Light and Its Application to Relativity

  • Dennis F. VanderwerfEmail author


In 1851 Fizeau made an interferometric measurement to determine how the speed of light is affected in a moving medium [1]. The chosen medium was water, flowing at a velocity v of about 700 cm/s through the U-tube configuration shown in Fig. 3.1. Each tube section had a length ≈150 mm, with a tube diameter ≈5.3 cm. Light from a source is directed to a 50/50 beamsplitter and lens, where two collimated beams A and B entered the end of each tube. The light beams exited the other ends of the tubes, where they were focused to a flat mirror by a second lens. The reflected beams were then returned through the tubes and focused to a screen where they formed interference fringes, the path lengths of each beam being the same. Light beam A moved with the velocity of the water, while light beam B moved against the velocity of the water.


  1. 1.
    M.H. Fizeau, Sur les hypothèses relatives à l’éther lumineux. Annales de Chimie et de Physique III lvii, 385–404 (1859)Google Scholar
  2. 2.
    A. Michelson, E. Morley, Influence of motion of the medium on the velocity of light. Am. J. Sci. 31(185), 377–386 (1886). doi: 10.2475/ajs.s3-31.185.377 CrossRefGoogle Scholar
  3. 3.
    A. Michelson, E. Morley, On the relative motion of the Earth and the luminiferous ether. Am. J. Sci. 234(203), 333–345 (1887). doi: 10.2475/ajs.s3.203.333 CrossRefzbMATHGoogle Scholar
  4. 4.
    N. Hamdan, Can the Lorentz-FitzGerald contraction hypothesis be real? Proc. Pak. Acad. Sci. 44(2), 121–128 (2007)Google Scholar
  5. 5.
    R. Serway, Physics for scientists and engineers/with modern physics (Holt, Rinehart and Winston, New York, 1983), pp. 839–841Google Scholar
  6. 6.
    A. Einstein, On the electrodynamics of moving bodies. Ann. Phys. 17, 891–921 (1905). doi: 10.1002/andp.19053221004 CrossRefzbMATHGoogle Scholar
  7. 7.
    A. Einstein, Does the inertia of a body depend on its energy content? Ann. Phys. 17, 639–641 (1905). doi: 10.1002/andp.19052231314 CrossRefGoogle Scholar
  8. 8.
    R. Baierlein, E = mc2, in Newton to Einstein: The Trail of Light (Cambridge University Press, Cambridge, United Kingdom, 2002)Google Scholar
  9. 9.
    E. Fischbach et al., New geomagnetic limits on the photon mass and on long-range forces coexisting with electromagnetism. Phys. Rev. Lett. 73(4), 514–517 (1974). doi: 10.1103/physRevLett.73.514 ADSCrossRefGoogle Scholar
  10. 10.
    L.-C. Tu, J. Luo, G.T. Gillies, The mass of the photon. Rep. Prog. Phys. 68(1), 77–130 (2004). doi: 10.1088/0034-4885/68/R02 ADSCrossRefGoogle Scholar
  11. 11.
    A. Einstein, On the relativity principle and the conclusions drawn from it. Jahrbuch der Radioaktivität 4, 411–462 (1907)ADSGoogle Scholar
  12. 12.
    A. Einstein, On the influence of gravitation on the propagation of light. Ann. Phys. 35, 898–908 (1911)CrossRefGoogle Scholar
  13. 13.
    A. Einstein, Explanation of the perihelion motion of mercury from the general theory of relativity. Preussische Akademie der Wissenschaften, Sitzungsberichte, Part 2, 831–839 (1915) Google Scholar
  14. 14.
    R.J. Kennedy, E.M. Thorndike, Experimental establishment of the relativity of time. Phys. Rev. 42(3), 400–418 (1932). doi: 10.1103/PhysRev.42.400 ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    H. Ives, G. Stilwell, An experimental study of the rate of a moving atomic clock. J. Opt. Soc. Am. 28, 215–226 (1938). doi: 10.1364/JOSA.28.000215 ADSCrossRefGoogle Scholar
  16. 16.
    H. Ives, G. Stilwell, An experimental study of the rate of a moving atomic clock II. J. Opt. Soc. Am. 31, 369–374 (1941). doi: 10.1364/JOSA.31.000369 ADSCrossRefGoogle Scholar
  17. 17.
    D. Hasselkamp, E. Mondry, A. Scharmann, Direct observation of the transversal Doppler-shift. Zeitschrift für Physik A 289(2), 151–155 (1979). doi: 10.1007/BF1435932 ADSCrossRefGoogle Scholar
  18. 18.
    S. Reinhardt et al., Test of relativistic time dilation with fast optical atomic clocks at different velocities. Nat. Phys. 3, 861–864 (2007). doi: 10.1038/nphys778 CrossRefGoogle Scholar
  19. 19.
    B. Rossi, D.B. Hall, Variation of the rate of decay of mesotrons with momentum. Phys. Rev. 59(3), 223–228 (1941). doi: 10.1103/PhysRev.59.223 ADSCrossRefGoogle Scholar
  20. 20.
    L. Liu, P. Solis, The speed and lifetime of cosmic ray muons. MIT Undergraduate Report, 18 Nov 2007Google Scholar
  21. 21.
    D.H. Frisch, J.H. Smith, Measurement of the relativistic time dilation using μ-mesons. Am. J. Phys. 31(5), 342–355 (1963). doi: 10.1119/1.1969508 ADSCrossRefGoogle Scholar
  22. 22.
    H. Bailey et al., Measurements of relativistic time dilatation for positive and negative muons in a circular orbit. Nature 268, 301–305 (1977). doi: 10.1038/268301a0 ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: predicted relativistic time gains. Science 177(4044), 166–168 (1972). doi: 10.1126/science.177.4044.166 ADSCrossRefGoogle Scholar
  24. 24.
    J.C. Hafele, R.E. Keating, Around-the-world atomic clocks: observed relativistic time gains. Science 177(4044), 168–170 (1972)ADSCrossRefGoogle Scholar
  25. 25.
    News from the National Physical Laboratory, Metronia, Issue 18, United Kingdom, Winter (2005)Google Scholar
  26. 26.
    F. Winterberg, Relativistische zeitdilatation eines künstlichen satelliten. Astronautica Acta 2(1), 25–29 (1956)MathSciNetGoogle Scholar
  27. 27.
    F.T. Trouton, A. Rankine, On the electrical resistance of moving matter. Proc. R. Soc. 80, 420 (1908). doi: 10.1098/rspa.1908.0037 ADSCrossRefzbMATHGoogle Scholar
  28. 28.
    C. Sherwin, New experimental test of Lorentz’s theory of relativity. Phys. Rev. A 35(9), 3650–3654 (1987). doi: 10.1103/PhysRevA.35.3650 ADSCrossRefGoogle Scholar
  29. 29.
    F.W. Dyson, A.S. Eddington, C. Davidson, A determination of the deflection of light by the Sun’s gravitational field, from observations made at the total eclipse of 29 May 1919. Philos. Trans. R. Soc. Lond. 220A, 291–333 (1920). doi: 10.1098/rsta.1920.0009 ADSCrossRefGoogle Scholar
  30. 30.
    T. Alväger et al., Test of the second postulate of special relativity in the GeV region. Phys. Lett. 12(3), 260–262 (1964). doi: 10.1016/0031-9163(64)91095-9 ADSCrossRefGoogle Scholar
  31. 31.
    G.C. Babcock, T.G. Bergman, Determination of the constancy of the speed of light. J. Opt. Soc. Am. 54(2), 147–150 (1964). doi: 10.1364/JOSA.54.000147 ADSCrossRefGoogle Scholar
  32. 32.
    K. Brecher, Is the speed of light independent of the velocity of the source? Phys. Rev. Lett. 39(17), 1051–1054 (1977). doi: 10.1103/PhysRevLett.39.1051 ADSCrossRefGoogle Scholar
  33. 33.
    K. Brecher, Precision test of special relativity using gamma ray bursts. Bull. Am. Phys. Soc. 45(2), No. 34, May 2000 Meeting, Long Beach, CaliforniaGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.AustinUSA

Personalised recommendations