Sepsis and Infection

  • Fuat Hakan Saner


Thomas Starzl reported the results of the first liver transplant program in 1976 [1]: only 29% of the transplanted patients survived 1 year after transplantation and the main cause of death, at that time, was uncontrolled bleeding due to severe coagulopathy and acute and chronic rejection. Infection was considered less common. Only when cyclosporine was introduced as an immunosuppressant drug to avoid acute and chronic rejection, the reported 1-year survival increased to 80–90%. But with improved survival, infectious complications after liver transplantation were more commonly reported.

Infection is now one of the leading causes of morbidity and mortality in liver transplant patients. More than 50% of liver transplant recipients develop infections during the first year after transplantation [ 2], with the majority of bacterial infections occurring within the first 2 months. In the last three decades, there was a significant increase of sepsis and septic shock [ 3] and gram...


Bacterial infections Pneumonia Fungal infection Selective bowl decontamination Septic shock Antibiotics 


  1. 1.
    Starzl TE, et al. Orthotopic liver transplantation in ninety-three patients. Surg Gynecol Obstet. 1976;142(4):487–505.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rubin RH. The direct and indirect effects of infection in liver transplantation: pathogenesis, impact, and clinical management. Curr Clin Top Infect Dis. 2002;22:125–54.PubMedGoogle Scholar
  3. 3.
    Martin GS, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):1546–54.CrossRefPubMedGoogle Scholar
  4. 4.
    Paterson DL. “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis. 2004;38(Suppl 4):S341–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Bernstein JM. Treatment of community-acquired pneumonia--IDSA guidelines. Infectious diseases society of America. Chest. 1999;115(3 Suppl):9S–13S.CrossRefPubMedGoogle Scholar
  6. 6.
    Jensen WA, et al. Pulmonary complications of orthotopic liver transplantation. Transplantation. 1986;42(5):484–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Saner FH, et al. Pulmonary and blood stream infections in adult living donor and cadaveric liver transplant patients. Transplantation. 2008;85(11):1564–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Singh N, et al. Infectious complications in liver transplant recipients on tacrolimus. Prospective analysis of 88 consecutive liver transplants. Transplantation. 1994;58(7):774–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Wade JJ, et al. Bacterial and fungal infections after liver transplantation: an analysis of 284 patients. Hepatology. 1995;21(5):1328–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Wagener MM, Yu VL. Bacteremia in transplant recipients: a prospective study of demographics, etiologic agents, risk factors, and outcomes. Am J Infect Control. 1992;20(5):239–47.CrossRefPubMedGoogle Scholar
  11. 11.
    Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988;10(4):677–8.Google Scholar
  12. 12.
    Singh N, et al. Predicting bacteremia and bacteremic mortality in liver transplant recipients. Liver Transpl. 2000;6(1):54–61.PubMedGoogle Scholar
  13. 13.
    Nobre V, et al. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med. 2008;177(5):498–505.CrossRefPubMedGoogle Scholar
  14. 14.
    Schuetz P, Christ-Crain M, Muller B. Procalcitonin and other biomarkers to improve assessment and antibiotic stewardship in infections--hope for hype? Swiss Med Wkly. 2009;139(23–24):318–26.PubMedGoogle Scholar
  15. 15.
    Schuetz P, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA. 2009;302(10):1059–66.CrossRefPubMedGoogle Scholar
  16. 16.
    van den Broek MA, et al. Procalcitonin as a prognostic marker for infectious complications in liver transplant recipients in an intensive care unit. Liver Transpl. 2010;16(3):402–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Brodska H, et al. Marked increase of procalcitonin after the administration of anti-thymocyte globulin in patients before hematopoietic stem cell transplantation does not indicate sepsis: a prospective study. Crit Care. 2009;13(2):R37.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kusne S, et al. Infections after liver transplantation. An analysis of 101 consecutive cases. Medicine (Baltimore). 1988;67(2):132–43.CrossRefGoogle Scholar
  19. 19.
    Neofytos D, et al. Epidemiology and outcome of invasive fungal infections in solid organ transplant recipients. Transpl Infect Dis. 2010;12(3):220–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Singh N, et al. Invasive fungal infections in liver transplant recipients receiving tacrolimus as the primary immunosuppressive agent. Clin Infect Dis. 1997;24(2):179–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Tollemar J, et al. The incidence and diagnosis of invasive fungal infections in liver transplant recipients. Transplant Proc. 1990;22(1):242–4.PubMedGoogle Scholar
  22. 22.
    Pappas PG, et al. Invasive fungal infections in low-risk liver transplant recipients: a multi-center prospective observational study. Am J Transplant. 2006;6(2):386–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Ergin F, et al. Invasive aspergillosis in solid-organ transplantation: report of eight cases and review of the literature. Transpl Int. 2003;16(4):280–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Husain S, et al. Changes in the spectrum and risk factors for invasive candidiasis in liver transplant recipients: prospective, multicenter, case-controlled study. Transplantation. 2003;75(12):2023–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Miranda DR, et al. Environment and costs in surgical intensive care unit. The implication of selective decontamination of the digestive tract (SDD). Acta Anaesthesiol Belg. 1983;34(3):223–32.PubMedGoogle Scholar
  26. 26.
    Arnow PM. Prevention of bacterial infection in the transplant recipient. The role of selective bowel decontamination. Infect Dis Clin N Am. 1995;9(4):849–62.Google Scholar
  27. 27.
    Bion JF, et al. Selective decontamination of the digestive tract reduces gram-negative pulmonary colonization but not systemic endotoxemia in patients undergoing elective liver transplantation. Crit Care Med. 1994;22(1):40–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Hellinger WC, et al. A randomized, prospective, double-blinded evaluation of selective bowel decontamination in liver transplantation. Transplantation. 2002;73(12):1904–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Zwaveling JH, et al. Selective decontamination of the digestive tract to prevent postoperative infection: a randomized placebo-controlled trial in liver transplant patients. Crit Care Med. 2002;30(6):1204–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Safdar N, Said A, Lucey MR. The role of selective digestive decontamination for reducing infection in patients undergoing liver transplantation: a systematic review and meta-analysis. Liver Transpl. 2004;10(7):817–27.CrossRefPubMedGoogle Scholar
  31. 31.
    Winston DJ, Pakrasi A, Busuttil RW. Prophylactic fluconazole in liver transplant recipients. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1999;131(10):729–37.CrossRefPubMedGoogle Scholar
  32. 32.
    Singh N, et al. Preemptive prophylaxis with a lipid preparation of amphotericin B for invasive fungal infections in liver transplant recipients requiring renal replacement therapy. Transplantation. 2001;71(7):910–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Cruciani M, et al. Antifungal prophylaxis in liver transplant patients: a systematic review and meta-analysis. Liver Transpl. 2006;12(5):850–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Pappas PG, Silveira FP. Candida in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S173–9.CrossRefPubMedGoogle Scholar
  35. 35.
    National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470–85.CrossRefGoogle Scholar
  36. 36.
    Asensio A, et al. Colonization and infection with methicillin-resistant Staphylococcus aureus: associated factors and eradication. Infect Control Hosp Epidemiol. 1996;17(1):20–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Wertheim HF, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Russell DL, et al. Outcomes of colonization with MRSA and VRE among liver transplant candidates and recipients. Am J Transplant. 2008;8(8):1737–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Singh N, et al. Methicillin-resistant Staphylococcus aureus: the other emerging resistant gram-positive coccus among liver transplant recipients. Clin Infect Dis. 2000;30(2):322–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997;10(4):781–91.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Rosenthal VD, Maki DG, Graves N. The International Nosocomial Infection Control Consortium (INICC): goals and objectives, description of surveillance methods, and operational activities. Am J Infect Control. 2008;36(9):e1–12.CrossRefPubMedGoogle Scholar
  42. 42.
    Pallin DJ, et al. Increased US emergency department visits for skin and soft tissue infections, and changes in antibiotic choices, during the emergence of community-associated methicillin-resistant Staphylococcus aureus. Ann Emerg Med. 2008;51(3):291–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Rybak M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98.CrossRefPubMedGoogle Scholar
  44. 44.
    Hidayat LK, et al. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med. 2006;166(19):2138–44.CrossRefPubMedGoogle Scholar
  45. 45.
    Hutschala D, et al. Influence of vancomycin on renal function in critically ill patients after cardiac surgery: continuous versus intermittent infusion. Anesthesiology. 2009;111(2):356–65.CrossRefPubMedGoogle Scholar
  46. 46.
    Ingram PR, et al. Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother. 2008;62(1):168–71.CrossRefPubMedGoogle Scholar
  47. 47.
    Jeffres MN, et al. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29(6):1107–15.CrossRefPubMedGoogle Scholar
  48. 48.
    Lodise TP, et al. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52(4):1330–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lodise TP, et al. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49(4):507–14.CrossRefPubMedGoogle Scholar
  50. 50.
    Hong S, et al. Vancomycin-induced acute granulomatous interstitial nephritis: therapeutic options. Am J Med Sci. 2007;334(4):296–300.CrossRefPubMedGoogle Scholar
  51. 51.
    Micek ST. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2007;45(Suppl 3):S184–90.CrossRefPubMedGoogle Scholar
  52. 52.
    Calfee DP, et al. Strategies to prevent transmission of methicillin-resistant Staphylococcus aureus in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(Suppl 1):S62–80.CrossRefPubMedGoogle Scholar
  53. 53.
    Coia JE, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J Hosp Infect. 2006;63(Suppl 1):S1–44.CrossRefPubMedGoogle Scholar
  54. 54.
    Siegel JD, et al. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control. 2007;35(10 Suppl 2):S165–93.CrossRefPubMedGoogle Scholar
  55. 55.
    Singh N, et al. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med. 2000;162(2 Pt 1):505–11.CrossRefPubMedGoogle Scholar
  56. 56.
    Patel R, et al. Natural history of vancomycin-resistant enterococcal colonization in liver and kidney transplant recipients. Liver Transpl. 2001;7(1):27–31.CrossRefPubMedGoogle Scholar
  57. 57.
    Paterson DL, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis. 2004;39(1):31–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Asensio A, et al. Effect of antibiotic prophylaxis on the risk of surgical site infection in orthotopic liver transplant. Liver Transpl. 2008;14(6):799–805.CrossRefPubMedGoogle Scholar
  59. 59.
    Newell KA, et al. Incidence and outcome of infection by vancomycin-resistant enterococcus following orthotopic liver transplantation. Transplantation. 1998;65(3):439–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Nusair A, et al. Infection control experience in a cooperative care center for transplant patients. Infect Control Hosp Epidemiol. 2008;29(5):424–9.CrossRefPubMedGoogle Scholar
  61. 61.
    McNeil SA, et al. Vancomycin-resistant enterococcal colonization and infection in liver transplant candidates and recipients: a prospective surveillance study. Clin Infect Dis. 2006;42(2):195–203.CrossRefPubMedGoogle Scholar
  62. 62.
    Ghanem G, et al. Outcomes for and risk factors associated with vancomycin-resistant enterococcus faecalis and vancomycin-resistant enterococcus faecium bacteremia in cancer patients. Infect Control Hosp Epidemiol. 2007;28(9):1054–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Babcock HM, et al. Successful treatment of vancomycin-resistant enterococcus endocarditis with oral linezolid. Clin Infect Dis. 2001;32(9):1373–5.CrossRefPubMedGoogle Scholar
  64. 64.
    McNeil SA, et al. Successful treatment of vancomycin-resistant enterococcus faecium bacteremia with linezolid after failure of treatment with synercid (quinupristin/dalfopristin). Clin Infect Dis. 2000;30(2):403–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Munoz P, et al. Linezolid therapy for infective endocarditis. Clin Microbiol Infect. 2007;13(2):211–5.CrossRefPubMedGoogle Scholar
  66. 66.
    Swoboda S, et al. Tigecycline for the treatment of patients with severe sepsis or septic shock: a drug use evaluation in a surgical intensive care unit. J Antimicrob Chemother. 2008;61(3):729–33.CrossRefPubMedGoogle Scholar
  67. 67.
    Swoboda S, et al. Septic shock due to vancomycin-resistant enterococci infection. Tigecycline monotherapy. Anaesthesist. 2007;56(2):169–74.CrossRefPubMedGoogle Scholar
  68. 68.
    Dowzicky MJ, Park CH. Update on antimicrobial susceptibility rates among gram-negative and gram-positive organisms in the United States: results from the Tigecycline Evaluation and Surveillance Trial (TEST) 2005 to 2007. Clin Ther. 2008;30(11):2040–50.CrossRefPubMedGoogle Scholar
  69. 69.
    Linares L, et al. Klebsiella pneumoniae infection in solid organ transplant recipients: epidemiology and antibiotic resistance. Transplant Proc. 2010;42(8):2941–3.CrossRefPubMedGoogle Scholar
  70. 70.
    Bert F, et al. Pretransplant fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae and infection after liver transplant, France. Emerg Infect Dis. 2012;18(6):908–16.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Aguiar EB, et al. Outcome of bacteremia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae after solid organ transplantation. Transplant Proc. 2014;46(6):1753–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Jones RN, Biedenbach DJ, Gales AC. Sustained activity and spectrum of selected extended-spectrum beta-lactams (carbapenems and cefepime) against Enterobacter spp. and ESBL-producing Klebsiella spp.: report from the SENTRY antimicrobial surveillance program (USA, 1997–2000). Int J Antimicrob Agents. 2003;21(1):1–7.CrossRefPubMedGoogle Scholar
  73. 73.
    van Duijn PJ, Dautzenberg MJ, Oostdijk EA. Recent trends in antibiotic resistance in European ICUs. Curr Opin Crit Care. 2011;17(6):658–65.CrossRefPubMedGoogle Scholar
  74. 74.
    Moreno A, et al. Bloodstream infections among transplant recipients: results of a nationwide surveillance in Spain. Am J Transplant. 2007;7(11):2579–86.CrossRefPubMedGoogle Scholar
  75. 75.
    Bodro M, et al. Extensively drug-resistant Pseudomonas aeruginosa bacteremia in solid organ transplant recipients. Transplantation. 2015;99(3):616–22.CrossRefPubMedGoogle Scholar
  76. 76.
    Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 2012;25(3):450–70.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    van Duin D, Bonomo RA. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: second-generation beta-lactam/beta-lactamase inhibitor combinations. Clin Infect Dis. 2016;63(2):234–41.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    van Duin D, van Delden C, A.S.T.I.D.C.o. Practice. Multidrug-resistant gram-negative bacteria infections in solid organ transplantation. Am J Transplant. 2013;13(Suppl 4):31–41.CrossRefPubMedGoogle Scholar
  79. 79.
    Kalpoe JS, et al. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl. 2012;18(4):468–74.CrossRefPubMedGoogle Scholar
  80. 80.
    Swaminathan M, et al. Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol. 2013;34(8):809–17.CrossRefPubMedGoogle Scholar
  81. 81.
    Giannella M, et al. Risk factors for infection with carbapenem-resistant Klebsiella pneumoniae after liver transplantation: the importance of pre- and posttransplant colonization. Am J Transplant. 2015;15(6):1708–15.CrossRefPubMedGoogle Scholar
  82. 82.
    Pereira MR, et al. Risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl. 2015;21(12):1511–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Souli M, et al. An outbreak of infection due to beta-lactamase Klebsiella pneumoniae Carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis. 2010;50(3):364–73.CrossRefPubMedGoogle Scholar
  84. 84.
    Maltezou HC, et al. Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect. 2009;58(3):213–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Perez F, et al. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin Pharmacother. 2016;17(6):761–81.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Saidel-Odes L, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol. 2012;33(1):14–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;358(12):1271–81.CrossRefPubMedGoogle Scholar
  88. 88.
    Freire MP, et al. Polymyxin use as a risk factor for colonization or infection with polymyxin-resistant Acinetobacter baumannii after liver transplantation. Transpl Infect Dis. 2014;16(3):369–78.CrossRefPubMedGoogle Scholar
  89. 89.
    Zhong L, et al. Multidrug-resistant gram-negative bacterial infections after liver transplantation – spectrum and risk factors. J Infect. 2012;64(3):299–310.CrossRefPubMedGoogle Scholar
  90. 90.
    Ye QF, et al. Frequency and clinical outcomes of ESKAPE bacteremia in solid organ transplantation and the risk factors for mortality. Transpl Infect Dis. 2014;16(5):767–74.CrossRefPubMedGoogle Scholar
  91. 91.
    Liu H, et al. Predictors of mortality in solid-organ transplant recipients with infections caused by Acinetobacter baumannii. Ther Clin Risk Manag. 2015;11:1251–7.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Shi SH, et al. Multidrug resistant gram-negative bacilli as predominant bacteremic pathogens in liver transplant recipients. Transpl Infect Dis. 2009;11(5):405–12.CrossRefPubMedGoogle Scholar
  93. 93.
    Shields RK, et al. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS One. 2012;7(12):e52349.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Otan E, et al. Acinetobacter infection in a liver transplantation intensive care unit. Transplant Proc. 2013;45(3):998–1000.CrossRefPubMedGoogle Scholar
  95. 95.
    Aydemir H, et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect. 2013;141(6):1214–22.CrossRefPubMedGoogle Scholar
  96. 96.
    Patterson JE. Epidemiology of fungal infections in solid organ transplant patients. Transpl Infect Dis. 1999;1(4):229–36.CrossRefPubMedGoogle Scholar
  97. 97.
    Marr KA, et al. Candidemia in allogeneic blood and marrow transplant recipients: evolution of risk factors after the adoption of prophylactic fluconazole. J Infect Dis. 2000;181(1):309–16.CrossRefPubMedGoogle Scholar
  98. 98.
    Pappas PG, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(5):503–35.CrossRefPubMedGoogle Scholar
  99. 99.
    Groll AH, et al. Lipid formulations of amphotericin B: clinical perspectives for the management of invasive fungal infections in children with cancer. Klin Padiatr. 1998;210(4):264–73.CrossRefPubMedGoogle Scholar
  100. 100.
    Espinel-Ingroff A, et al. International and multicenter comparison of EUCAST and CLSI M27-A2 broth microdilution methods for testing susceptibilities of Candida spp. to fluconazole, itraconazole, posaconazole, and voriconazole. J Clin Microbiol. 2005;43(8):3884–9.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Lipp HP. Antifungal agents--clinical pharmacokinetics and drug interactions. Mycoses. 2008;51(Suppl 1):7–18.CrossRefPubMedGoogle Scholar
  102. 102.
    Kauffman CA, Carver PL. Update on echinocandin antifungals. Semin Respir Crit Care Med. 2008;29(2):211–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Bennett JE. Echinocandins for candidemia in adults without neutropenia. N Engl J Med. 2006;355(11):1154–9.CrossRefPubMedGoogle Scholar
  104. 104.
    Saner F, et al. Safety profile of concomitant use of caspofungin and cyclosporine or tacrolimus in liver transplant patients. Infection. 2006;34(6):328–32.CrossRefPubMedGoogle Scholar
  105. 105.
    Brown RS Jr, et al. Incidence and significance of Aspergillus cultures following liver and kidney transplantation. Transplantation. 1996;61(4):666–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Kusne S, et al. Factors associated with invasive lung aspergillosis and the significance of positive Aspergillus culture after liver transplantation. J Infect Dis. 1992;166(6):1379–83.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Singh N, et al. Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: a prospective, multicenter, observational study. Transplantation. 2006;81(3):320–6.CrossRefPubMedGoogle Scholar
  108. 108.
    Denning DW. Therapeutic outcome in invasive aspergillosis. Clin Infect Dis. 1996;23(3):608–15.CrossRefPubMedGoogle Scholar
  109. 109.
    Paterson DL, Singh N. Invasive aspergillosis in transplant recipients. Medicine (Baltimore). 1999;78(2):123–38.CrossRefGoogle Scholar
  110. 110.
    Kwak EJ, et al. Efficacy of galactomannan antigen in the Platelia Aspergillus enzyme immunoassay for diagnosis of invasive aspergillosis in liver transplant recipients. J Clin Microbiol. 2004;42(1):435–8.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Herbrecht R, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408–15.CrossRefPubMedGoogle Scholar
  112. 112.
    Groetzner J, et al. Caspofungin as first-line therapy for the treatment of invasive aspergillosis after thoracic organ transplantation. J Heart Lung Transplant. 2008;27(1):1–6.CrossRefPubMedGoogle Scholar
  113. 113.
    Carby MR, Hodson ME, Banner NR. Refractory pulmonary aspergillosis treated with caspofungin after heart-lung transplantation. Transpl Int. 2004;17(9):545–8.PubMedGoogle Scholar
  114. 114.
    Denning DW, et al. Micafungin (FK463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis. J Infect. 2006;53(5):337–49.CrossRefPubMedGoogle Scholar
  115. 115.
    Cornely OA, et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med. 2007;356(4):348–59.CrossRefPubMedGoogle Scholar
  116. 116.
    Ullmann AJ, et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N Engl J Med. 2007;356(4):335–47.CrossRefPubMedGoogle Scholar
  117. 117.
    Walsh TJ, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis. 2007;44(1):2–12.CrossRefPubMedGoogle Scholar
  118. 118.
    Walsh TJ, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(3):327–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of General-, Visceral- and Transplant SurgeryMedical Center University EssenEssenGermany

Personalised recommendations