Skip to main content

Introduction

  • Chapter
  • First Online:
  • 345 Accesses

Part of the book series: SpringerBriefs in Mathematical Physics ((BRIEFSMAPHY,volume 25))

Abstract

In the last century, our theoretical knowledge of key physical processes has experienced an impressively large and fast growth thanks to the birth and to the development of new theories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Brunetti, M. Duetsch, K. Fredenhagen, Perturbative Algebraic Quantum Field Theory and the Renormalization Groups. Adv. Theor. Math. Phys. 13(5), 1541 (2009). arXiv:0901.2038 [math-ph]

  2. R. Brunetti, C. Dappiaggi, K. Fredenhagen, J. Yngvason, Advances in algebraic quantum field theory (Springer, 2015), pp. 453

    Google Scholar 

  3. M. Benini, C. Dappiaggi, S. Murro, Radiative observables for linearized gravity on asymptotically flat spacetimes and their boundary induced states. J. Math. Phys. 55, 082301 (2014). arXiv:1404.4551 [gr-qc]

  4. R. Brunetti, K. Fredenhagen, Quantum Field Theory on Curved Backgrounds. Lecture Notes in Physics, vol. 786 (2009), pp. 129. arXiv:0901.2063 [gr-qc]

  5. R. Brunetti, K. Fredenhagen, M. Köhler, The microlocal spectrum condition and Wick polynomials of free fields on curved spacetimes. Commun. Math. Phys. 180, 633 (1996). arXiv:gr-qc/9510056

  6. R. Brunetti, K. Fredenhagen, R. Verch, The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237, 31 (2003). arXiv: math-ph/0112041

  7. B. Chilian, K. Fredenhagen, The time slice axiom in perturbative quantum field theory on globally hyperbolic spacetimes. Commun. Math. Phys. 287, 513 (2009). arXiv:0802.1642 [math-ph]

  8. B.S. De Witt, R.W. Brehme, Radiation damping in a gravitational field. Ann. Phys. 9, 220 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. C. Dappiaggi, T.P. Hack, N. Pinamonti, Approximate KMS states for scalar and spinor fields in Friedmann-Robertson-Walker spacetimes. Ann. Henri Poincaré 12, 1449–1489 (2011). arXiv:1009.5179 [gr-qc]

  10. C. Dappiaggi, V. Moretti, N. Pinamonti, Rigorous steps towards holography in asymptotically flat spacetimes. Rev. Math. Phys. 18, 349 (2006). arXiv:gr-qc/0506069

  11. C. Dappiaggi, V. Moretti, N. Pinamonti, Cosmological horizons and reconstruction of quantum field theories. Commun. Math. Phys. 285, 1129 (2009). arXiv:0712.1770 [gr-qc]

  12. C. Dappiaggi, V. Moretti, N. Pinamonti, Distinguished quantum states in a class of cosmological spacetimes and their Hadamard property. J. Math. Phys. 50, 062304 (2009). arXiv:0812.4033 [gr-qc]

  13. C. Dappiaggi, V. Moretti, N. Pinamonti, Rigorous construction and Hadamard property of the Unruh state in Schwarzschild spacetime. Adv. Theor. Math. Phys. 15(2), 355 (2011). arXiv:0907.1034 [gr-qc]

  14. C. Dappiaggi, D. Siemssen, Hadamard States for the Vector Potential on Asymptotically Flat Spacetimes. Rev. Math. Phys. 25, 1350002 (2013). arXiv:1106.5575 [gr-qc]

  15. K. Fredenhagen, K. Rejzner, QFT on curved spacetimes: axiomatic framework and examples. J. Math. Phys. 57, 031101 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. S.A. Fulling, F.J. Narcowich, R.M. Wald, Singularity structure of the two-point function in quantum field theory in curved spacetime II. Ann. Phys. 136, 243 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. I.M. Gelfand, M.A. Naimark, On the imbedding of normed rings into the ring of operators on a Hilbert space. Matematicheskii Sbornik 12, 197–217 (1943)

    MathSciNet  MATH  Google Scholar 

  18. C. Gérard, M. Wrochna, Construction of Hadamard states by pseudo-differential calculus. Commun. Math. Phys. 325, 713 (2014). arXiv:1209.2604 [math-ph]

  19. C. Gérard, M. Wrochna, Construction of Hadamard states by characteristic cauchy problem. Anal. PDE 9, 111 (2016). arXiv:1409.6691 [math-ph]

  20. L. Hörmander, The Analysis of Linear Partial Differential Operators, vol. 1, (Springer, 1989)

    Google Scholar 

  21. R. Haag, D. Kastler, An algebraic approach to quantum field theory. J. Math. Phys. 5, 848–861 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. B.S. Kay, R.M. Wald, Theorems on the uniqueness and thermal properties of stationary, nonsingular, quasifree states on space-times with a bifurcate killing horizon. Phys. Rept. 207, 49 (1991)

    Article  ADS  MATH  Google Scholar 

  23. V. Moretti, Uniqueness theorem for BMS-invariant states of scalar QFT on the null boundary of asymptotically flat spacetimes and bulk-boundary observable algebra correspondence. Commun. Math. Phys. 268, 727 (2006). arXiv:gr-qc/0512049

  24. V. Moretti, Quantum ground states holographically induced by asymptotic flatness: invariance under spacetime symmetries, energy positivity and Hadamard property. Commun. Math. Phys. 279, 31 (2008). arXiv:gr-qc/0610143

  25. M.J. Radzikowski, Micro-local approach to the hadamard condition in quantum field theory on curved space-time. Commun. Math. Phys. 179, 529 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. I.E. Segal, Irreducible representations of operator algebras. Bull. Am. Math. Soc. 53, 73–88 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Siemssen, Quantization of the electromagnetic potential in asymptotically flat spacetimes. Diploma Thesis, University of Hamburg, (2011)

    Google Scholar 

  28. S. Waldmann, Deformation Quantization: Observable Algebras, States And Representation Theory. arXiv:hep-th/0303080

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Dappiaggi .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Dappiaggi, C., Moretti, V., Pinamonti, N. (2017). Introduction. In: Hadamard States from Light-like Hypersurfaces. SpringerBriefs in Mathematical Physics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-64343-4_1

Download citation

Publish with us

Policies and ethics