Skip to main content

Quantum Applications of the Photon

  • Chapter
  • First Online:
  • 2029 Accesses

Abstract

For classic particles with well-defined states (bits 0 or 1), information is sent at a rate of one bit at a time. However, in 1992 Charles Bennett and Stephen Wiesner theorized that by using entangled particles in quantum channels, two bits of information could be encoded in one qubit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. C.H. Bennett, S.J. Wiesner, Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992). doi:10.1103/PhysRevLett.69.2881

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. K. Mattle et al., Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656–4659 (1995). doi:10.1103/PhysRevLett.76.4656

    Article  ADS  Google Scholar 

  3. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore (1984), pp. 175–179

    Google Scholar 

  4. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991). doi:10.1103/PhysRevLett.67.661

  5. A.K. Ekert et al., Practical quantum cryptography based on two-photon interferometry. Phys. Rev. Lett. 69(9), 1293–1295 (1992). doi:10.1103/PhysRevLett.69.1293

    Article  ADS  Google Scholar 

  6. A. Beveratos et al., Room temperature stable single-photon source. Eur. Phys. J. D 18, 191–196 (2002). doi:10.1140/epjd/e20020023

    ADS  Google Scholar 

  7. M. Förtsch et al., A versatile source of single photons for quantum information processing. Nat. Commun. 4, 1818–1822 (2013). doi:10.1038/ncomms2838

    Article  Google Scholar 

  8. C. Becher et al., A quantum dot single-photon source. Physica E 13, 412–417 (2002). doi:10.1016/S1386-9477(02)00156-X

    Article  ADS  Google Scholar 

  9. V.D. Verma et al., Photon antibunching from a single lithographically defined InGaAs/GaAs quantum dot. Opt. Express 19(5), 4183–4187 (2011). doi:10.1384/OE.19.004182

    Article  ADS  Google Scholar 

  10. M.J. Holmes et al., Room temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14(2), 982–986 (2014). doi:10.1021/nl404400d

    Article  ADS  MathSciNet  Google Scholar 

  11. M. Davanço et. al., Telecommunications-band heralded single photons from a silicon nanophotonic chip. Appl. Phys. Lett. 100, 261104-1-5 (2012). doi:10.1063/1.4711253

  12. M. Nothaft et al., Electrically driven photon antibunching from a single molecule at room temperature. Nat. Commun. 3(628), (2012). doi:10.1038/ncomms1637

  13. G.N. Gol’tsman et al., Picosecond superconducting single-photon detector. Appl. Phys. Lett. 79(6), 705–707 (2001). doi:10.1063/1.1388868

  14. F. Marsili et al., Detecting single infrared photons with 93% system efficiency. Nat. Photonics 7, 210–214 (2013). doi:10.1038/nphoton.2013.13

    Article  ADS  Google Scholar 

  15. H. Takesue et al., Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photonics 1, 343–348 (2007). doi:10.1038/nphoton.2007.75

    Article  ADS  Google Scholar 

  16. B. Korzh et al., Free-running InGaAs single photon detector with 1 dark count per second at 10% efficiency. Appl. Phys. Lett. 104, 081108-1-4 (2014). doi:10.1063/1.4866582

  17. B. Korzh et al., Provably secure and practical quantum key distribution over 307 km of optical fiber. Nat. Photonics 1, 343–348 (2015). doi:10.1038/nphoton.2014.327

    Google Scholar 

  18. R.P. Tapster et al., Developments towards practical free-space quantum cryptography. Proc. SPIE 5815, 176–179 (2005). doi:10.1117/12.605539

    Article  ADS  Google Scholar 

  19. R. Ursin et al., Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481–486 (2007). doi:10.1038/nphys629

    Article  Google Scholar 

  20. S. Nauerth et al., Air-to-ground quantum communication. Nat. Photonics, 7, 382–386 (2013). doi:10.1038/nphoton.2013.46

  21. T. Heindel et al., Quantum key distribution using quantum dot single-photon emitting diodes in the red and near infrared spectral range. New J. Phys. 14, 083001-1-12 (2012). doi:10.1088/1367-2630/14/8/083001

  22. M. Rau et al., Free-space quantum key distribution over 500 meters using electrically driven quantum dot single-photon sources—a proof of principal experiment. New J. Phys. 14, 043003-1-10 (2014). doi:10.1088/1367-2630/16/4/043003

  23. M. Padgett, L. Allen, Light with a twist in its tail. Contemp. Phys. 41(5), 275–285 (2000)

    Article  ADS  Google Scholar 

  24. M. Krenn et al., Communication with spatially modulated light through turbulent air across Vienna. New J. Phys. 16, 113028-1-10 (2014). doi:10.1088/1367-2630/16/11/113028

  25. J. Wang et al., Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics 6, 488–496 (2012). doi:10.1038/nphoton.2012.138

    Article  ADS  Google Scholar 

  26. I.M. Fazal et al., 2 Tbit/s free-space data transmission on two orthogonal orbital-angular-momentum beams each carrying 25 WDM channels. Opt. Lett. 37(22), 4753–4755 (2012). doi:10.1364/OL.37.004753

    Article  ADS  Google Scholar 

  27. Y. Awaji et al., World first mode/spatial division multiplexing in multi-core fiber using Laguerre-Gaussian mode, in 37th European Conference and Exposition on Optical Communication, paper We.10.P1.55 (2011). doi:10.1364/ECOC.2011.We.10.P1.55

  28. N. Bozinovic et al., Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science 340(6140), 1545–1548 (2013). doi:10.1126/science.1237861

    Article  ADS  Google Scholar 

  29. D. Hillerkuss et al., 26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing. Nat. Photonics 5, 364–371 (2011). doi:10.1038/nphoton.2011.74

    Article  ADS  Google Scholar 

  30. B. Julsgaard et al., Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004). doi:10.1038/nature03064

    Article  ADS  Google Scholar 

  31. M.P. Hedges et al., Efficient quantum memory for light. Nature 465, 1052–1056 (2010). doi:10.1038/nature09081

    Article  ADS  Google Scholar 

  32. K.S. Choi et al., Mapping photonic entanglement into and out of a quantum memory. Nature 452, 67–71 (2008). doi:10.1038/nature06670

    Article  ADS  Google Scholar 

  33. H. de Riedmatten et al., A solid-state light-matter interface at the single-photon level. Nature 456, 773–777 (2008). doi:10.1038/nature07607

    Article  ADS  Google Scholar 

  34. M. Afzelius et al., Demonstration of atomic frequency comb memory with spin-wave storage. Phys. Rev. Lett. 104, 04503-01-4 (2010). doi:10.1103/PhysRevLett.104.040503

  35. C. Clausen et al., Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011). doi:10.1038/nature09662

    Article  ADS  Google Scholar 

  36. H. Kosaka, N. Niikura, Entangled absorption of a single photon with a single spin in diamond. Phys. Rev. Lett. 114(5), 053603-1-5 (2015). doi:10.1103/PhysRevLett.114.053603

  37. D.G. England et al., Storage and retrieval of THz-bandwidth single photons using a room-temperature diamond quantum memory. Phys. Rev. Lett. 114(5), 053602-1-6 (2015). doi:10.1103/PhysRevLett.114.053602

  38. M. Bashkansky, F.K. Fatemi, I. Vurgaftman, Quantum memory in warm rubidium vapor with buffer gas. Opt. Lett. 37(2), 142–144 (2012). doi:10.1364/OL.37.000142

    Article  ADS  Google Scholar 

  39. M. Dąbrowski, R. Chrapkiewicz, W. Wasilewski, Hamiltonian design in readout from room-temperature Raman atomic memory. Opt. Express 22(21), 26076-1-15 (2014). doi:10.1364/OE.22.026076

  40. C.H. Bennett et al., Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993). doi:10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. D. Bouwmeester et al., Experimental quantum teleportation. Nature 390, 575–579 (1997). doi:10.1038/37539

    Article  ADS  Google Scholar 

  42. D. Boschi et al., Experimental realization of teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80(6), 1121–1131 (1998). doi:10.1103/PhysRevLett.80.1121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. S.-W. Lee, H. Jeong, Near-deterministic quantum teleportation and resource-efficient quantum computation using linear optics and hybrid qubits. Phys. Rev. A 87, 022326-1-10 (2013). doi:10.1103/PhysRevA.97.022326

  44. S.-W. Lee, H. Jeong, Bell-state measurement and quantum teleportation using linear optics: two-photon pairs, entangled coherent states, and hybrid entanglement, in Proceedings of First International Workshop on Entangled Coherent States and its Application to Quantum Information Science, Tokyo, Japan (2013), pp. 41–46

    Google Scholar 

  45. J. Brendel et al., Pulsed energy-time entangled twin-photon source for quantum communication. Phys. Rev. Lett. 82(12), 2594-1-8 (1999). doi:10.1103/PhysRevLett.82.2594

  46. I. Marcikic et al., Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66(6), 062308-1-6 (2002). doi:10.1038/PhysRevA.66.062308

  47. I. Marcikic et al., Long-distance teleportation of qubits at telecommunication wavelengths. Nature 421, 509–513 (2003). doi:10.1038/nature01376

    Article  ADS  Google Scholar 

  48. F. Bussières et al., Quantum teleportation from a telcom-wavelength photon to a solid-state quantum memory. Nat. Photonics 8, 775–778 (2014). doi:10.1038/nphoton.2014.215

    Article  ADS  Google Scholar 

  49. J. Xian-Min et al., Experimental free-space quantum teleportation. Nat. Photonics 4, 376–381 (2010). doi:10.1038/nphoton.2010.87

    Article  ADS  Google Scholar 

  50. J. Yin et al., Quantum teleportation and entanglement distribution over 100-kilometer free-space channels. Nature 488, 185–188 (2012). doi:10.1038/nature11332

    Article  ADS  Google Scholar 

  51. X.S. Ma et al., Quantum teleportation over 143 kilometers using active feed-forward. Nature 489, 269–273 (2012). doi:10.1038/nature11472

    Article  ADS  Google Scholar 

  52. H.J. Briegel et al., Quantum repeaters: the role of imperfect local operation in quantum communication. Phys. Rev. Lett. 81(26), 5932-1-8 (1998). doi:10.1103/PhysRevLett.81.5932

  53. L.M. Duan et al., Long-distance quantum communication with atomic assembles and linear optics. Nature 414, 413–418 (2001). doi:10.1038/35106500

    Article  ADS  Google Scholar 

  54. N. Sangouard et al., Quantum repeaters based upon atomic assembles and linear optics. Rev. Mod. Phys. 83(1), 33–80 (2011). doi:10.1103/RevModPhys.83.33

    Article  ADS  Google Scholar 

  55. N. Gisin, R. Thew, Quantum communication. Nat. Photonics 1, 165–171 (2007). doi:10.1038/nphoton.2007.22

    Article  ADS  Google Scholar 

  56. J.I. Cirac et al., Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3227 (1997). doi:10.1103/PhysRevLett.78.3221

    Article  ADS  Google Scholar 

  57. S. Ritter et al., An elementary quantum network of single atoms in optical cavities. Nature 484, 195–200 (2012). doi:10.1038/nature11023

    Article  ADS  Google Scholar 

  58. H.J. Kimble, The quantum internet. Nature 453, 1023–1030 (2008). doi:10.1038/nature07127

    Article  ADS  Google Scholar 

  59. I. Usami et al., Heralded quantum entanglement between two crystals. Nat. Photonics 6, 254–237 (2012). doi:10.1038/nphoton.2012.34

  60. R.J. Hughes et al., Network-centric quantum communication with application to critical infrastructure protection, in Report LA-UR-13-22718, Los Alamos National Laboratory, Los Alamos, New Mexico (2013)

    Google Scholar 

  61. M. Stipčević, Quantum random number generators and their use in cryptography, in Proceedings of SPIE 8375, Advanced Photon Counting Techniques VI, pp. 837504–837519, May 2012. doi:10.1117/12.919920

  62. J.G. Rarity, P.C.M. Owens, P.R. Tapster, Quantum random-number generation and key sharing. J. Mod. Opt. 41(12), 2435–2444 (1994). doi:10.1080/09500349414552281

    Article  ADS  Google Scholar 

  63. T. Jennewein et al., A fast and compact quantum random number generator. Rev. Sci. Instrum. 71(4), 1675–1680 (2000). doi:10.1063/1.1150518

    Article  ADS  Google Scholar 

  64. A. Stefanov et al., Optical quantum random number generator. J. Mod. Opt. 47(4), 595–598 (2000). doi:10.1080/0950034000823380

    ADS  Google Scholar 

  65. H.-Q. Ma, Y. Xie, L.-A. Wu, Random number generator based on the time of arrival of single photons. Appl. Opt. 44(36), 7760–7763 (2005). doi:10.1364/AO.44.007760

    Article  ADS  Google Scholar 

  66. Q. Yan, Multi-bit quantum random number generation by measuring positions of arrival photons. Rev. Sci. Instrum. 85(10), 103116 (2014). doi:10.1063/1.4897485

    Article  ADS  Google Scholar 

  67. O. Kwon, Y.-W. Cho, Y.H. Kim, Quantum random number generator using photon-number path entanglement. Appl. Opt. 48, 1774–1777 (2009). doi:10.1364/AO.48.001774

    Article  ADS  Google Scholar 

  68. C. Gabriel et al., A generator for unique quantum numbers based on vacuum states. Nat. Photonics 4, 711–715 (2010). doi:10.1038/nphoton.2010.197

    Article  ADS  Google Scholar 

  69. M. Jofre et al., True random numbers from amplified quantum vacuum. Opt. Express 19(21), 20665-1-4 (2011). doi:10.1364/OE.19.020665

  70. T. Symul, S.M. Assad, P.K. Lam, Real time demonstration of high bitrate quantum number generation with coherent laser light. Appl. Phys. Lett. 98(23), 231103-1-4 (2011). doi:10.1063/1.3597793

  71. F. Xu et al., Ultrafast quantum random generation based on quantum phase fluctuations. Opt. Express 20(11), 12366-1-12 (2012). doi:10.1364/OE.20.012366

  72. C. Abellán et al., Ultra-fast quantum randomness generation by accelerated phase diffusion in a pulsed laser diode. Opt. Express 22(2), 1645–1654 (2014). doi:10.1364/OE.22.001645

    Article  ADS  Google Scholar 

  73. Y.-O. Nie, 68 Gbps quantum random number generation by measuring laser phase fluctuations. Rev. Sci. Instrum. 86, 063405-1-14 (2015). doi:10.1063/1.1922417

  74. N.J. Cerf, C. Adami, P.G. Kwait, Optical simulation of quantum logic. Phys. Rev. A 57(3), R1477–R1480 (1998). doi:10.1103/PhysRevA.57.R1477

    Article  ADS  MathSciNet  Google Scholar 

  75. E. Knill, R. Laflamme, G.J. Milburn, A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001). doi:10.1038/35051009

    Article  ADS  MATH  Google Scholar 

  76. P. Kok et al., Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007). doi:10.1103/RevModPhys.79.135

    Article  ADS  Google Scholar 

  77. R. Okamoto et al., Realization of a Knill-Laflamme-Milburn controlled-NOT photonic quantum circuit combining effective optical nonlinearities. Proc. Natl. Acad. Sci. U.S.A. 108(25), 10067–10071 (2011). doi:10.1073/pnas.1018839108

    Article  ADS  Google Scholar 

  78. T. Toffoli, Reversible computing. Technical Report MIT/LCS/TM-151 (1980)

    Google Scholar 

  79. T. Monz et al., Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102(4), 040501-1-11 (2009). doi:10.1103/PhysRevLett.102.041501

  80. B.P. Lanyon et al., Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134–140 (2009). doi:10.1038/nphys1150

    Article  Google Scholar 

  81. S. Aaronson, A. Arkhipov, The computational complexity of linear optics, in Proceedings of the 43rd Annual ACM Symposium on Theory of Computing (STOC ’11) (2011), pp. 333–342. doi:10.1145/1993696.1993682

  82. J.B. Spring et al., Boson sampling on a photonic chip. Science 339. doi:10.1126/science.1231692

  83. M.A. Broome et al., Photonic boson sampling in a tunable circuit. Science 339, 6621–6629 (2013). doi:10.1126/science.1231440

    Article  Google Scholar 

  84. M. Tillmann et al., Experimental boson sampling. Nat. Photonics 7, 540–544 (2013). doi:10.1038/nphoton.2013.102

    Article  ADS  Google Scholar 

  85. A. Crespi et al., Integrated multimode interferometers with arbitrary designs for photonic boson sampling. Nat. Photonics 7, 545–549 (2013). doi:10.1038/nphoton.2013.112

    Article  ADS  Google Scholar 

  86. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. A 400, 97–117 (1985). doi:10.1098/rspa.1985.0070

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. M.S. Tame et al., Experimental realization of Deutsch’s algorithm in a one-way quantum computer. Phys. Rev. Lett. 98, 140501-1-4 (2007). doi:10.1103/PhysRevLett.98.140501

  88. D. Deutsch, R. Jonza, Rapid solution of problems by quantum computation. Proc. R. Soc. A 439, 553–558 (1992). doi:10.1098/rspa.1992.0167

    Article  ADS  MathSciNet  MATH  Google Scholar 

  89. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Sci. Stat. Comput. 26, 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Note: This is an expanded version of an article originally appearing in Proceedings of the 35th Annual Symposium of Computer Science, Santa Fe, 1994

  1. C.-Y. Lu et al., Demonstration of Shor’s quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99(25), 250504-1-5 (2007). doi:10.1103/PhysRevLett.99.250504

  2. B.P. Layton et al., Experimental demonstration of Shor’s algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505-1-5 (2007). doi:10.1103/PhysRevLett.99.250505

  3. G. Brida et al., An extremely low-noise heralded single-photon source: a breakthrough for quantum technologies. Appl. Phys. Lett. 101, 221112-1-11 (2012). doi:10.1063/1.4768288

  4. C. Monroe et al., Large-scale quantum computer architecture with atomic memory and photonic interconnects. Phys. Rev. A 89, 022317-1-16 (2014). doi:10.1103/PhysRevA.89.022317

  5. F.S.N. Lobo, Closed Timelike Curves and Causality Violation, Chap. 6 in Classical and Quantum Gravity: Theory, Analysis, and Applications, Nova Scientific Publishers (2012)

    Google Scholar 

  6. D. Deutsch, Quantum mechanics and closed timelike lines. Phys. Rev. D 44, 3197–3217 (1991). doi:10.1103/PhysRevD.44.3197

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Ringbauer et al., Experimental simulation of closed timelike curves. Nat. Communications 5, 4145–4152 (2014). doi:10.1038/ncomms5145

    Article  Google Scholar 

  8. T.A Brun, J. Harrington, M.M. Wilde, Localized closed timelike curves can perfectly distinguish quantum states. Phys. Rev. Lett. 102, 210402-1-4 (2009). doi:10.1103/PhysRevLett.102.210402

  9. D. Ahn et al., Quantum-state cloning in the presence of a closed timelike curve. Phys. Rev. A 88(2), 022332-1-5 (2013). doi:10.1103/PhysRevA.88.022332

  10. T.A. Brun, M.M. Wilde, A. Winter, Quantum state cloning using Deutschian closed timelike curves. Phys. Rev. Lett. 111(19), 19040-1-6 (2013). doi:10.1103/PhysRevLett.111.190401

  11. J.L. Pienaar, T.C. Ralph, C.R. Myers, Open timelike curves violate Heisenberg’s uncertainty principle. Phys. Rev. Lett. 110, 060501-1-5 (2013). doi:10.1103/PhysRevLett.110.060501

  12. T.A. Brun, Computers with closed timelike curves can solve hard problems. Found. Phys. Lett. 16, 245–253 (2002)

    Article  MathSciNet  Google Scholar 

  13. S. Aaronson, J. Watrous, Closed timelike curves make quantum and classical computing equivalent. Proc. R. Soc. A 465(2102), 631–647 (2008). doi:10.1098/rspa.2008.0350

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis F. Vanderwerf .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vanderwerf, D.F. (2017). Quantum Applications of the Photon. In: The Story of Light Science. Springer, Cham. https://doi.org/10.1007/978-3-319-64316-8_9

Download citation

Publish with us

Policies and ethics