Skip to main content

Coagulopathy: Pathophysiology, Evaluation, and Treatment

  • 1052 Accesses

Keywords

  • Bleeding
  • Rotational thrombelastogram
  • Thrombelastography
  • Clotting
  • Hypercoaguability
  • Thrombosis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-64298-7_15
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-64298-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 15.1
Fig. 15.2
Fig. 15.3
Fig. 15.4
Fig. 15.5
Fig. 15.6
Fig. 15.7
Fig. 15.8
Fig. 15.9

Abbreviations

AT:

Antithrombin

CVP:

Central venous pressure

DDAVP:

Desmopressin

EACA:

Epsilon-aminocaproic acid

EPCR:

Endothelial protein C receptor

FFP:

Fresh frozen plasma

INR:

International normalized ratio

PAI-1:

Plasminogen activator inhibitor

PT:

Prothrombin time

PTT:

Partial thromboplastin time

RBC:

Red blood cell

TACO:

Transfusion associated circulatory overload

TAFI:

Thrombin activatable fibrinolysis factor

TEG:

Thromboelastography

TF:

Tissue factor

TFPI:

Tissue factor pathway inhibitor

TM:

Thrombomodulin

tPA:

Tissue plasminogen activator

TRALI:

Transfusion related acute lung injury

TxA:

Tranexamic acid

VWF:

von Willebrand factor

References

  1. Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145(3638):1310–2.

    CAS  PubMed  CrossRef  Google Scholar 

  2. Hoffman M, Monroe DM, Roberts HR. Cellular interactions in hemostasis. Haemostasis. 1996;26(Suppl 1):12–6.

    CAS  PubMed  Google Scholar 

  3. Oliver JA, Monroe DM, Roberts HR, Hoffman M. Thrombin activates factor XI on activated platelets in the absence of factor XII. Arterioscler Thromb Vasc Biol. 1999;19(1):170–7.

    CAS  PubMed  CrossRef  Google Scholar 

  4. Baglia FA, Walsh PN. Prothrombin is a cofactor for the binding of factor XI to the platelet surface and for platelet-mediated factor XI activation by thrombin. Biochemistry. 1998;37(8):2271–81.

    CAS  PubMed  CrossRef  Google Scholar 

  5. Franssen J, Salemink I, Willems GM, Wun TC, Hemker HC, Lindhout T. Prothrombinase is protected from inactivation by tissue factor pathway inhibitor: competition between prothrombin and inhibitor. Biochem J. 1997;323(Pt 1):33–7.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  6. Lu G, Broze GJ Jr, Krishnaswamy S. Formation of factors IXa and Xa by the extrinsic pathway: differential regulation by tissue factor pathway inhibitor and antithrombin III. J Biol Chem. 2004;279(17):17241–9.

    CAS  PubMed  CrossRef  Google Scholar 

  7. Esmon CT, Stenflo J, Suttie JWA. new vitamin K-dependent protein. A phospholipid-binding zymogen of a serine esterase. J Biol Chem. 1976;251(10):3052–6.

    CAS  PubMed  Google Scholar 

  8. Esmon CT. The endothelial protein C receptor. Curr Opin Hematol. 2006;13(5):382–5.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem. 1982;257(14):7944–7.

    CAS  PubMed  Google Scholar 

  10. Lisman T, Leebeek FW. Hemostatic alterations in liver disease: a review on pathophysiology, clinical consequences, and treatment. Dig Surg. 2007;24(4):250–8.

    PubMed  CrossRef  Google Scholar 

  11. Tripodi A. The coagulopathy of chronic liver disease: is there a causal relationship with bleeding? No. Eur J Intern Med. 2010;21(2):65–9.

    PubMed  CrossRef  Google Scholar 

  12. Lisman T, Bongers TN, Adelmeijer J, Janssen HL, de Maat MP, de Groot PG, et al. Elevated levels of von Willebrand Factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology. 2006;44(1):53–61.

    CAS  PubMed  CrossRef  Google Scholar 

  13. Monroe DM, Hoffman M. The coagulation cascade in cirrhosis. Clin Liver Dis. 2009;13(1):1–9.

    PubMed  CrossRef  Google Scholar 

  14. Raya-Sanchez JM, Gonzalez-Reimers E, Rodriguez-Martin JM, Santolaria-Fernandez F, Molina-Perez M, Rodriguez-Moreno F, et al. Coagulation inhibitors in alcoholic liver cirrhosis. Alcohol (Fayetteville, NY). 1998;15(1):19–23.

    CAS  CrossRef  Google Scholar 

  15. Hedner U, Erhardsten E. Hemostatic disorders in liver diseases. In: Schiff ER, Sorrell MF, Maddrey WC, editors. Diseases of the liver. Philadelphia: Lippincott Wiliams & Wilkins; 2003.

    Google Scholar 

  16. Tripodi A, Salerno F, Chantarangkul V, Clerici M, Cazzaniga M, Primignani M, et al. Evidence of normal thrombin generation in cirrhosis despite abnormal conventional coagulation tests. Hepatology (Baltimore, Md). 2005;41(3):553–8.

    CAS  CrossRef  Google Scholar 

  17. Jennings I, Calne RY, Baglin TP. Predictive value of von Willebrand factor to ristocetin cofactor ratio and thrombin-antithrombin complex levels for hepatic vessel thrombosis and graft rejection after liver transplantation. Transplantation. 1994;57(7):1046–51.

    CAS  PubMed  CrossRef  Google Scholar 

  18. Aster RH. Pooling of platelets in the spleen: role in the pathogenesis of “hypersplenic” thrombocytopenia. J Clin Invest. 1966;45(5):645–57.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  19. Goulis J, Chau TN, Jordan S, Mehta AB, Watkinson A, Rolles K, et al. Thrombopoietin concentrations are low in patients with cirrhosis and thrombocytopenia and are restored after orthotopic liver transplantation. Gut. 1999;44(5):754–8.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  20. Nagamine T, Ohtuka T, Takehara K, Arai T, Takagi H, Mori M. Thrombocytopenia associated with hepatitis C viral infection. J Hepatol. 1996;24(2):135–40.

    CAS  PubMed  CrossRef  Google Scholar 

  21. Levine RF, Spivak JL, Meagher RC, Sieber F. Effect of ethanol on thrombopoiesis. Br J Haematol. 1986;62(2):345–54.

    CAS  PubMed  CrossRef  Google Scholar 

  22. Klipstein FA, Lindenbaum J. Folate deficiency in chronic liver disease. Blood. 1965;25:443–56.

    CAS  PubMed  Google Scholar 

  23. Ben-Ari Z, Osman E, Hutton RA, Burroughs AK. Disseminated intravascular coagulation in liver cirrhosis: fact or fiction? Am J Gastroenterol. 1999;94(10):2977–82.

    CAS  PubMed  CrossRef  Google Scholar 

  24. Carr JM. Disseminated intravascular coagulation in cirrhosis. Hepatology (Baltimore, Md). 1989;10(1):103–10.

    CAS  CrossRef  Google Scholar 

  25. Ordinas A, Escolar G, Cirera I, Vinas M, Cobo F, Bosch J, et al. Existence of a platelet-adhesion defect in patients with cirrhosis independent of hematocrit: studies under flow conditions. Hepatology (Baltimore, Md). 1996;24(5):1137–42.

    CAS  CrossRef  Google Scholar 

  26. Escolar G, Cases A, Vinas M, Pino M, Calls J, Cirera I, et al. Evaluation of acquired platelet dysfunctions in uremic and cirrhotic patients using the platelet function analyzer (PFA-100): influence of hematocrit elevation. Haematologica. 1999;84(7):614–9.

    CAS  PubMed  Google Scholar 

  27. Laffi G, Cominelli F, Ruggiero M, Fedi S, Chiarugi VP, La Villa G, et al. Altered platelet function in cirrhosis of the liver: impairment of inositol lipid and arachidonic acid metabolism in response to agonists. Hepatology (Baltimore, MD). 1988;8(6):1620–6.

    CAS  CrossRef  Google Scholar 

  28. Laffi G, La Villa G, Pinzani M, Ciabattoni G, Patrignani P, Mannelli M, et al. Altered renal and platelet arachidonic acid metabolism in cirrhosis. Gastroenterology. 1986;90(2):274–82.

    CAS  PubMed  CrossRef  Google Scholar 

  29. Laffi G, Marra F, Failli P, Ruggiero M, Cecchi E, Carloni V, et al. Defective signal transduction in platelets from cirrhotics is associated with increased cyclic nucleotides. Gastroenterology. 1993;105(1):148–56.

    CAS  PubMed  CrossRef  Google Scholar 

  30. Ordinas A, Maragall S, Castillo R, Nurden AT. A glycoprotein I defect in the platelets of three patients with severe cirrhosis of the liver. Thromb Res. 1978;13(2):297–302.

    CAS  PubMed  CrossRef  Google Scholar 

  31. Sanchez-Roig MJ, Rivera J, Moraleda JM, Garcia VV. Quantitative defect of glycoprotein Ib in severe cirrhotic patients. Am J Hematol. 1994;45(1):10–5.

    CAS  PubMed  CrossRef  Google Scholar 

  32. Pasche B, Ouimet H, Francis S, Loscalzo J. Structural changes in platelet glycoprotein IIb/IIIa by plasmin: determinants and functional consequences. Blood. 1994;83(2):404–14.

    CAS  PubMed  Google Scholar 

  33. Cahill PA, Redmond EM, Sitzmann JV. Endothelial dysfunction in cirrhosis and portal hypertension. Pharmacol Ther. 2001;89(3):273–93.

    CAS  PubMed  CrossRef  Google Scholar 

  34. Desai K, Mistry P, Bagget C, Burroughs AK, Bellamy MF, Owen JS. Inhibition of platelet aggregation by abnormal high density lipoprotein particles in plasma from patients with hepatic cirrhosis. Lancet (London, England). 1989;1(8640):693–5.

    CAS  CrossRef  Google Scholar 

  35. Turitto VT, Baumgartner HR. Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res. 1975;9(3):335–44.

    CAS  PubMed  CrossRef  Google Scholar 

  36. Tripodi A, Primignani M, Chantarangkul V, Clerici M, Dell'Era A, Fabris F, et al. Thrombin generation in patients with cirrhosis: the role of platelets. Hepatology (Baltimore, MD). 2006;44(2):440–5.

    CAS  CrossRef  Google Scholar 

  37. Lisman T, Adelmeijer J, de Groot PG, Janssen HL, Leebeek FW. No evidence for an intrinsic platelet defect in patients with liver cirrhosis—studies under flow conditions. J Thromb Haemost. 2006;4(9):2070–2.

    CAS  PubMed  CrossRef  Google Scholar 

  38. Caldwell SH, Hoffman M, Lisman T, Macik BG, Northup PG, Reddy KR, et al. Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology (Baltimore, MD). 2006;44(4):1039–46.

    CAS  CrossRef  Google Scholar 

  39. Brophy MT, Fiore L, Deykin D. Hemostasis. 3rd ed. Philadelphia: W.B. Saunders; 1996.

    Google Scholar 

  40. Steib A, Gengenwin N, Freys G, Boudjema K, Levy S, Otteni JC. Predictive factors of hyperfibrinolytic activity during liver transplantation in cirrhotic patients. Br J Anaesth. 1994;73(5):645–8.

    CAS  PubMed  CrossRef  Google Scholar 

  41. Pernambuco JR, Langley PG, Hughes RD, Izumi S, Williams R. Activation of the fibrinolytic system in patients with fulminant liver failure. Hepatology (Baltimore, MD). 1993;18(6):1350–6.

    CAS  CrossRef  Google Scholar 

  42. Gunawan B, Runyon B. The efficacy and safety of epsilon-aminocaproic acid treatment in patients with cirrhosis and hyperfibrinolysis. Aliment Pharmacol Ther. 2006;23(1):115–20.

    CAS  PubMed  CrossRef  Google Scholar 

  43. Hu KQ, Yu AS, Tiyyagura L, Redeker AG, Reynolds TB. Hyperfibrinolytic activity in hospitalized cirrhotic patients in a referral liver unit. Am J Gastroenterol. 2001;96(5):1581–6.

    CAS  PubMed  CrossRef  Google Scholar 

  44. Boks AL, Brommer EJ, Schalm SW, Van Vliet HH. Hemostasis and fibrinolysis in severe liver failure and their relation to hemorrhage. Hepatology (Baltimore, MD). 1986;6(1):79–86.

    CAS  CrossRef  Google Scholar 

  45. Leebeek FW, Kluft C, Knot EA, de Maat MP, Wilson JH. A shift in balance between profibrinolytic and antifibrinolytic factors causes enhanced fibrinolysis in cirrhosis. Gastroenterology. 1991;101(5):1382–90.

    CAS  PubMed  CrossRef  Google Scholar 

  46. Ferro D, Quintarelli C, Saliola M, Alessandri C, Basili S, Bonavita MS, et al. Prevalence of hyperfibrinolysis in patients with liver cirrhosis. Fibrinolysis. 1993;7:59–62.

    CrossRef  Google Scholar 

  47. Kujovich JL. Hemostatic defects in end stage liver disease. Crit Care Clin. 2005;21(3):563–87.

    PubMed  CrossRef  Google Scholar 

  48. Stein SF, Harker LA. Kinetic and functional studies of platelets, fibrinogen, and plasminogen in patients with hepatic cirrhosis. J Lab Clin Med. 1982;99(2):217–30.

    CAS  PubMed  Google Scholar 

  49. Aoki N, Yamanaka T. The alpha2-plasmin inhibitor levels in liver diseases. Clin Chim Acta. 1978;84(1–2):99–105.

    CAS  PubMed  Google Scholar 

  50. Knot EA, Drijfhout HR, ten Cate JW, de Jong E, Iburg AH, Kahle LH, et al. alpha 2-Plasmin inhibitor metabolism in patients with liver cirrhosis. J Lab Clin Med. 1985;105(3):353–8.

    CAS  PubMed  Google Scholar 

  51. Marongiu F, Mamusa AM, Mameli G, Mulas G, Solinas A, Demelia L, et al. alpha 2 Antiplasmin and disseminated intravascular coagulation in liver cirrhosis. Thromb Res. 1985;37(2):287–94.

    CAS  PubMed  CrossRef  Google Scholar 

  52. Gram J, Jespersen J, Ingeberg S, Bentsen KD, Bach E. Plasma histidine-rich glycoprotein and plasminogen in patients with liver disease. Thromb Res. 1985;39(4):411–7.

    CAS  PubMed  CrossRef  Google Scholar 

  53. Leebeek FW, Kluft C, Knot EA, De Maat MP. Histidine-rich glycoprotein is elevated in mild liver cirrhosis and decreased in moderate and severe liver cirrhosis. J Lab Clin Med. 1989;113(4):493–7.

    CAS  PubMed  Google Scholar 

  54. Biland L, Duckert F, Prisender S, Nyman D. Quantitative estimation of coagulation factors in liver disease. The diagnostic and prognostic value of factor XIII, factor V and plasminogen. Thromb Haemost. 1978;39(3):646–56.

    CAS  PubMed  Google Scholar 

  55. Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem. 1995;270(24):14477–84.

    CAS  PubMed  CrossRef  Google Scholar 

  56. Hendriks D, Wang W, Scharpe S, Lommaert MP, van Sande M. Purification and characterization of a new arginine carboxypeptidase in human serum. Biochim Biophys Acta. 1990;1034(1):86–92.

    CAS  PubMed  CrossRef  Google Scholar 

  57. Wang W, Hendriks DF, Scharpe SS. Carboxypeptidase U, a plasma carboxypeptidase with high affinity for plasminogen. J Biol Chem. 1994;269(22):15937–44.

    CAS  PubMed  Google Scholar 

  58. Rijken DC, Emeis JJ. Clearance of the heavy and light polypeptide chains of human tissue-type plasminogen activator in rats. Biochem J. 1986;238(3):643–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Einarsson M, Smedsrod B, Pertoft H. Uptake and degradation of tissue plasminogen activator in rat liver. Thromb Haemost. 1988;59(3):474–9.

    CAS  PubMed  Google Scholar 

  60. Amitrano L, Guardascione MA, Brancaccio V, Balzano A. Coagulation disorders in liver disease. Semin Liver Dis. 2002;22(1):83–96.

    CAS  PubMed  CrossRef  Google Scholar 

  61. Violi F, Ferro D, Basili S, Quintarelli C, Musca A, Cordova C, et al. Hyperfibrinolysis resulting from clotting activation in patients with different degrees of cirrhosis. The CALC Group. Coagulation Abnormalities in Liver Cirrhosis. Hepatology (Baltimore, MD). 1993;17(1):78–83.

    CAS  CrossRef  Google Scholar 

  62. Van Thiel DH, George M, Fareed J. Low levels of thrombin activatable fibrinolysis inhibitor (TAFI) in patients with chronic liver disease. Thromb Haemost. 2001;85(4):667–70.

    PubMed  CrossRef  Google Scholar 

  63. Colucci M, Binetti BM, Branca MG, Clerici C, Morelli A, Semeraro N, et al. Deficiency of thrombin activatable fibrinolysis inhibitor in cirrhosis is associated with increased plasma fibrinolysis. Hepatology (Baltimore, MD). 2003;38(1):230–7.

    CAS  CrossRef  Google Scholar 

  64. Lisman T, Leebeek FW, Mosnier LO, Bouma BN, Meijers JC, Janssen HL, et al. Thrombin-activatable fibrinolysis inhibitor deficiency in cirrhosis is not associated with increased plasma fibrinolysis. Gastroenterology. 2001;121(1):131–9.

    CAS  PubMed  CrossRef  Google Scholar 

  65. Aytac S, Turkay C, Bavbek N, Kosar A. Hemostasis and global fibrinolytic capacity in chronic liver disease. Blood Coagul Fibrinolysis. 2007;18(7):623–6.

    PubMed  CrossRef  Google Scholar 

  66. Hambleton J, Leung LL, Levi M. Coagulation: consultative hemostasis. In: American Society of Hematology Education Program, editor. Hematology/the Education Program of the American Society of Hematology; 2002. p. 335–52.

    Google Scholar 

  67. Senzolo M, Burra P, Cholongitas E, Burroughs AK. New insights into the coagulopathy of liver disease and liver transplantation. World J Gastroenterol. 2006;12(48):7725–36.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  68. Porte RJ. Coagulation and fibrinolysis in orthotopic liver transplantation: current views and insights. Semin Thromb Hemost. 1993;19(3):191–6.

    CAS  PubMed  CrossRef  Google Scholar 

  69. Homatas J, Wasantapruek S, Von Kaulla E, Von Kaulla KN, Eiseman B. Clotting abnormalities following orthotopic and heterotopic transplantation of marginally preserved pig livers. Acta Hepatosplenol. 1971;18(1):14–26.

    CAS  PubMed  Google Scholar 

  70. Porte RJ, Bontempo FA, Knot EA, Lewis JH, Kang YG, Starzl TE. Systemic effects of tissue plasminogen activator-associated fibrinolysis and its relation to thrombin generation in orthotopic liver transplantation. Transplantation. 1989;47(6):978–84.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  71. Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46(5):927–34.

    CAS  PubMed  CrossRef  Google Scholar 

  72. Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology (Baltimore, MD). 1998;28(4):926–31.

    CAS  CrossRef  Google Scholar 

  73. Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology. 1998;114(2):344–51.

    CAS  PubMed  CrossRef  Google Scholar 

  74. Sarela AI, Mihaimeed FM, Batten JJ, Davidson BR, Mathie RT. Hepatic and splanchnic nitric oxide activity in patients with cirrhosis. Gut. 1999;44(5):749–53.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  75. Graupera M, Garcia-Pagan JC, Pares M, Abraldes JG, Rosello J, Bosch J, et al. Cyclooxygenase-1 inhibition corrects endothelial dysfunction in cirrhotic rat livers. J Hepatol. 2003;39(4):515–21.

    CAS  PubMed  CrossRef  Google Scholar 

  76. Graupera M, March S, Engel P, Rodes J, Bosch J, Garcia-Pagan JC. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am J Physiol Gastrointest Liver Physiol. 2005;288(4):G763–70.

    CAS  PubMed  CrossRef  Google Scholar 

  77. Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology (Baltimore, MD). 2006;43(2 Suppl 1):S121–31.

    CAS  CrossRef  Google Scholar 

  78. Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39(4 Suppl 2):S125–30.

    PubMed  CrossRef  Google Scholar 

  79. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology (Baltimore, MD). 2002;35(2):478–91.

    CAS  CrossRef  Google Scholar 

  80. Rand ML, Leung R, Packham MA. Platelet function assays. Transfus Apher Sci. 2003;28(3):307–17.

    PubMed  CrossRef  Google Scholar 

  81. Rodgers RP, Levin J. A critical reappraisal of the bleeding time. Semin Thromb Hemost. 1990;16:1):1–20.

    PubMed  Google Scholar 

  82. de Franchis R, Arcidiacono PG, Carpinelli L, Andreoni B, Cestari L, Brunati S, et al. Randomized controlled trial of desmopressin plus terlipressin vs. terlipressin alone for the treatment of acute variceal hemorrhage in cirrhotic patients: a multicenter, double-blind study. New Italian Endoscopic Club. Hepatology (Baltimore, MD). 1993;18(5):1102–7.

    CrossRef  Google Scholar 

  83. Wong AY, Irwin MG, Hui TW, Fung SK, Fan ST, Ma ES. Desmopressin does not decrease blood loss and transfusion requirements in patients undergoing hepatectomy. Can J Anaesth. 2003;50(1):14–20.

    PubMed  CrossRef  Google Scholar 

  84. Pivalizza EG, Warters RD, Gebhard R. Desmopressin before liver transplantation. Can J Anaesth. 2003;50(7):748–9.

    PubMed  CrossRef  Google Scholar 

  85. Kundu SK, Heilmann EJ, Sio R, Garcia C, Davidson RM, Ostgaard RA. Description of an in vitro platelet function analyzer—PFA-100. Semin Thromb Hemost. 1995;21(Suppl 2):106–12.

    PubMed  Google Scholar 

  86. Quick AJ. The prothrombin in hemophilia and in obstructive jaundice. J Biol Chem. 1935;109:73–4.

    Google Scholar 

  87. Olson JD, Brandt JT, Chandler WL, Van Cott EM, Cunningham MT, Hayes TE, et al. Laboratory reporting of the international normalized ratio: progress and problems. Arch Pathol Lab Med. 2007;131(11):1641–7.

    PubMed  Google Scholar 

  88. Trotter JF, Brimhall B, Arjal R, Phillips C. Specific laboratory methodologies achieve higher model for endstage liver disease (MELD) scores for patients listed for liver transplantation. Liver Transpl. 2004;10(8):995–1000.

    PubMed  CrossRef  Google Scholar 

  89. Kovacs MJ, Wong A, MacKinnon K, Weir K, Keeney M, Boyle E, et al. Assessment of the validity of the INR system for patients with liver impairment. Thromb Haemost. 1994;71(6):727–30.

    CAS  PubMed  Google Scholar 

  90. Denson KW, Reed SV, Haddon ME, Woodhams B, Brucato C, Ruiz J. Comparative studies of rabbit and human recombinant tissue factor reagents. Thromb Res. 1999;94(4):255–61.

    CAS  PubMed  CrossRef  Google Scholar 

  91. Robert A, Chazouilleres O. Prothrombin time in liver failure: time, ratio, activity percentage, or international normalized ratio? Hepatology (Baltimore, MD). 1996;24(6):1392–4.

    CAS  CrossRef  Google Scholar 

  92. Ewe K. Bleeding after liver biopsy does not correlate with indices of peripheral coagulation. Dig Dis Sci. 1981;26(5):388–93.

    CAS  PubMed  CrossRef  Google Scholar 

  93. Segal JB, Dzik WH. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review. Transfusion. 2005;45(9):1413–25.

    PubMed  CrossRef  Google Scholar 

  94. Diaz LK, Teruya J. Liver biopsy. N Engl J Med. 2001;344(26):2030.

    CAS  PubMed  Google Scholar 

  95. Terjung B, Lemnitzer I, Dumoulin FL, Effenberger W, Brackmann HH, Sauerbruch T, et al. Bleeding complications after percutaneous liver biopsy. An analysis of risk factors. Digestion. 2003;67(3):138–45.

    PubMed  CrossRef  Google Scholar 

  96. Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med. 2001;344(7):495–500.

    CAS  PubMed  CrossRef  Google Scholar 

  97. Dahlback B. Progress in the understanding of the protein C anticoagulant pathway. Int J Hematol. 2004;79(2):109–16.

    PubMed  CrossRef  CAS  Google Scholar 

  98. Reikvam H, Steien E, Hauge B, Liseth K, Hagen KG, Storkson R, et al. Thrombelastography. Transfus Apher Sci. 2009;40(2):119–23.

    PubMed  CrossRef  Google Scholar 

  99. Di Cera E. Thrombin as procoagulant and anticoagulant. J Thromb Haemost. 2007;5(Suppl 1):196–202.

    PubMed  CrossRef  Google Scholar 

  100. Bombeli T, Spahn DR. Updates in perioperative coagulation: physiology and management of thromboembolism and haemorrhage. Br J Anaesth. 2004;93(2):275–87.

    CAS  PubMed  CrossRef  Google Scholar 

  101. Kang YG, Martin DJ, Marquez J, Lewis JH, Bontempo FA, Shaw BW Jr, et al. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation. Anesth Analg. 1985;64(9):888–96.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  102. Koh MB, Hunt BJ. The management of perioperative bleeding. Blood Rev. 2003;17(3):179–85.

    CAS  PubMed  CrossRef  Google Scholar 

  103. Stravitz RT, Lisman T, Luketic VA, Sterling RK, Puri P, Fuchs M, et al. Minimal effects of acute liver injury/acute liver failure on hemostasis as assessed by thromboelastography. J Hepatol. 2012;56(1):129–36.

    PubMed  CrossRef  Google Scholar 

  104. Hendriks HG, van der Meer J, de Wolf JT, Peeters PM, Porte RJ, de Jong K, et al. Intraoperative blood transfusion requirement is the main determinant of early surgical re-intervention after orthotopic liver transplantation. Transpl Int. 2005;17(11):673–9.

    CAS  PubMed  CrossRef  Google Scholar 

  105. Cacciarelli TV, Keeffe EB, Moore DH, Burns W, Busque S, Concepcion W, et al. Effect of intraoperative blood transfusion on patient outcome in hepatic transplantation. Arch Surg (Chicago, Ill: 1960). 1999;134(1):25–9.

    CAS  CrossRef  Google Scholar 

  106. Stainsby D, Williamson L, Jones H, Cohen H. 6 Years of shot reporting—its influence on UK blood safety. Transfus Apher Sci. 2004;31(2):123–31.

    PubMed  CrossRef  Google Scholar 

  107. de Boer MT, Molenaar IQ, Hendriks HG, Slooff MJ, Porte RJ. Minimizing blood loss in liver transplantation: progress through research and evolution of techniques. Dig Surg. 2005;22(4):265–75.

    PubMed  CrossRef  Google Scholar 

  108. Porte RJ, Hendriks HG, Slooff MJ. Blood conservation in liver transplantation: the role of aprotinin. J Cardiothorac Vasc Anesth. 2004;18(4 Suppl):31S–7S.

    CAS  PubMed  CrossRef  Google Scholar 

  109. Ramos E, Dalmau A, Sabate A, Lama C, Llado L, Figueras J, et al. Intraoperative red blood cell transfusion in liver transplantation: influence on patient outcome, prediction of requirements, and measures to reduce them. Liver Transpl. 2003;9(12):1320–7.

    PubMed  CrossRef  Google Scholar 

  110. O’Shaughnessy DF, Atterbury C, Bolton Maggs P, Murphy M, Thomas D, Yates S, et al. Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br J Haematol. 2004;126(1):11–28.

    PubMed  CrossRef  Google Scholar 

  111. Goodnough LT, Johnston MF, Shah T, Chernosky A. A two-institution study of transfusion practice in 78 consecutive adult elective open-heart procedures. Am J Clin Pathol. 1989;91(4):468–72.

    CAS  PubMed  CrossRef  Google Scholar 

  112. Dara SI, Rana R, Afessa B, Moore SB, Gajic O. Fresh frozen plasma transfusion in critically ill medical patients with coagulopathy. Crit Care Med. 2005;33(11):2667–71.

    PubMed  CrossRef  Google Scholar 

  113. Burns ER, Goldberg SN, Wenz B. Paradoxic effect of multiple mild coagulation factor deficiencies on the prothrombin time and activated partial thromboplastin time. Am J Clin Pathol. 1993;100(2):94–8.

    CAS  PubMed  CrossRef  Google Scholar 

  114. Dzik WH. Predicting hemorrhage using preoperative coagulation screening assays. Curr Hematol Rep. 2004;3(5):324–30.

    PubMed  Google Scholar 

  115. Massicotte L, Beaulieu D, Thibeault L, Roy JD, Marleau D, Lapointe R, et al. Coagulation defects do not predict blood product requirements during liver transplantation. Transplantation. 2008;85(7):956–62.

    PubMed  CrossRef  Google Scholar 

  116. MacLennan S, Williamson LM. Risks of fresh frozen plasma and platelets. J Trauma. 2006;60(6 Suppl):S46–50.

    PubMed  Google Scholar 

  117. Holness L, Knippen MA, Simmons L, Lachenbruch PA. Fatalities caused by TRALI. Transfus Med Rev. 2004;18(3):184–8.

    PubMed  CrossRef  Google Scholar 

  118. Toy P, Popovsky MA, Abraham E, Ambruso DR, Holness LG, Kopko PM, et al. Transfusion-related acute lung injury: definition and review. Crit Care Med. 2005;33(4):721–6.

    CrossRef  PubMed  Google Scholar 

  119. Fresh frozen plasma use. [Internet]. Available from: http://www.shotuk.org.

  120. Massicotte L, Lenis S, Thibeault L, Sassine MP, Seal RF, Roy A. Effect of low central venous pressure and phlebotomy on blood product transfusion requirements during liver transplantations. Liver Transpl. 2006;12(1):117–23.

    CrossRef  PubMed  Google Scholar 

  121. Massicotte L, Sassine MP, Lenis S, Seal RF, Roy A. Survival rate changes with transfusion of blood products during liver transplantation. Can J Anaesth. 2005;52(2):148–55.

    PubMed  CrossRef  Google Scholar 

  122. American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology. 2006;105(1):198–208.

    CrossRef  Google Scholar 

  123. Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology. 2000;118(1):183–91.

    CAS  PubMed  CrossRef  Google Scholar 

  124. Cywes R, Packham MA, Tietze L, Sanabria JR, Harvey PR, Phillips MJ, et al. Role of platelets in hepatic allograft preservation injury in the rat. Hepatology (Baltimore, MD). 1993;18(3):635–47.

    CAS  CrossRef  Google Scholar 

  125. Porte RJ, Blauw E, Knot EA, de Maat MP, de Ruiter C, Minke Bakker C, et al. Role of the donor liver in the origin of platelet disorders and hyperfibrinolysis in liver transplantation. J Hepatol. 1994;21(4):592–600.

    CAS  PubMed  CrossRef  Google Scholar 

  126. Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312(5770):104–7.

    CAS  PubMed  CrossRef  Google Scholar 

  127. Himmelreich G, Hundt K, Neuhaus P, Roissant R, Riess H. Decreased platelet aggregation after reperfusion in orthotopic liver transplantation. Transplantation. 1992;53(3):582–6.

    CAS  PubMed  CrossRef  Google Scholar 

  128. Himmelreich G, Hundt K, Isenberg C, Bechstein WO, Neuhaus P, Riess H. Thrombocytopenia and platelet dysfunction in orthotopic liver transplantation. Semin Thromb Hemost. 1993;19(3):209–12.

    CAS  PubMed  CrossRef  Google Scholar 

  129. Day JR, Punjabi PP, Randi AM, Haskard DO, Landis RC, Taylor KM. Clinical inhibition of the seven-transmembrane thrombin receptor (PAR1) by intravenous aprotinin during cardiothoracic surgery. Circulation. 2004;110(17):2597–600.

    CAS  PubMed  CrossRef  Google Scholar 

  130. Federici AB, Berkowitz SD, Lattuada A, Mannucci PM. Degradation of von Willebrand factor in patients with acquired clinical conditions in which there is heightened proteolysis. Blood. 1993;81(3):720–5.

    CAS  PubMed  Google Scholar 

  131. Porte RJ, Leebeek FW. Pharmacological strategies to decrease transfusion requirements in patients undergoing surgery. Drugs. 2002;62(15):2193–211.

    CAS  PubMed  CrossRef  Google Scholar 

  132. Schalm SW, Terpstra JL, Achterberg JR, Noordhoek Hegt V, Haverkate F, Popescu DT, et al. Orthotopic liver transplantation: an experimental study on mechanisms of hemorrhagic diathesis and thrombosis. Surgery. 1975;78(4):499–507.

    CAS  PubMed  Google Scholar 

  133. de Boer MT, Christensen MC, Asmussen M, van der Hilst CS, Hendriks HG, Slooff MJ, et al. The impact of intraoperative transfusion of platelets and red blood cells on survival after liver transplantation. Anesth Analg. 2008;106(1):32–44; table of contents.

    PubMed  CrossRef  Google Scholar 

  134. Dalmau A, Sabate A, Koo M, Rafecas A, Figueras J, Jaurrieta E. Prophylactic use of tranexamic acid and incidence of arterial thrombosis in liver transplantation. Anesth Analg. 2001;93(2):516.

    CAS  PubMed  CrossRef  Google Scholar 

  135. Mor E, Jennings L, Gonwa TA, Holman MJ, Gibbs J, Solomon H, et al. The impact of operative bleeding on outcome in transplantation of the liver. Surg Gynecol Obstet. 1993;176(3):219–27.

    CAS  PubMed  Google Scholar 

  136. Grabau CM, Crago SF, Hoff LK, Simon JA, Melton CA, Ott BJ, et al. Performance standards for therapeutic abdominal paracentesis. Hepatology (Baltimore, MD). 2004;40(2):484–8.

    CrossRef  Google Scholar 

  137. Lin CH, Shih FY, Ma MH, Chiang WC, Yang CW, Ko PC. Should bleeding tendency deter abdominal paracentesis? Dig Liver Dis. 2005;37(12):946–51.

    PubMed  CrossRef  Google Scholar 

  138. Hanson SR, Slichter SJ. Platelet kinetics in patients with bone marrow hypoplasia: evidence for a fixed platelet requirement. Blood. 1985;66(5):1105–9.

    CAS  PubMed  Google Scholar 

  139. Greeno E, McCullough J, Weisdorf D. Platelet utilization and the transfusion trigger: a prospective analysis. Transfusion. 2007;47(2):201–5.

    PubMed  CrossRef  Google Scholar 

  140. Cameron B, Rock G, Olberg B, Neurath D. Evaluation of platelet transfusion triggers in a tertiary-care hospital. Transfusion. 2007;47(2):206–11.

    PubMed  CrossRef  Google Scholar 

  141. Rinder HM, Arbini AA, Snyder EL. Optimal dosing and triggers for prophylactic use of platelet transfusions. Curr Opin Hematol. 1999;6(6):437–41.

    CAS  PubMed  CrossRef  Google Scholar 

  142. Tinmouth AT, Freedman J. Prophylactic platelet transfusions: which dose is the best dose? A review of the literature. Transfus Med Rev. 2003;17(3):181–93.

    PubMed  CrossRef  Google Scholar 

  143. Schlossberg HR, Herman JH. Platelet dosing. Transfus Apher Sci. 2003;28(3):221–6.

    PubMed  CrossRef  Google Scholar 

  144. American Association of Blood Banks. Blood transfusion therapy: a physician’s handbook. 7th ed. Bethesda, MD: American Association of Blood Banks; 2002.

    Google Scholar 

  145. Rebulla P, Finazzi G, Marangoni F, Avvisati G, Gugliotta L, Tognoni G, et al. The threshold for prophylactic platelet transfusions in adults with acute myeloid leukemia. Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto. N Engl J Med. 1997;337(26):1870–5.

    CAS  PubMed  CrossRef  Google Scholar 

  146. Rebulla P. In vitro and in vivo properties of various types of platelets. Vox Sang. 1998;74(Suppl 2):217–22.

    PubMed  CrossRef  Google Scholar 

  147. Stanca CM, Montazem AH, Lawal A, Zhang JX, Schiano TD. Intranasal desmopressin versus blood transfusion in cirrhotic patients with coagulopathy undergoing dental extraction: a randomized controlled trial. J Oral Maxillofac Surg. 2010;68(1):138–43.

    PubMed  CrossRef  Google Scholar 

  148. Laupacis A, Fergusson D. Drugs to minimize perioperative blood loss in cardiac surgery: meta-analyses using perioperative blood transfusion as the outcome. The International Study of Peri-operative Transfusion (ISPOT) Investigators. Anesth Analg. 1997;85(6):1258–67.

    CAS  PubMed  CrossRef  Google Scholar 

  149. Levi M, Cromheecke ME, de Jonge E, Prins MH, de Mol BJ, Briet E, et al. Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet (London, England). 1999;354(9194):1940–7.

    CAS  CrossRef  Google Scholar 

  150. Theroux MC, Corddry DH, Tietz AE, Miller F, Peoples JD, Kettrick RG. A study of desmopressin and blood loss during spinal fusion for neuromuscular scoliosis: a randomized, controlled, double-blinded study. Anesthesiology. 1997;87(2):260–7.

    CAS  PubMed  CrossRef  Google Scholar 

  151. Arshad F, Stoof SC, Leebeek FW, Ruitenbeek K, Adelmeijer J, Blokzijl H, et al. Infusion of DDAVP does not improve primary hemostasis in patients with cirrhosis. Liver Int. 2015;35(7):1809–15.

    CAS  PubMed  CrossRef  Google Scholar 

  152. Henry DA, Moxey AJ, Carless PA, O'Connell D, McClelland B, Henderson KM, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2001;1:CD001886.

    Google Scholar 

  153. Kang Y, Lewis JH, Navalgund A, Russell MW, Bontempo FA, Niren LS, et al. Epsilon-aminocaproic acid for treatment of fibrinolysis during liver transplantation. Anesthesiology. 1987;66(6):766–73.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  154. Dalmau A, Sabate A, Acosta F, Garcia-Huete L, Koo M, Sansano T, et al. Tranexamic acid reduces red cell transfusion better than epsilon-aminocaproic acid or placebo in liver transplantation. Anesth Analg. 2000;91(1):29–34.

    CAS  CrossRef  PubMed  Google Scholar 

  155. Boylan JF, Klinck JR, Sandler AN, Arellano R, Greig PD, Nierenberg H, et al. Tranexamic acid reduces blood loss, transfusion requirements, and coagulation factor use in primary orthotopic liver transplantation. Anesthesiology. 1996;85(5):1043–8. discussion 30A-31A.

    CAS  PubMed  CrossRef  Google Scholar 

  156. van’t Veer C, Mann KG. The regulation of the factor VII-dependent coagulation pathway: rationale for the effectiveness of recombinant factor VIIa in refractory bleeding disorders. Semin Thromb Hemost. 2000;26(4):367–72.

    CrossRef  Google Scholar 

  157. Butenas S, Brummel KE, Bouchard BA, Mann KG. How factor VIIa works in hemophilia. J Thromb Haemost. 2003;1(6):1158–60.

    CAS  PubMed  CrossRef  Google Scholar 

  158. Butenas S, Brummel KE, Paradis SG, Mann KG. Influence of factor VIIa and phospholipids on coagulation in “acquired” hemophilia. Arterioscler Thromb Vasc Biol. 2003;23(1):123–9.

    CAS  PubMed  CrossRef  Google Scholar 

  159. Monroe DM, Hoffman M, Oliver JA, Roberts HR. Platelet activity of high-dose factor VIIa is independent of tissue factor. Br J Haematol. 1997;99(3):542–7.

    CAS  PubMed  CrossRef  Google Scholar 

  160. Pusateri AE, Park MS. Mechanistic implications for the use and monitoring of recombinant activated factor VII in trauma. Crit Care. 2005;9(Suppl 5):S15–24.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  161. Dutton RP, McCunn M, Hyder M, D'Angelo M, O'Connor J, Hess JR, et al. Factor VIIa for correction of traumatic coagulopathy. J Trauma. 2004;57(4):709–18. discussion 18-9.

    CAS  PubMed  CrossRef  Google Scholar 

  162. Boehlen F, Morales MA, Fontana P, Ricou B, Irion O, de Moerloose P. Prolonged treatment of massive postpartum haemorrhage with recombinant factor VIIa: case report and review of the literature. BJOG. 2004;111(3):284–7.

    PubMed  CrossRef  Google Scholar 

  163. Deveras RA, Kessler CM. Reversal of warfarin-induced excessive anticoagulation with recombinant human factor VIIa concentrate. Ann Intern Med. 2002;137(11):884–8.

    CAS  PubMed  CrossRef  Google Scholar 

  164. Bernstein DE, Jeffers L, Erhardtsen E, Reddy KR, Glazer S, Squiban P, et al. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology. 1997;113(6):1930–7.

    CAS  PubMed  CrossRef  Google Scholar 

  165. Lisman T, Leebeek FW, Meijer K, Van Der Meer J, Nieuwenhuis HK, De Groot PG. Recombinant factor VIIa improves clot formation but not fibrolytic potential in patients with cirrhosis and during liver transplantation. Hepatology (Baltimore, MD). 2002;35(3):616–21.

    CrossRef  Google Scholar 

  166. Kalicinski P, Kaminski A, Drewniak T, Ismail H, Szymczak M, Markiewicz M, et al. Quick correction of hemostasis in two patients with fulminant liver failure undergoing liver transplantation by recombinant activated factor VII. Transplant Proc. 1999;31(1–2):378–9.

    CAS  PubMed  CrossRef  Google Scholar 

  167. Hendriks HG, Meijer K, de Wolf JT, Klompmaker IJ, Porte RJ, de Kam PJ, et al. Reduced transfusion requirements by recombinant factor VIIa in orthotopic liver transplantation: a pilot study. Transplantation. 2001;71(3):402–5.

    CAS  PubMed  CrossRef  Google Scholar 

  168. Surudo T, Wojcicki M, Milkiewicz P, Czuprynska M, Lubikowski J, Jarosz K, et al. Rapid correction of prothrombin time after low-dose recombinant factor VIIA in patients undergoing orthotopic liver transplantation. Transplant Proc. 2003;35(6):2323–5.

    CAS  PubMed  CrossRef  Google Scholar 

  169. Niemann CU, Behrends M, Quan D, Eilers H, Gropper MA, Roberts JP, et al. Recombinant factor VIIa reduces transfusion requirements in liver transplant patients with high MELD scores. Transfus Med (Oxford, England). 2006;16(2):93–100.

    CAS  CrossRef  Google Scholar 

  170. Kalicinski P, Markiewicz M, Kaminski A, Laniewski P, Ismail H, Drewniak T, et al. Single pretransplant bolus of recombinant activated factor VII ameliorates influence of risk factors for blood loss during orthotopic liver transplantation. Pediatr Transplant. 2005;9(3):299–304.

    CAS  PubMed  CrossRef  Google Scholar 

  171. Planinsic RM, van der Meer J, Testa G, Grande L, Candela A, Porte RJ, et al. Safety and efficacy of a single bolus administration of recombinant factor VIIa in liver transplantation due to chronic liver disease. Liver Transpl. 2005;11(8):895–900.

    CrossRef  PubMed  Google Scholar 

  172. Lodge JP, Jonas S, Jones RM, Olausson M, Mir-Pallardo J, Soefelt S, et al. Efficacy and safety of repeated perioperative doses of recombinant factor VIIa in liver transplantation. Liver Transpl. 2005;11(8):973–9.

    CrossRef  PubMed  Google Scholar 

  173. Pugliese F, Ruberto F, Summonti D, Perrella S, Cappannoli A, Tosi A, et al. Activated recombinant factor VII in orthotopic liver transplantation. Transplant Proc. 2007;39(6):1883–5.

    CAS  PubMed  CrossRef  Google Scholar 

  174. Chavez-Tapia NC, Alfaro-Lara R, Tellez-Avila F, Barrientos-Gutierrez T, Gonzalez-Chon O, Mendez-Sanchez N, et al. Prophylactic activated recombinant factor VII in liver resection and liver transplantation: systematic review and meta-analysis. PLoS One. 2011;6(7):e22581.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  175. Vincent JL, Rossaint R, Riou B, Ozier Y, Zideman D, Spahn DR. Recommendations on the use of recombinant activated factor VII as an adjunctive treatment for massive bleeding—a European perspective. Crit Care (London, England). 2006;10(4):R120.

    CrossRef  Google Scholar 

  176. Berrevoet F, de Hemptinne B. Use of topical hemostatic agents during liver resection. Dig Surg. 2007;24(4):288–93.

    CAS  PubMed  CrossRef  Google Scholar 

  177. Heaton N. Advances and methods in liver surgery: haemostasis. Eur J Gastroenterol Hepatol. 2005;17(Suppl 1):S3–12.

    PubMed  CrossRef  Google Scholar 

  178. Chapman WC, Clavien PA, Fung J, Khanna A, Bonham A. Effective control of hepatic bleeding with a novel collagen-based composite combined with autologous plasma: results of a randomized controlled trial. Arch Surg (Chicago, Ill: 1960). 2000;135(10):1200–4. discussion 5.

    CAS  CrossRef  Google Scholar 

  179. Carless PA, Henry DA, Anthony DM. Fibrin sealant use for minimising peri-operative allogeneic blood transfusion. Cochrane Database Syst Rev 2003(2):CD004171.

    Google Scholar 

  180. Figueras J, Llado L, Miro M, Ramos E, Torras J, Fabregat J, et al. Application of fibrin glue sealant after hepatectomy does not seem justified: results of a randomized study in 300 patients. Ann Surg. 2007;245(4):536–42.

    PubMed  PubMed Central  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun J. Sanyal MD, MBBS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Banini, B.A., Sanyal, A.J. (2018). Coagulopathy: Pathophysiology, Evaluation, and Treatment. In: Wagener, G. (eds) Liver Anesthesiology and Critical Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-64298-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64298-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64297-0

  • Online ISBN: 978-3-319-64298-7

  • eBook Packages: MedicineMedicine (R0)