics (p. STh4H.1). (OSA, Washington, DC, 2016)

    Google Scholar 

  21. M. Lezius, T. Wilken, C. Deutsch, M. Giunta, O. Mandel, A. Thaller, V. Schkolnik, M. Schiemangk, A. Dinkelaker, A. Kohfeldt, A. Wicht, M. Krutzik, A. Peters, O. Hellmig, H. Duncker, K. Sengstock, P. Windpassinger, K. Lampmann, T. Hülsing, T. W. Hänsch, and R. Holzwarth, Space-borne Frequency Comb Metrology. Optica, 3, 1381–1387 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding from the BMWi (Project ZIM-TERA), the BMBF (Projects ExtruTera, DiaTumor, and Mirandus), the DLR (Projects FOKAL and IRASSI), the EU FP7 initial training network FACT, and the DARPA PULSE program (Project PµreComb).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hänsel .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the chapter's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hänsel, W. et al. (2018). All Polarization-Maintaining Fiber Laser Architecture for Robust Femtosecond Pulse Generation. In: Meschede, D., Udem, T., Esslinger, T. (eds) Exploring the World with the Laser. Springer, Cham. https://doi.org/10.1007/978-3-319-64346-5_18

Download citation

Publish with us

Policies and ethics