Sepsis and Infection



Bacterial infections Pneumonia Fungal infection Selective bowl decontamination Septic shock Antibiotics 


  1. 1.
    Starzl TE, et al. Orthotopic liver transplantation in ninety-three patients. Surg Gynecol Obstet. 1976;142(4):487–505.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Rubin RH. The direct and indirect effects of infection in liver transplantation: pathogenesis, impact, and clinical management. Curr Clin Top Infect Dis. 2002;22:125–54.PubMedGoogle Scholar
  3. 3.
    Martin GS, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348(16):1546–54.CrossRefPubMedGoogle Scholar
  4. 4.
    Paterson DL. “Collateral damage” from cephalosporin or quinolone antibiotic therapy. Clin Infect Dis. 2004;38(Suppl 4):S341–5.CrossRefPubMedGoogle Scholar
  5. 5.
    Bernstein JM. Treatment of community-acquired pneumonia--IDSA guidelines. Infectious diseases society of America. Chest. 1999;115(3 Suppl):9S–13S.CrossRefPubMedGoogle Scholar
  6. 6.
    Jensen WA, et al. Pulmonary complications of orthotopic liver transplantation. Transplantation. 1986;42(5):484–90.CrossRefPubMedGoogle Scholar
  7. 7.
    Saner FH, et al. Pulmonary and blood stream infections in adult living donor and cadaveric liver transplant patients. Transplantation. 2008;85(11):1564–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Singh N, et al. Infectious complications in liver transplant recipients on tacrolimus. Prospective analysis of 88 consecutive liver transplants. Transplantation. 1994;58(7):774–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Wade JJ, et al. Bacterial and fungal infections after liver transplantation: an analysis of 284 patients. Hepatology. 1995;21(5):1328–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Wagener MM, Yu VL. Bacteremia in transplant recipients: a prospective study of demographics, etiologic agents, risk factors, and outcomes. Am J Infect Control. 1992;20(5):239–47.CrossRefPubMedGoogle Scholar
  11. 11.
    Abraham EP, Chain E. An enzyme from bacteria able to destroy penicillin. 1940. Rev Infect Dis. 1988;10(4):677–8.Google Scholar
  12. 12.
    Singh N, et al. Predicting bacteremia and bacteremic mortality in liver transplant recipients. Liver Transpl. 2000;6(1):54–61.PubMedGoogle Scholar
  13. 13.
    Nobre V, et al. Use of procalcitonin to shorten antibiotic treatment duration in septic patients: a randomized trial. Am J Respir Crit Care Med. 2008;177(5):498–505.CrossRefPubMedGoogle Scholar
  14. 14.
    Schuetz P, Christ-Crain M, Muller B. Procalcitonin and other biomarkers to improve assessment and antibiotic stewardship in infections--hope for hype? Swiss Med Wkly. 2009;139(23–24):318–26.PubMedGoogle Scholar
  15. 15.
    Schuetz P, et al. Effect of procalcitonin-based guidelines vs standard guidelines on antibiotic use in lower respiratory tract infections: the ProHOSP randomized controlled trial. JAMA. 2009;302(10):1059–66.CrossRefPubMedGoogle Scholar
  16. 16.
    van den Broek MA, et al. Procalcitonin as a prognostic marker for infectious complications in liver transplant recipients in an intensive care unit. Liver Transpl. 2010;16(3):402–10.CrossRefPubMedGoogle Scholar
  17. 17.
    Brodska H, et al. Marked increase of procalcitonin after the administration of anti-thymocyte globulin in patients before hematopoietic stem cell transplantation does not indicate sepsis: a prospective study. Crit Care. 2009;13(2):R37.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Kusne S, et al. Infections after liver transplantation. An analysis of 101 consecutive cases. Medicine (Baltimore). 1988;67(2):132–43.CrossRefGoogle Scholar
  19. 19.
    Neofytos D, et al. Epidemiology and outcome of invasive fungal infections in solid organ transplant recipients. Transpl Infect Dis. 2010;12(3):220–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Singh N, et al. Invasive fungal infections in liver transplant recipients receiving tacrolimus as the primary immunosuppressive agent. Clin Infect Dis. 1997;24(2):179–84.CrossRefPubMedGoogle Scholar
  21. 21.
    Tollemar J, et al. The incidence and diagnosis of invasive fungal infections in liver transplant recipients. Transplant Proc. 1990;22(1):242–4.PubMedGoogle Scholar
  22. 22.
    Pappas PG, et al. Invasive fungal infections in low-risk liver transplant recipients: a multi-center prospective observational study. Am J Transplant. 2006;6(2):386–91.CrossRefPubMedGoogle Scholar
  23. 23.
    Ergin F, et al. Invasive aspergillosis in solid-organ transplantation: report of eight cases and review of the literature. Transpl Int. 2003;16(4):280–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Husain S, et al. Changes in the spectrum and risk factors for invasive candidiasis in liver transplant recipients: prospective, multicenter, case-controlled study. Transplantation. 2003;75(12):2023–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Miranda DR, et al. Environment and costs in surgical intensive care unit. The implication of selective decontamination of the digestive tract (SDD). Acta Anaesthesiol Belg. 1983;34(3):223–32.PubMedGoogle Scholar
  26. 26.
    Arnow PM. Prevention of bacterial infection in the transplant recipient. The role of selective bowel decontamination. Infect Dis Clin N Am. 1995;9(4):849–62.Google Scholar
  27. 27.
    Bion JF, et al. Selective decontamination of the digestive tract reduces gram-negative pulmonary colonization but not systemic endotoxemia in patients undergoing elective liver transplantation. Crit Care Med. 1994;22(1):40–9.CrossRefPubMedGoogle Scholar
  28. 28.
    Hellinger WC, et al. A randomized, prospective, double-blinded evaluation of selective bowel decontamination in liver transplantation. Transplantation. 2002;73(12):1904–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Zwaveling JH, et al. Selective decontamination of the digestive tract to prevent postoperative infection: a randomized placebo-controlled trial in liver transplant patients. Crit Care Med. 2002;30(6):1204–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Safdar N, Said A, Lucey MR. The role of selective digestive decontamination for reducing infection in patients undergoing liver transplantation: a systematic review and meta-analysis. Liver Transpl. 2004;10(7):817–27.CrossRefPubMedGoogle Scholar
  31. 31.
    Winston DJ, Pakrasi A, Busuttil RW. Prophylactic fluconazole in liver transplant recipients. A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1999;131(10):729–37.CrossRefPubMedGoogle Scholar
  32. 32.
    Singh N, et al. Preemptive prophylaxis with a lipid preparation of amphotericin B for invasive fungal infections in liver transplant recipients requiring renal replacement therapy. Transplantation. 2001;71(7):910–3.CrossRefPubMedGoogle Scholar
  33. 33.
    Cruciani M, et al. Antifungal prophylaxis in liver transplant patients: a systematic review and meta-analysis. Liver Transpl. 2006;12(5):850–8.CrossRefPubMedGoogle Scholar
  34. 34.
    Pappas PG, Silveira FP. Candida in solid organ transplant recipients. Am J Transplant. 2009;9(Suppl 4):S173–9.CrossRefPubMedGoogle Scholar
  35. 35.
    National Nosocomial Infections Surveillance System. National Nosocomial Infections Surveillance (NNIS) system report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004;32(8):470–85.CrossRefGoogle Scholar
  36. 36.
    Asensio A, et al. Colonization and infection with methicillin-resistant Staphylococcus aureus: associated factors and eradication. Infect Control Hosp Epidemiol. 1996;17(1):20–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Wertheim HF, et al. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis. 2005;5(12):751–62.CrossRefPubMedGoogle Scholar
  38. 38.
    Russell DL, et al. Outcomes of colonization with MRSA and VRE among liver transplant candidates and recipients. Am J Transplant. 2008;8(8):1737–43.CrossRefPubMedGoogle Scholar
  39. 39.
    Singh N, et al. Methicillin-resistant Staphylococcus aureus: the other emerging resistant gram-positive coccus among liver transplant recipients. Clin Infect Dis. 2000;30(2):322–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997;10(4):781–91.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Rosenthal VD, Maki DG, Graves N. The International Nosocomial Infection Control Consortium (INICC): goals and objectives, description of surveillance methods, and operational activities. Am J Infect Control. 2008;36(9):e1–12.CrossRefPubMedGoogle Scholar
  42. 42.
    Pallin DJ, et al. Increased US emergency department visits for skin and soft tissue infections, and changes in antibiotic choices, during the emergence of community-associated methicillin-resistant Staphylococcus aureus. Ann Emerg Med. 2008;51(3):291–8.CrossRefPubMedGoogle Scholar
  43. 43.
    Rybak M, et al. Therapeutic monitoring of vancomycin in adult patients: a consensus review of the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, and the Society of Infectious Diseases Pharmacists. Am J Health Syst Pharm. 2009;66(1):82–98.CrossRefPubMedGoogle Scholar
  44. 44.
    Hidayat LK, et al. High-dose vancomycin therapy for methicillin-resistant Staphylococcus aureus infections: efficacy and toxicity. Arch Intern Med. 2006;166(19):2138–44.CrossRefPubMedGoogle Scholar
  45. 45.
    Hutschala D, et al. Influence of vancomycin on renal function in critically ill patients after cardiac surgery: continuous versus intermittent infusion. Anesthesiology. 2009;111(2):356–65.CrossRefPubMedGoogle Scholar
  46. 46.
    Ingram PR, et al. Risk factors for nephrotoxicity associated with continuous vancomycin infusion in outpatient parenteral antibiotic therapy. J Antimicrob Chemother. 2008;62(1):168–71.CrossRefPubMedGoogle Scholar
  47. 47.
    Jeffres MN, et al. A retrospective analysis of possible renal toxicity associated with vancomycin in patients with health care-associated methicillin-resistant Staphylococcus aureus pneumonia. Clin Ther. 2007;29(6):1107–15.CrossRefPubMedGoogle Scholar
  48. 48.
    Lodise TP, et al. Larger vancomycin doses (at least four grams per day) are associated with an increased incidence of nephrotoxicity. Antimicrob Agents Chemother. 2008;52(4):1330–6.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lodise TP, et al. Relationship between initial vancomycin concentration-time profile and nephrotoxicity among hospitalized patients. Clin Infect Dis. 2009;49(4):507–14.CrossRefPubMedGoogle Scholar
  50. 50.
    Hong S, et al. Vancomycin-induced acute granulomatous interstitial nephritis: therapeutic options. Am J Med Sci. 2007;334(4):296–300.CrossRefPubMedGoogle Scholar
  51. 51.
    Micek ST. Alternatives to vancomycin for the treatment of methicillin-resistant Staphylococcus aureus infections. Clin Infect Dis. 2007;45(Suppl 3):S184–90.CrossRefPubMedGoogle Scholar
  52. 52.
    Calfee DP, et al. Strategies to prevent transmission of methicillin-resistant Staphylococcus aureus in acute care hospitals. Infect Control Hosp Epidemiol. 2008;29(Suppl 1):S62–80.CrossRefPubMedGoogle Scholar
  53. 53.
    Coia JE, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. J Hosp Infect. 2006;63(Suppl 1):S1–44.CrossRefPubMedGoogle Scholar
  54. 54.
    Siegel JD, et al. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control. 2007;35(10 Suppl 2):S165–93.CrossRefPubMedGoogle Scholar
  55. 55.
    Singh N, et al. Short-course empiric antibiotic therapy for patients with pulmonary infiltrates in the intensive care unit. A proposed solution for indiscriminate antibiotic prescription. Am J Respir Crit Care Med. 2000;162(2 Pt 1):505–11.CrossRefPubMedGoogle Scholar
  56. 56.
    Patel R, et al. Natural history of vancomycin-resistant enterococcal colonization in liver and kidney transplant recipients. Liver Transpl. 2001;7(1):27–31.CrossRefPubMedGoogle Scholar
  57. 57.
    Paterson DL, et al. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum beta-lactamases. Clin Infect Dis. 2004;39(1):31–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Asensio A, et al. Effect of antibiotic prophylaxis on the risk of surgical site infection in orthotopic liver transplant. Liver Transpl. 2008;14(6):799–805.CrossRefPubMedGoogle Scholar
  59. 59.
    Newell KA, et al. Incidence and outcome of infection by vancomycin-resistant enterococcus following orthotopic liver transplantation. Transplantation. 1998;65(3):439–42.CrossRefPubMedGoogle Scholar
  60. 60.
    Nusair A, et al. Infection control experience in a cooperative care center for transplant patients. Infect Control Hosp Epidemiol. 2008;29(5):424–9.CrossRefPubMedGoogle Scholar
  61. 61.
    McNeil SA, et al. Vancomycin-resistant enterococcal colonization and infection in liver transplant candidates and recipients: a prospective surveillance study. Clin Infect Dis. 2006;42(2):195–203.CrossRefPubMedGoogle Scholar
  62. 62.
    Ghanem G, et al. Outcomes for and risk factors associated with vancomycin-resistant enterococcus faecalis and vancomycin-resistant enterococcus faecium bacteremia in cancer patients. Infect Control Hosp Epidemiol. 2007;28(9):1054–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Babcock HM, et al. Successful treatment of vancomycin-resistant enterococcus endocarditis with oral linezolid. Clin Infect Dis. 2001;32(9):1373–5.CrossRefPubMedGoogle Scholar
  64. 64.
    McNeil SA, et al. Successful treatment of vancomycin-resistant enterococcus faecium bacteremia with linezolid after failure of treatment with synercid (quinupristin/dalfopristin). Clin Infect Dis. 2000;30(2):403–4.CrossRefPubMedGoogle Scholar
  65. 65.
    Munoz P, et al. Linezolid therapy for infective endocarditis. Clin Microbiol Infect. 2007;13(2):211–5.CrossRefPubMedGoogle Scholar
  66. 66.
    Swoboda S, et al. Tigecycline for the treatment of patients with severe sepsis or septic shock: a drug use evaluation in a surgical intensive care unit. J Antimicrob Chemother. 2008;61(3):729–33.CrossRefPubMedGoogle Scholar
  67. 67.
    Swoboda S, et al. Septic shock due to vancomycin-resistant enterococci infection. Tigecycline monotherapy. Anaesthesist. 2007;56(2):169–74.CrossRefPubMedGoogle Scholar
  68. 68.
    Dowzicky MJ, Park CH. Update on antimicrobial susceptibility rates among gram-negative and gram-positive organisms in the United States: results from the Tigecycline Evaluation and Surveillance Trial (TEST) 2005 to 2007. Clin Ther. 2008;30(11):2040–50.CrossRefPubMedGoogle Scholar
  69. 69.
    Linares L, et al. Klebsiella pneumoniae infection in solid organ transplant recipients: epidemiology and antibiotic resistance. Transplant Proc. 2010;42(8):2941–3.CrossRefPubMedGoogle Scholar
  70. 70.
    Bert F, et al. Pretransplant fecal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae and infection after liver transplant, France. Emerg Infect Dis. 2012;18(6):908–16.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Aguiar EB, et al. Outcome of bacteremia caused by extended-spectrum beta-lactamase-producing Enterobacteriaceae after solid organ transplantation. Transplant Proc. 2014;46(6):1753–6.CrossRefPubMedGoogle Scholar
  72. 72.
    Jones RN, Biedenbach DJ, Gales AC. Sustained activity and spectrum of selected extended-spectrum beta-lactams (carbapenems and cefepime) against Enterobacter spp. and ESBL-producing Klebsiella spp.: report from the SENTRY antimicrobial surveillance program (USA, 1997–2000). Int J Antimicrob Agents. 2003;21(1):1–7.CrossRefPubMedGoogle Scholar
  73. 73.
    van Duijn PJ, Dautzenberg MJ, Oostdijk EA. Recent trends in antibiotic resistance in European ICUs. Curr Opin Crit Care. 2011;17(6):658–65.CrossRefPubMedGoogle Scholar
  74. 74.
    Moreno A, et al. Bloodstream infections among transplant recipients: results of a nationwide surveillance in Spain. Am J Transplant. 2007;7(11):2579–86.CrossRefPubMedGoogle Scholar
  75. 75.
    Bodro M, et al. Extensively drug-resistant Pseudomonas aeruginosa bacteremia in solid organ transplant recipients. Transplantation. 2015;99(3):616–22.CrossRefPubMedGoogle Scholar
  76. 76.
    Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev. 2012;25(3):450–70.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    van Duin D, Bonomo RA. Ceftazidime/Avibactam and Ceftolozane/Tazobactam: second-generation beta-lactam/beta-lactamase inhibitor combinations. Clin Infect Dis. 2016;63(2):234–41.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    van Duin D, van Delden C, A.S.T.I.D.C.o. Practice. Multidrug-resistant gram-negative bacteria infections in solid organ transplantation. Am J Transplant. 2013;13(Suppl 4):31–41.CrossRefPubMedGoogle Scholar
  79. 79.
    Kalpoe JS, et al. Mortality associated with carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl. 2012;18(4):468–74.CrossRefPubMedGoogle Scholar
  80. 80.
    Swaminathan M, et al. Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol. 2013;34(8):809–17.CrossRefPubMedGoogle Scholar
  81. 81.
    Giannella M, et al. Risk factors for infection with carbapenem-resistant Klebsiella pneumoniae after liver transplantation: the importance of pre- and posttransplant colonization. Am J Transplant. 2015;15(6):1708–15.CrossRefPubMedGoogle Scholar
  82. 82.
    Pereira MR, et al. Risk factors and outcomes of carbapenem-resistant Klebsiella pneumoniae infections in liver transplant recipients. Liver Transpl. 2015;21(12):1511–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Souli M, et al. An outbreak of infection due to beta-lactamase Klebsiella pneumoniae Carbapenemase 2-producing K. pneumoniae in a Greek University Hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis. 2010;50(3):364–73.CrossRefPubMedGoogle Scholar
  84. 84.
    Maltezou HC, et al. Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect. 2009;58(3):213–9.CrossRefPubMedGoogle Scholar
  85. 85.
    Perez F, et al. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: can we apply “precision medicine” to antimicrobial chemotherapy? Expert Opin Pharmacother. 2016;17(6):761–81.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Saidel-Odes L, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol. 2012;33(1):14–9.CrossRefPubMedGoogle Scholar
  87. 87.
    Munoz-Price LS, Weinstein RA. Acinetobacter infection. N Engl J Med. 2008;358(12):1271–81.CrossRefPubMedGoogle Scholar
  88. 88.
    Freire MP, et al. Polymyxin use as a risk factor for colonization or infection with polymyxin-resistant Acinetobacter baumannii after liver transplantation. Transpl Infect Dis. 2014;16(3):369–78.CrossRefPubMedGoogle Scholar
  89. 89.
    Zhong L, et al. Multidrug-resistant gram-negative bacterial infections after liver transplantation – spectrum and risk factors. J Infect. 2012;64(3):299–310.CrossRefPubMedGoogle Scholar
  90. 90.
    Ye QF, et al. Frequency and clinical outcomes of ESKAPE bacteremia in solid organ transplantation and the risk factors for mortality. Transpl Infect Dis. 2014;16(5):767–74.CrossRefPubMedGoogle Scholar
  91. 91.
    Liu H, et al. Predictors of mortality in solid-organ transplant recipients with infections caused by Acinetobacter baumannii. Ther Clin Risk Manag. 2015;11:1251–7.PubMedPubMedCentralGoogle Scholar
  92. 92.
    Shi SH, et al. Multidrug resistant gram-negative bacilli as predominant bacteremic pathogens in liver transplant recipients. Transpl Infect Dis. 2009;11(5):405–12.CrossRefPubMedGoogle Scholar
  93. 93.
    Shields RK, et al. Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS One. 2012;7(12):e52349.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Otan E, et al. Acinetobacter infection in a liver transplantation intensive care unit. Transplant Proc. 2013;45(3):998–1000.CrossRefPubMedGoogle Scholar
  95. 95.
    Aydemir H, et al. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol Infect. 2013;141(6):1214–22.CrossRefPubMedGoogle Scholar
  96. 96.
    Patterson JE. Epidemiology of fungal infections in solid organ transplant patients. Transpl Infect Dis. 1999;1(4):229–36.CrossRefPubMedGoogle Scholar
  97. 97.
    Marr KA, et al. Candidemia in allogeneic blood and marrow transplant recipients: evolution of risk factors after the adoption of prophylactic fluconazole. J Infect Dis. 2000;181(1):309–16.CrossRefPubMedGoogle Scholar
  98. 98.
    Pappas PG, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(5):503–35.CrossRefPubMedGoogle Scholar
  99. 99.
    Groll AH, et al. Lipid formulations of amphotericin B: clinical perspectives for the management of invasive fungal infections in children with cancer. Klin Padiatr. 1998;210(4):264–73.CrossRefPubMedGoogle Scholar
  100. 100.
    Espinel-Ingroff A, et al. International and multicenter comparison of EUCAST and CLSI M27-A2 broth microdilution methods for testing susceptibilities of Candida spp. to fluconazole, itraconazole, posaconazole, and voriconazole. J Clin Microbiol. 2005;43(8):3884–9.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Lipp HP. Antifungal agents--clinical pharmacokinetics and drug interactions. Mycoses. 2008;51(Suppl 1):7–18.CrossRefPubMedGoogle Scholar
  102. 102.
    Kauffman CA, Carver PL. Update on echinocandin antifungals. Semin Respir Crit Care Med. 2008;29(2):211–9.CrossRefPubMedGoogle Scholar
  103. 103.
    Bennett JE. Echinocandins for candidemia in adults without neutropenia. N Engl J Med. 2006;355(11):1154–9.CrossRefPubMedGoogle Scholar
  104. 104.
    Saner F, et al. Safety profile of concomitant use of caspofungin and cyclosporine or tacrolimus in liver transplant patients. Infection. 2006;34(6):328–32.CrossRefPubMedGoogle Scholar
  105. 105.
    Brown RS Jr, et al. Incidence and significance of Aspergillus cultures following liver and kidney transplantation. Transplantation. 1996;61(4):666–9.CrossRefPubMedGoogle Scholar
  106. 106.
    Kusne S, et al. Factors associated with invasive lung aspergillosis and the significance of positive Aspergillus culture after liver transplantation. J Infect Dis. 1992;166(6):1379–83.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Singh N, et al. Combination of voriconazole and caspofungin as primary therapy for invasive aspergillosis in solid organ transplant recipients: a prospective, multicenter, observational study. Transplantation. 2006;81(3):320–6.CrossRefPubMedGoogle Scholar
  108. 108.
    Denning DW. Therapeutic outcome in invasive aspergillosis. Clin Infect Dis. 1996;23(3):608–15.CrossRefPubMedGoogle Scholar
  109. 109.
    Paterson DL, Singh N. Invasive aspergillosis in transplant recipients. Medicine (Baltimore). 1999;78(2):123–38.CrossRefGoogle Scholar
  110. 110.
    Kwak EJ, et al. Efficacy of galactomannan antigen in the Platelia Aspergillus enzyme immunoassay for diagnosis of invasive aspergillosis in liver transplant recipients. J Clin Microbiol. 2004;42(1):435–8.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Herbrecht R, et al. Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med. 2002;347(6):408–15.CrossRefPubMedGoogle Scholar
  112. 112.
    Groetzner J, et al. Caspofungin as first-line therapy for the treatment of invasive aspergillosis after thoracic organ transplantation. J Heart Lung Transplant. 2008;27(1):1–6.CrossRefPubMedGoogle Scholar
  113. 113.
    Carby MR, Hodson ME, Banner NR. Refractory pulmonary aspergillosis treated with caspofungin after heart-lung transplantation. Transpl Int. 2004;17(9):545–8.PubMedGoogle Scholar
  114. 114.
    Denning DW, et al. Micafungin (FK463), alone or in combination with other systemic antifungal agents, for the treatment of acute invasive aspergillosis. J Infect. 2006;53(5):337–49.CrossRefPubMedGoogle Scholar
  115. 115.
    Cornely OA, et al. Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med. 2007;356(4):348–59.CrossRefPubMedGoogle Scholar
  116. 116.
    Ullmann AJ, et al. Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N Engl J Med. 2007;356(4):335–47.CrossRefPubMedGoogle Scholar
  117. 117.
    Walsh TJ, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis. 2007;44(1):2–12.CrossRefPubMedGoogle Scholar
  118. 118.
    Walsh TJ, et al. Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis. 2008;46(3):327–60.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of General-, Visceral- and Transplant SurgeryMedical Center University EssenEssenGermany

Personalised recommendations