Coagulopathy: Pathophysiology, Evaluation, and Treatment

Chapter

Keywords

Bleeding Rotational thrombelastogram Thrombelastography Clotting Hypercoaguability Thrombosis 

Abbreviations

AT

Antithrombin

CVP

Central venous pressure

DDAVP

Desmopressin

EACA

Epsilon-aminocaproic acid

EPCR

Endothelial protein C receptor

FFP

Fresh frozen plasma

INR

International normalized ratio

PAI-1

Plasminogen activator inhibitor

PT

Prothrombin time

PTT

Partial thromboplastin time

RBC

Red blood cell

TACO

Transfusion associated circulatory overload

TAFI

Thrombin activatable fibrinolysis factor

TEG

Thromboelastography

TF

Tissue factor

TFPI

Tissue factor pathway inhibitor

TM

Thrombomodulin

tPA

Tissue plasminogen activator

TRALI

Transfusion related acute lung injury

TxA

Tranexamic acid

VWF

von Willebrand factor

References

  1. 1.
    Davie EW, Ratnoff OD. Waterfall sequence for intrinsic blood clotting. Science. 1964;145(3638):1310–2.PubMedCrossRefGoogle Scholar
  2. 2.
    Hoffman M, Monroe DM, Roberts HR. Cellular interactions in hemostasis. Haemostasis. 1996;26(Suppl 1):12–6.PubMedGoogle Scholar
  3. 3.
    Oliver JA, Monroe DM, Roberts HR, Hoffman M. Thrombin activates factor XI on activated platelets in the absence of factor XII. Arterioscler Thromb Vasc Biol. 1999;19(1):170–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Baglia FA, Walsh PN. Prothrombin is a cofactor for the binding of factor XI to the platelet surface and for platelet-mediated factor XI activation by thrombin. Biochemistry. 1998;37(8):2271–81.PubMedCrossRefGoogle Scholar
  5. 5.
    Franssen J, Salemink I, Willems GM, Wun TC, Hemker HC, Lindhout T. Prothrombinase is protected from inactivation by tissue factor pathway inhibitor: competition between prothrombin and inhibitor. Biochem J. 1997;323(Pt 1):33–7.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Lu G, Broze GJ Jr, Krishnaswamy S. Formation of factors IXa and Xa by the extrinsic pathway: differential regulation by tissue factor pathway inhibitor and antithrombin III. J Biol Chem. 2004;279(17):17241–9.PubMedCrossRefGoogle Scholar
  7. 7.
    Esmon CT, Stenflo J, Suttie JWA. new vitamin K-dependent protein. A phospholipid-binding zymogen of a serine esterase. J Biol Chem. 1976;251(10):3052–6.PubMedGoogle Scholar
  8. 8.
    Esmon CT. The endothelial protein C receptor. Curr Opin Hematol. 2006;13(5):382–5.PubMedCrossRefGoogle Scholar
  9. 9.
    Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem. 1982;257(14):7944–7.PubMedGoogle Scholar
  10. 10.
    Lisman T, Leebeek FW. Hemostatic alterations in liver disease: a review on pathophysiology, clinical consequences, and treatment. Dig Surg. 2007;24(4):250–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Tripodi A. The coagulopathy of chronic liver disease: is there a causal relationship with bleeding? No. Eur J Intern Med. 2010;21(2):65–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Lisman T, Bongers TN, Adelmeijer J, Janssen HL, de Maat MP, de Groot PG, et al. Elevated levels of von Willebrand Factor in cirrhosis support platelet adhesion despite reduced functional capacity. Hepatology. 2006;44(1):53–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Monroe DM, Hoffman M. The coagulation cascade in cirrhosis. Clin Liver Dis. 2009;13(1):1–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Raya-Sanchez JM, Gonzalez-Reimers E, Rodriguez-Martin JM, Santolaria-Fernandez F, Molina-Perez M, Rodriguez-Moreno F, et al. Coagulation inhibitors in alcoholic liver cirrhosis. Alcohol (Fayetteville, NY). 1998;15(1):19–23.CrossRefGoogle Scholar
  15. 15.
    Hedner U, Erhardsten E. Hemostatic disorders in liver diseases. In: Schiff ER, Sorrell MF, Maddrey WC, editors. Diseases of the liver. Philadelphia: Lippincott Wiliams & Wilkins; 2003.Google Scholar
  16. 16.
    Tripodi A, Salerno F, Chantarangkul V, Clerici M, Cazzaniga M, Primignani M, et al. Evidence of normal thrombin generation in cirrhosis despite abnormal conventional coagulation tests. Hepatology (Baltimore, Md). 2005;41(3):553–8.CrossRefGoogle Scholar
  17. 17.
    Jennings I, Calne RY, Baglin TP. Predictive value of von Willebrand factor to ristocetin cofactor ratio and thrombin-antithrombin complex levels for hepatic vessel thrombosis and graft rejection after liver transplantation. Transplantation. 1994;57(7):1046–51.PubMedCrossRefGoogle Scholar
  18. 18.
    Aster RH. Pooling of platelets in the spleen: role in the pathogenesis of “hypersplenic” thrombocytopenia. J Clin Invest. 1966;45(5):645–57.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Goulis J, Chau TN, Jordan S, Mehta AB, Watkinson A, Rolles K, et al. Thrombopoietin concentrations are low in patients with cirrhosis and thrombocytopenia and are restored after orthotopic liver transplantation. Gut. 1999;44(5):754–8.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nagamine T, Ohtuka T, Takehara K, Arai T, Takagi H, Mori M. Thrombocytopenia associated with hepatitis C viral infection. J Hepatol. 1996;24(2):135–40.PubMedCrossRefGoogle Scholar
  21. 21.
    Levine RF, Spivak JL, Meagher RC, Sieber F. Effect of ethanol on thrombopoiesis. Br J Haematol. 1986;62(2):345–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Klipstein FA, Lindenbaum J. Folate deficiency in chronic liver disease. Blood. 1965;25:443–56.PubMedGoogle Scholar
  23. 23.
    Ben-Ari Z, Osman E, Hutton RA, Burroughs AK. Disseminated intravascular coagulation in liver cirrhosis: fact or fiction? Am J Gastroenterol. 1999;94(10):2977–82.PubMedCrossRefGoogle Scholar
  24. 24.
    Carr JM. Disseminated intravascular coagulation in cirrhosis. Hepatology (Baltimore, Md). 1989;10(1):103–10.CrossRefGoogle Scholar
  25. 25.
    Ordinas A, Escolar G, Cirera I, Vinas M, Cobo F, Bosch J, et al. Existence of a platelet-adhesion defect in patients with cirrhosis independent of hematocrit: studies under flow conditions. Hepatology (Baltimore, Md). 1996;24(5):1137–42.CrossRefGoogle Scholar
  26. 26.
    Escolar G, Cases A, Vinas M, Pino M, Calls J, Cirera I, et al. Evaluation of acquired platelet dysfunctions in uremic and cirrhotic patients using the platelet function analyzer (PFA-100): influence of hematocrit elevation. Haematologica. 1999;84(7):614–9.PubMedGoogle Scholar
  27. 27.
    Laffi G, Cominelli F, Ruggiero M, Fedi S, Chiarugi VP, La Villa G, et al. Altered platelet function in cirrhosis of the liver: impairment of inositol lipid and arachidonic acid metabolism in response to agonists. Hepatology (Baltimore, MD). 1988;8(6):1620–6.CrossRefGoogle Scholar
  28. 28.
    Laffi G, La Villa G, Pinzani M, Ciabattoni G, Patrignani P, Mannelli M, et al. Altered renal and platelet arachidonic acid metabolism in cirrhosis. Gastroenterology. 1986;90(2):274–82.PubMedCrossRefGoogle Scholar
  29. 29.
    Laffi G, Marra F, Failli P, Ruggiero M, Cecchi E, Carloni V, et al. Defective signal transduction in platelets from cirrhotics is associated with increased cyclic nucleotides. Gastroenterology. 1993;105(1):148–56.PubMedCrossRefGoogle Scholar
  30. 30.
    Ordinas A, Maragall S, Castillo R, Nurden AT. A glycoprotein I defect in the platelets of three patients with severe cirrhosis of the liver. Thromb Res. 1978;13(2):297–302.PubMedCrossRefGoogle Scholar
  31. 31.
    Sanchez-Roig MJ, Rivera J, Moraleda JM, Garcia VV. Quantitative defect of glycoprotein Ib in severe cirrhotic patients. Am J Hematol. 1994;45(1):10–5.PubMedCrossRefGoogle Scholar
  32. 32.
    Pasche B, Ouimet H, Francis S, Loscalzo J. Structural changes in platelet glycoprotein IIb/IIIa by plasmin: determinants and functional consequences. Blood. 1994;83(2):404–14.PubMedGoogle Scholar
  33. 33.
    Cahill PA, Redmond EM, Sitzmann JV. Endothelial dysfunction in cirrhosis and portal hypertension. Pharmacol Ther. 2001;89(3):273–93.PubMedCrossRefGoogle Scholar
  34. 34.
    Desai K, Mistry P, Bagget C, Burroughs AK, Bellamy MF, Owen JS. Inhibition of platelet aggregation by abnormal high density lipoprotein particles in plasma from patients with hepatic cirrhosis. Lancet (London, England). 1989;1(8640):693–5.CrossRefGoogle Scholar
  35. 35.
    Turitto VT, Baumgartner HR. Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res. 1975;9(3):335–44.PubMedCrossRefGoogle Scholar
  36. 36.
    Tripodi A, Primignani M, Chantarangkul V, Clerici M, Dell'Era A, Fabris F, et al. Thrombin generation in patients with cirrhosis: the role of platelets. Hepatology (Baltimore, MD). 2006;44(2):440–5.CrossRefGoogle Scholar
  37. 37.
    Lisman T, Adelmeijer J, de Groot PG, Janssen HL, Leebeek FW. No evidence for an intrinsic platelet defect in patients with liver cirrhosis—studies under flow conditions. J Thromb Haemost. 2006;4(9):2070–2.PubMedCrossRefGoogle Scholar
  38. 38.
    Caldwell SH, Hoffman M, Lisman T, Macik BG, Northup PG, Reddy KR, et al. Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology (Baltimore, MD). 2006;44(4):1039–46.CrossRefGoogle Scholar
  39. 39.
    Brophy MT, Fiore L, Deykin D. Hemostasis. 3rd ed. Philadelphia: W.B. Saunders; 1996.Google Scholar
  40. 40.
    Steib A, Gengenwin N, Freys G, Boudjema K, Levy S, Otteni JC. Predictive factors of hyperfibrinolytic activity during liver transplantation in cirrhotic patients. Br J Anaesth. 1994;73(5):645–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Pernambuco JR, Langley PG, Hughes RD, Izumi S, Williams R. Activation of the fibrinolytic system in patients with fulminant liver failure. Hepatology (Baltimore, MD). 1993;18(6):1350–6.CrossRefGoogle Scholar
  42. 42.
    Gunawan B, Runyon B. The efficacy and safety of epsilon-aminocaproic acid treatment in patients with cirrhosis and hyperfibrinolysis. Aliment Pharmacol Ther. 2006;23(1):115–20.PubMedCrossRefGoogle Scholar
  43. 43.
    Hu KQ, Yu AS, Tiyyagura L, Redeker AG, Reynolds TB. Hyperfibrinolytic activity in hospitalized cirrhotic patients in a referral liver unit. Am J Gastroenterol. 2001;96(5):1581–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Boks AL, Brommer EJ, Schalm SW, Van Vliet HH. Hemostasis and fibrinolysis in severe liver failure and their relation to hemorrhage. Hepatology (Baltimore, MD). 1986;6(1):79–86.CrossRefGoogle Scholar
  45. 45.
    Leebeek FW, Kluft C, Knot EA, de Maat MP, Wilson JH. A shift in balance between profibrinolytic and antifibrinolytic factors causes enhanced fibrinolysis in cirrhosis. Gastroenterology. 1991;101(5):1382–90.PubMedCrossRefGoogle Scholar
  46. 46.
    Ferro D, Quintarelli C, Saliola M, Alessandri C, Basili S, Bonavita MS, et al. Prevalence of hyperfibrinolysis in patients with liver cirrhosis. Fibrinolysis. 1993;7:59–62.CrossRefGoogle Scholar
  47. 47.
    Kujovich JL. Hemostatic defects in end stage liver disease. Crit Care Clin. 2005;21(3):563–87.PubMedCrossRefGoogle Scholar
  48. 48.
    Stein SF, Harker LA. Kinetic and functional studies of platelets, fibrinogen, and plasminogen in patients with hepatic cirrhosis. J Lab Clin Med. 1982;99(2):217–30.PubMedGoogle Scholar
  49. 49.
    Aoki N, Yamanaka T. The alpha2-plasmin inhibitor levels in liver diseases. Clin Chim Acta. 1978;84(1–2):99–105.PubMedGoogle Scholar
  50. 50.
    Knot EA, Drijfhout HR, ten Cate JW, de Jong E, Iburg AH, Kahle LH, et al. alpha 2-Plasmin inhibitor metabolism in patients with liver cirrhosis. J Lab Clin Med. 1985;105(3):353–8.PubMedGoogle Scholar
  51. 51.
    Marongiu F, Mamusa AM, Mameli G, Mulas G, Solinas A, Demelia L, et al. alpha 2 Antiplasmin and disseminated intravascular coagulation in liver cirrhosis. Thromb Res. 1985;37(2):287–94.PubMedCrossRefGoogle Scholar
  52. 52.
    Gram J, Jespersen J, Ingeberg S, Bentsen KD, Bach E. Plasma histidine-rich glycoprotein and plasminogen in patients with liver disease. Thromb Res. 1985;39(4):411–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Leebeek FW, Kluft C, Knot EA, De Maat MP. Histidine-rich glycoprotein is elevated in mild liver cirrhosis and decreased in moderate and severe liver cirrhosis. J Lab Clin Med. 1989;113(4):493–7.PubMedGoogle Scholar
  54. 54.
    Biland L, Duckert F, Prisender S, Nyman D. Quantitative estimation of coagulation factors in liver disease. The diagnostic and prognostic value of factor XIII, factor V and plasminogen. Thromb Haemost. 1978;39(3):646–56.PubMedGoogle Scholar
  55. 55.
    Bajzar L, Manuel R, Nesheim ME. Purification and characterization of TAFI, a thrombin-activable fibrinolysis inhibitor. J Biol Chem. 1995;270(24):14477–84.PubMedCrossRefGoogle Scholar
  56. 56.
    Hendriks D, Wang W, Scharpe S, Lommaert MP, van Sande M. Purification and characterization of a new arginine carboxypeptidase in human serum. Biochim Biophys Acta. 1990;1034(1):86–92.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang W, Hendriks DF, Scharpe SS. Carboxypeptidase U, a plasma carboxypeptidase with high affinity for plasminogen. J Biol Chem. 1994;269(22):15937–44.PubMedGoogle Scholar
  58. 58.
    Rijken DC, Emeis JJ. Clearance of the heavy and light polypeptide chains of human tissue-type plasminogen activator in rats. Biochem J. 1986;238(3):643–6.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Einarsson M, Smedsrod B, Pertoft H. Uptake and degradation of tissue plasminogen activator in rat liver. Thromb Haemost. 1988;59(3):474–9.PubMedGoogle Scholar
  60. 60.
    Amitrano L, Guardascione MA, Brancaccio V, Balzano A. Coagulation disorders in liver disease. Semin Liver Dis. 2002;22(1):83–96.PubMedCrossRefGoogle Scholar
  61. 61.
    Violi F, Ferro D, Basili S, Quintarelli C, Musca A, Cordova C, et al. Hyperfibrinolysis resulting from clotting activation in patients with different degrees of cirrhosis. The CALC Group. Coagulation Abnormalities in Liver Cirrhosis. Hepatology (Baltimore, MD). 1993;17(1):78–83.CrossRefGoogle Scholar
  62. 62.
    Van Thiel DH, George M, Fareed J. Low levels of thrombin activatable fibrinolysis inhibitor (TAFI) in patients with chronic liver disease. Thromb Haemost. 2001;85(4):667–70.PubMedCrossRefGoogle Scholar
  63. 63.
    Colucci M, Binetti BM, Branca MG, Clerici C, Morelli A, Semeraro N, et al. Deficiency of thrombin activatable fibrinolysis inhibitor in cirrhosis is associated with increased plasma fibrinolysis. Hepatology (Baltimore, MD). 2003;38(1):230–7.CrossRefGoogle Scholar
  64. 64.
    Lisman T, Leebeek FW, Mosnier LO, Bouma BN, Meijers JC, Janssen HL, et al. Thrombin-activatable fibrinolysis inhibitor deficiency in cirrhosis is not associated with increased plasma fibrinolysis. Gastroenterology. 2001;121(1):131–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Aytac S, Turkay C, Bavbek N, Kosar A. Hemostasis and global fibrinolytic capacity in chronic liver disease. Blood Coagul Fibrinolysis. 2007;18(7):623–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Hambleton J, Leung LL, Levi M. Coagulation: consultative hemostasis. In: American Society of Hematology Education Program, editor. Hematology/the Education Program of the American Society of Hematology; 2002. p. 335–52.Google Scholar
  67. 67.
    Senzolo M, Burra P, Cholongitas E, Burroughs AK. New insights into the coagulopathy of liver disease and liver transplantation. World J Gastroenterol. 2006;12(48):7725–36.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Porte RJ. Coagulation and fibrinolysis in orthotopic liver transplantation: current views and insights. Semin Thromb Hemost. 1993;19(3):191–6.PubMedCrossRefGoogle Scholar
  69. 69.
    Homatas J, Wasantapruek S, Von Kaulla E, Von Kaulla KN, Eiseman B. Clotting abnormalities following orthotopic and heterotopic transplantation of marginally preserved pig livers. Acta Hepatosplenol. 1971;18(1):14–26.PubMedGoogle Scholar
  70. 70.
    Porte RJ, Bontempo FA, Knot EA, Lewis JH, Kang YG, Starzl TE. Systemic effects of tissue plasminogen activator-associated fibrinolysis and its relation to thrombin generation in orthotopic liver transplantation. Transplantation. 1989;47(6):978–84.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Iwakiri Y, Groszmann RJ. Vascular endothelial dysfunction in cirrhosis. J Hepatol. 2007;46(5):927–34.PubMedCrossRefGoogle Scholar
  72. 72.
    Gupta TK, Toruner M, Chung MK, Groszmann RJ. Endothelial dysfunction and decreased production of nitric oxide in the intrahepatic microcirculation of cirrhotic rats. Hepatology (Baltimore, MD). 1998;28(4):926–31.CrossRefGoogle Scholar
  73. 73.
    Rockey DC, Chung JJ. Reduced nitric oxide production by endothelial cells in cirrhotic rat liver: endothelial dysfunction in portal hypertension. Gastroenterology. 1998;114(2):344–51.PubMedCrossRefGoogle Scholar
  74. 74.
    Sarela AI, Mihaimeed FM, Batten JJ, Davidson BR, Mathie RT. Hepatic and splanchnic nitric oxide activity in patients with cirrhosis. Gut. 1999;44(5):749–53.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Graupera M, Garcia-Pagan JC, Pares M, Abraldes JG, Rosello J, Bosch J, et al. Cyclooxygenase-1 inhibition corrects endothelial dysfunction in cirrhotic rat livers. J Hepatol. 2003;39(4):515–21.PubMedCrossRefGoogle Scholar
  76. 76.
    Graupera M, March S, Engel P, Rodes J, Bosch J, Garcia-Pagan JC. Sinusoidal endothelial COX-1-derived prostanoids modulate the hepatic vascular tone of cirrhotic rat livers. Am J Physiol Gastrointest Liver Physiol. 2005;288(4):G763–70.PubMedCrossRefGoogle Scholar
  77. 77.
    Iwakiri Y, Groszmann RJ. The hyperdynamic circulation of chronic liver diseases: from the patient to the molecule. Hepatology (Baltimore, MD). 2006;43(2 Suppl 1):S121–31.CrossRefGoogle Scholar
  78. 78.
    Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39(4 Suppl 2):S125–30.PubMedCrossRefGoogle Scholar
  79. 79.
    Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology (Baltimore, MD). 2002;35(2):478–91.CrossRefGoogle Scholar
  80. 80.
    Rand ML, Leung R, Packham MA. Platelet function assays. Transfus Apher Sci. 2003;28(3):307–17.PubMedCrossRefGoogle Scholar
  81. 81.
    Rodgers RP, Levin J. A critical reappraisal of the bleeding time. Semin Thromb Hemost. 1990;16:1):1–20.PubMedGoogle Scholar
  82. 82.
    de Franchis R, Arcidiacono PG, Carpinelli L, Andreoni B, Cestari L, Brunati S, et al. Randomized controlled trial of desmopressin plus terlipressin vs. terlipressin alone for the treatment of acute variceal hemorrhage in cirrhotic patients: a multicenter, double-blind study. New Italian Endoscopic Club. Hepatology (Baltimore, MD). 1993;18(5):1102–7.CrossRefGoogle Scholar
  83. 83.
    Wong AY, Irwin MG, Hui TW, Fung SK, Fan ST, Ma ES. Desmopressin does not decrease blood loss and transfusion requirements in patients undergoing hepatectomy. Can J Anaesth. 2003;50(1):14–20.PubMedCrossRefGoogle Scholar
  84. 84.
    Pivalizza EG, Warters RD, Gebhard R. Desmopressin before liver transplantation. Can J Anaesth. 2003;50(7):748–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Kundu SK, Heilmann EJ, Sio R, Garcia C, Davidson RM, Ostgaard RA. Description of an in vitro platelet function analyzer—PFA-100. Semin Thromb Hemost. 1995;21(Suppl 2):106–12.PubMedGoogle Scholar
  86. 86.
    Quick AJ. The prothrombin in hemophilia and in obstructive jaundice. J Biol Chem. 1935;109:73–4.Google Scholar
  87. 87.
    Olson JD, Brandt JT, Chandler WL, Van Cott EM, Cunningham MT, Hayes TE, et al. Laboratory reporting of the international normalized ratio: progress and problems. Arch Pathol Lab Med. 2007;131(11):1641–7.PubMedGoogle Scholar
  88. 88.
    Trotter JF, Brimhall B, Arjal R, Phillips C. Specific laboratory methodologies achieve higher model for endstage liver disease (MELD) scores for patients listed for liver transplantation. Liver Transpl. 2004;10(8):995–1000.PubMedCrossRefGoogle Scholar
  89. 89.
    Kovacs MJ, Wong A, MacKinnon K, Weir K, Keeney M, Boyle E, et al. Assessment of the validity of the INR system for patients with liver impairment. Thromb Haemost. 1994;71(6):727–30.PubMedGoogle Scholar
  90. 90.
    Denson KW, Reed SV, Haddon ME, Woodhams B, Brucato C, Ruiz J. Comparative studies of rabbit and human recombinant tissue factor reagents. Thromb Res. 1999;94(4):255–61.PubMedCrossRefGoogle Scholar
  91. 91.
    Robert A, Chazouilleres O. Prothrombin time in liver failure: time, ratio, activity percentage, or international normalized ratio? Hepatology (Baltimore, MD). 1996;24(6):1392–4.CrossRefGoogle Scholar
  92. 92.
    Ewe K. Bleeding after liver biopsy does not correlate with indices of peripheral coagulation. Dig Dis Sci. 1981;26(5):388–93.PubMedCrossRefGoogle Scholar
  93. 93.
    Segal JB, Dzik WH. Paucity of studies to support that abnormal coagulation test results predict bleeding in the setting of invasive procedures: an evidence-based review. Transfusion. 2005;45(9):1413–25.PubMedCrossRefGoogle Scholar
  94. 94.
    Diaz LK, Teruya J. Liver biopsy. N Engl J Med. 2001;344(26):2030.PubMedGoogle Scholar
  95. 95.
    Terjung B, Lemnitzer I, Dumoulin FL, Effenberger W, Brackmann HH, Sauerbruch T, et al. Bleeding complications after percutaneous liver biopsy. An analysis of risk factors. Digestion. 2003;67(3):138–45.PubMedCrossRefGoogle Scholar
  96. 96.
    Bravo AA, Sheth SG, Chopra S. Liver biopsy. N Engl J Med. 2001;344(7):495–500.PubMedCrossRefGoogle Scholar
  97. 97.
    Dahlback B. Progress in the understanding of the protein C anticoagulant pathway. Int J Hematol. 2004;79(2):109–16.PubMedCrossRefGoogle Scholar
  98. 98.
    Reikvam H, Steien E, Hauge B, Liseth K, Hagen KG, Storkson R, et al. Thrombelastography. Transfus Apher Sci. 2009;40(2):119–23.PubMedCrossRefGoogle Scholar
  99. 99.
    Di Cera E. Thrombin as procoagulant and anticoagulant. J Thromb Haemost. 2007;5(Suppl 1):196–202.PubMedCrossRefGoogle Scholar
  100. 100.
    Bombeli T, Spahn DR. Updates in perioperative coagulation: physiology and management of thromboembolism and haemorrhage. Br J Anaesth. 2004;93(2):275–87.PubMedCrossRefGoogle Scholar
  101. 101.
    Kang YG, Martin DJ, Marquez J, Lewis JH, Bontempo FA, Shaw BW Jr, et al. Intraoperative changes in blood coagulation and thrombelastographic monitoring in liver transplantation. Anesth Analg. 1985;64(9):888–96.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Koh MB, Hunt BJ. The management of perioperative bleeding. Blood Rev. 2003;17(3):179–85.PubMedCrossRefGoogle Scholar
  103. 103.
    Stravitz RT, Lisman T, Luketic VA, Sterling RK, Puri P, Fuchs M, et al. Minimal effects of acute liver injury/acute liver failure on hemostasis as assessed by thromboelastography. J Hepatol. 2012;56(1):129–36.PubMedCrossRefGoogle Scholar
  104. 104.
    Hendriks HG, van der Meer J, de Wolf JT, Peeters PM, Porte RJ, de Jong K, et al. Intraoperative blood transfusion requirement is the main determinant of early surgical re-intervention after orthotopic liver transplantation. Transpl Int. 2005;17(11):673–9.PubMedCrossRefGoogle Scholar
  105. 105.
    Cacciarelli TV, Keeffe EB, Moore DH, Burns W, Busque S, Concepcion W, et al. Effect of intraoperative blood transfusion on patient outcome in hepatic transplantation. Arch Surg (Chicago, Ill: 1960). 1999;134(1):25–9.CrossRefGoogle Scholar
  106. 106.
    Stainsby D, Williamson L, Jones H, Cohen H. 6 Years of shot reporting—its influence on UK blood safety. Transfus Apher Sci. 2004;31(2):123–31.PubMedCrossRefGoogle Scholar
  107. 107.
    de Boer MT, Molenaar IQ, Hendriks HG, Slooff MJ, Porte RJ. Minimizing blood loss in liver transplantation: progress through research and evolution of techniques. Dig Surg. 2005;22(4):265–75.PubMedCrossRefGoogle Scholar
  108. 108.
    Porte RJ, Hendriks HG, Slooff MJ. Blood conservation in liver transplantation: the role of aprotinin. J Cardiothorac Vasc Anesth. 2004;18(4 Suppl):31S–7S.PubMedCrossRefGoogle Scholar
  109. 109.
    Ramos E, Dalmau A, Sabate A, Lama C, Llado L, Figueras J, et al. Intraoperative red blood cell transfusion in liver transplantation: influence on patient outcome, prediction of requirements, and measures to reduce them. Liver Transpl. 2003;9(12):1320–7.PubMedCrossRefGoogle Scholar
  110. 110.
    O’Shaughnessy DF, Atterbury C, Bolton Maggs P, Murphy M, Thomas D, Yates S, et al. Guidelines for the use of fresh-frozen plasma, cryoprecipitate and cryosupernatant. Br J Haematol. 2004;126(1):11–28.PubMedCrossRefGoogle Scholar
  111. 111.
    Goodnough LT, Johnston MF, Shah T, Chernosky A. A two-institution study of transfusion practice in 78 consecutive adult elective open-heart procedures. Am J Clin Pathol. 1989;91(4):468–72.PubMedCrossRefGoogle Scholar
  112. 112.
    Dara SI, Rana R, Afessa B, Moore SB, Gajic O. Fresh frozen plasma transfusion in critically ill medical patients with coagulopathy. Crit Care Med. 2005;33(11):2667–71.PubMedCrossRefGoogle Scholar
  113. 113.
    Burns ER, Goldberg SN, Wenz B. Paradoxic effect of multiple mild coagulation factor deficiencies on the prothrombin time and activated partial thromboplastin time. Am J Clin Pathol. 1993;100(2):94–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Dzik WH. Predicting hemorrhage using preoperative coagulation screening assays. Curr Hematol Rep. 2004;3(5):324–30.PubMedGoogle Scholar
  115. 115.
    Massicotte L, Beaulieu D, Thibeault L, Roy JD, Marleau D, Lapointe R, et al. Coagulation defects do not predict blood product requirements during liver transplantation. Transplantation. 2008;85(7):956–62.PubMedCrossRefGoogle Scholar
  116. 116.
    MacLennan S, Williamson LM. Risks of fresh frozen plasma and platelets. J Trauma. 2006;60(6 Suppl):S46–50.PubMedGoogle Scholar
  117. 117.
    Holness L, Knippen MA, Simmons L, Lachenbruch PA. Fatalities caused by TRALI. Transfus Med Rev. 2004;18(3):184–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Toy P, Popovsky MA, Abraham E, Ambruso DR, Holness LG, Kopko PM, et al. Transfusion-related acute lung injury: definition and review. Crit Care Med. 2005;33(4):721–6.CrossRefPubMedGoogle Scholar
  119. 119.
    Fresh frozen plasma use. [Internet]. Available from: http://www.shotuk.org.
  120. 120.
    Massicotte L, Lenis S, Thibeault L, Sassine MP, Seal RF, Roy A. Effect of low central venous pressure and phlebotomy on blood product transfusion requirements during liver transplantations. Liver Transpl. 2006;12(1):117–23.CrossRefPubMedGoogle Scholar
  121. 121.
    Massicotte L, Sassine MP, Lenis S, Seal RF, Roy A. Survival rate changes with transfusion of blood products during liver transplantation. Can J Anaesth. 2005;52(2):148–55.PubMedCrossRefGoogle Scholar
  122. 122.
    American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Practice guidelines for perioperative blood transfusion and adjuvant therapies: an updated report by the American Society of Anesthesiologists Task Force on Perioperative Blood Transfusion and Adjuvant Therapies. Anesthesiology. 2006;105(1):198–208.CrossRefGoogle Scholar
  123. 123.
    Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology. 2000;118(1):183–91.PubMedCrossRefGoogle Scholar
  124. 124.
    Cywes R, Packham MA, Tietze L, Sanabria JR, Harvey PR, Phillips MJ, et al. Role of platelets in hepatic allograft preservation injury in the rat. Hepatology (Baltimore, MD). 1993;18(3):635–47.CrossRefGoogle Scholar
  125. 125.
    Porte RJ, Blauw E, Knot EA, de Maat MP, de Ruiter C, Minke Bakker C, et al. Role of the donor liver in the origin of platelet disorders and hyperfibrinolysis in liver transplantation. J Hepatol. 1994;21(4):592–600.PubMedCrossRefGoogle Scholar
  126. 126.
    Lesurtel M, Graf R, Aleil B, Walther DJ, Tian Y, Jochum W, et al. Platelet-derived serotonin mediates liver regeneration. Science. 2006;312(5770):104–7.PubMedCrossRefGoogle Scholar
  127. 127.
    Himmelreich G, Hundt K, Neuhaus P, Roissant R, Riess H. Decreased platelet aggregation after reperfusion in orthotopic liver transplantation. Transplantation. 1992;53(3):582–6.PubMedCrossRefGoogle Scholar
  128. 128.
    Himmelreich G, Hundt K, Isenberg C, Bechstein WO, Neuhaus P, Riess H. Thrombocytopenia and platelet dysfunction in orthotopic liver transplantation. Semin Thromb Hemost. 1993;19(3):209–12.PubMedCrossRefGoogle Scholar
  129. 129.
    Day JR, Punjabi PP, Randi AM, Haskard DO, Landis RC, Taylor KM. Clinical inhibition of the seven-transmembrane thrombin receptor (PAR1) by intravenous aprotinin during cardiothoracic surgery. Circulation. 2004;110(17):2597–600.PubMedCrossRefGoogle Scholar
  130. 130.
    Federici AB, Berkowitz SD, Lattuada A, Mannucci PM. Degradation of von Willebrand factor in patients with acquired clinical conditions in which there is heightened proteolysis. Blood. 1993;81(3):720–5.PubMedGoogle Scholar
  131. 131.
    Porte RJ, Leebeek FW. Pharmacological strategies to decrease transfusion requirements in patients undergoing surgery. Drugs. 2002;62(15):2193–211.PubMedCrossRefGoogle Scholar
  132. 132.
    Schalm SW, Terpstra JL, Achterberg JR, Noordhoek Hegt V, Haverkate F, Popescu DT, et al. Orthotopic liver transplantation: an experimental study on mechanisms of hemorrhagic diathesis and thrombosis. Surgery. 1975;78(4):499–507.PubMedGoogle Scholar
  133. 133.
    de Boer MT, Christensen MC, Asmussen M, van der Hilst CS, Hendriks HG, Slooff MJ, et al. The impact of intraoperative transfusion of platelets and red blood cells on survival after liver transplantation. Anesth Analg. 2008;106(1):32–44; table of contents.PubMedCrossRefGoogle Scholar
  134. 134.
    Dalmau A, Sabate A, Koo M, Rafecas A, Figueras J, Jaurrieta E. Prophylactic use of tranexamic acid and incidence of arterial thrombosis in liver transplantation. Anesth Analg. 2001;93(2):516.PubMedCrossRefGoogle Scholar
  135. 135.
    Mor E, Jennings L, Gonwa TA, Holman MJ, Gibbs J, Solomon H, et al. The impact of operative bleeding on outcome in transplantation of the liver. Surg Gynecol Obstet. 1993;176(3):219–27.PubMedGoogle Scholar
  136. 136.
    Grabau CM, Crago SF, Hoff LK, Simon JA, Melton CA, Ott BJ, et al. Performance standards for therapeutic abdominal paracentesis. Hepatology (Baltimore, MD). 2004;40(2):484–8.CrossRefGoogle Scholar
  137. 137.
    Lin CH, Shih FY, Ma MH, Chiang WC, Yang CW, Ko PC. Should bleeding tendency deter abdominal paracentesis? Dig Liver Dis. 2005;37(12):946–51.PubMedCrossRefGoogle Scholar
  138. 138.
    Hanson SR, Slichter SJ. Platelet kinetics in patients with bone marrow hypoplasia: evidence for a fixed platelet requirement. Blood. 1985;66(5):1105–9.PubMedGoogle Scholar
  139. 139.
    Greeno E, McCullough J, Weisdorf D. Platelet utilization and the transfusion trigger: a prospective analysis. Transfusion. 2007;47(2):201–5.PubMedCrossRefGoogle Scholar
  140. 140.
    Cameron B, Rock G, Olberg B, Neurath D. Evaluation of platelet transfusion triggers in a tertiary-care hospital. Transfusion. 2007;47(2):206–11.PubMedCrossRefGoogle Scholar
  141. 141.
    Rinder HM, Arbini AA, Snyder EL. Optimal dosing and triggers for prophylactic use of platelet transfusions. Curr Opin Hematol. 1999;6(6):437–41.PubMedCrossRefGoogle Scholar
  142. 142.
    Tinmouth AT, Freedman J. Prophylactic platelet transfusions: which dose is the best dose? A review of the literature. Transfus Med Rev. 2003;17(3):181–93.PubMedCrossRefGoogle Scholar
  143. 143.
    Schlossberg HR, Herman JH. Platelet dosing. Transfus Apher Sci. 2003;28(3):221–6.PubMedCrossRefGoogle Scholar
  144. 144.
    American Association of Blood Banks. Blood transfusion therapy: a physician’s handbook. 7th ed. Bethesda, MD: American Association of Blood Banks; 2002.Google Scholar
  145. 145.
    Rebulla P, Finazzi G, Marangoni F, Avvisati G, Gugliotta L, Tognoni G, et al. The threshold for prophylactic platelet transfusions in adults with acute myeloid leukemia. Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto. N Engl J Med. 1997;337(26):1870–5.PubMedCrossRefGoogle Scholar
  146. 146.
    Rebulla P. In vitro and in vivo properties of various types of platelets. Vox Sang. 1998;74(Suppl 2):217–22.PubMedCrossRefGoogle Scholar
  147. 147.
    Stanca CM, Montazem AH, Lawal A, Zhang JX, Schiano TD. Intranasal desmopressin versus blood transfusion in cirrhotic patients with coagulopathy undergoing dental extraction: a randomized controlled trial. J Oral Maxillofac Surg. 2010;68(1):138–43.PubMedCrossRefGoogle Scholar
  148. 148.
    Laupacis A, Fergusson D. Drugs to minimize perioperative blood loss in cardiac surgery: meta-analyses using perioperative blood transfusion as the outcome. The International Study of Peri-operative Transfusion (ISPOT) Investigators. Anesth Analg. 1997;85(6):1258–67.PubMedCrossRefGoogle Scholar
  149. 149.
    Levi M, Cromheecke ME, de Jonge E, Prins MH, de Mol BJ, Briet E, et al. Pharmacological strategies to decrease excessive blood loss in cardiac surgery: a meta-analysis of clinically relevant endpoints. Lancet (London, England). 1999;354(9194):1940–7.CrossRefGoogle Scholar
  150. 150.
    Theroux MC, Corddry DH, Tietz AE, Miller F, Peoples JD, Kettrick RG. A study of desmopressin and blood loss during spinal fusion for neuromuscular scoliosis: a randomized, controlled, double-blinded study. Anesthesiology. 1997;87(2):260–7.PubMedCrossRefGoogle Scholar
  151. 151.
    Arshad F, Stoof SC, Leebeek FW, Ruitenbeek K, Adelmeijer J, Blokzijl H, et al. Infusion of DDAVP does not improve primary hemostasis in patients with cirrhosis. Liver Int. 2015;35(7):1809–15.PubMedCrossRefGoogle Scholar
  152. 152.
    Henry DA, Moxey AJ, Carless PA, O'Connell D, McClelland B, Henderson KM, et al. Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane Database Syst Rev. 2001;1:CD001886.Google Scholar
  153. 153.
    Kang Y, Lewis JH, Navalgund A, Russell MW, Bontempo FA, Niren LS, et al. Epsilon-aminocaproic acid for treatment of fibrinolysis during liver transplantation. Anesthesiology. 1987;66(6):766–73.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Dalmau A, Sabate A, Acosta F, Garcia-Huete L, Koo M, Sansano T, et al. Tranexamic acid reduces red cell transfusion better than epsilon-aminocaproic acid or placebo in liver transplantation. Anesth Analg. 2000;91(1):29–34.CrossRefPubMedGoogle Scholar
  155. 155.
    Boylan JF, Klinck JR, Sandler AN, Arellano R, Greig PD, Nierenberg H, et al. Tranexamic acid reduces blood loss, transfusion requirements, and coagulation factor use in primary orthotopic liver transplantation. Anesthesiology. 1996;85(5):1043–8. discussion 30A-31A.PubMedCrossRefGoogle Scholar
  156. 156.
    van’t Veer C, Mann KG. The regulation of the factor VII-dependent coagulation pathway: rationale for the effectiveness of recombinant factor VIIa in refractory bleeding disorders. Semin Thromb Hemost. 2000;26(4):367–72.CrossRefGoogle Scholar
  157. 157.
    Butenas S, Brummel KE, Bouchard BA, Mann KG. How factor VIIa works in hemophilia. J Thromb Haemost. 2003;1(6):1158–60.PubMedCrossRefGoogle Scholar
  158. 158.
    Butenas S, Brummel KE, Paradis SG, Mann KG. Influence of factor VIIa and phospholipids on coagulation in “acquired” hemophilia. Arterioscler Thromb Vasc Biol. 2003;23(1):123–9.PubMedCrossRefGoogle Scholar
  159. 159.
    Monroe DM, Hoffman M, Oliver JA, Roberts HR. Platelet activity of high-dose factor VIIa is independent of tissue factor. Br J Haematol. 1997;99(3):542–7.PubMedCrossRefGoogle Scholar
  160. 160.
    Pusateri AE, Park MS. Mechanistic implications for the use and monitoring of recombinant activated factor VII in trauma. Crit Care. 2005;9(Suppl 5):S15–24.PubMedPubMedCentralCrossRefGoogle Scholar
  161. 161.
    Dutton RP, McCunn M, Hyder M, D'Angelo M, O'Connor J, Hess JR, et al. Factor VIIa for correction of traumatic coagulopathy. J Trauma. 2004;57(4):709–18. discussion 18-9.PubMedCrossRefGoogle Scholar
  162. 162.
    Boehlen F, Morales MA, Fontana P, Ricou B, Irion O, de Moerloose P. Prolonged treatment of massive postpartum haemorrhage with recombinant factor VIIa: case report and review of the literature. BJOG. 2004;111(3):284–7.PubMedCrossRefGoogle Scholar
  163. 163.
    Deveras RA, Kessler CM. Reversal of warfarin-induced excessive anticoagulation with recombinant human factor VIIa concentrate. Ann Intern Med. 2002;137(11):884–8.PubMedCrossRefGoogle Scholar
  164. 164.
    Bernstein DE, Jeffers L, Erhardtsen E, Reddy KR, Glazer S, Squiban P, et al. Recombinant factor VIIa corrects prothrombin time in cirrhotic patients: a preliminary study. Gastroenterology. 1997;113(6):1930–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Lisman T, Leebeek FW, Meijer K, Van Der Meer J, Nieuwenhuis HK, De Groot PG. Recombinant factor VIIa improves clot formation but not fibrolytic potential in patients with cirrhosis and during liver transplantation. Hepatology (Baltimore, MD). 2002;35(3):616–21.CrossRefGoogle Scholar
  166. 166.
    Kalicinski P, Kaminski A, Drewniak T, Ismail H, Szymczak M, Markiewicz M, et al. Quick correction of hemostasis in two patients with fulminant liver failure undergoing liver transplantation by recombinant activated factor VII. Transplant Proc. 1999;31(1–2):378–9.PubMedCrossRefGoogle Scholar
  167. 167.
    Hendriks HG, Meijer K, de Wolf JT, Klompmaker IJ, Porte RJ, de Kam PJ, et al. Reduced transfusion requirements by recombinant factor VIIa in orthotopic liver transplantation: a pilot study. Transplantation. 2001;71(3):402–5.PubMedCrossRefGoogle Scholar
  168. 168.
    Surudo T, Wojcicki M, Milkiewicz P, Czuprynska M, Lubikowski J, Jarosz K, et al. Rapid correction of prothrombin time after low-dose recombinant factor VIIA in patients undergoing orthotopic liver transplantation. Transplant Proc. 2003;35(6):2323–5.PubMedCrossRefGoogle Scholar
  169. 169.
    Niemann CU, Behrends M, Quan D, Eilers H, Gropper MA, Roberts JP, et al. Recombinant factor VIIa reduces transfusion requirements in liver transplant patients with high MELD scores. Transfus Med (Oxford, England). 2006;16(2):93–100.CrossRefGoogle Scholar
  170. 170.
    Kalicinski P, Markiewicz M, Kaminski A, Laniewski P, Ismail H, Drewniak T, et al. Single pretransplant bolus of recombinant activated factor VII ameliorates influence of risk factors for blood loss during orthotopic liver transplantation. Pediatr Transplant. 2005;9(3):299–304.PubMedCrossRefGoogle Scholar
  171. 171.
    Planinsic RM, van der Meer J, Testa G, Grande L, Candela A, Porte RJ, et al. Safety and efficacy of a single bolus administration of recombinant factor VIIa in liver transplantation due to chronic liver disease. Liver Transpl. 2005;11(8):895–900.CrossRefPubMedGoogle Scholar
  172. 172.
    Lodge JP, Jonas S, Jones RM, Olausson M, Mir-Pallardo J, Soefelt S, et al. Efficacy and safety of repeated perioperative doses of recombinant factor VIIa in liver transplantation. Liver Transpl. 2005;11(8):973–9.CrossRefPubMedGoogle Scholar
  173. 173.
    Pugliese F, Ruberto F, Summonti D, Perrella S, Cappannoli A, Tosi A, et al. Activated recombinant factor VII in orthotopic liver transplantation. Transplant Proc. 2007;39(6):1883–5.PubMedCrossRefGoogle Scholar
  174. 174.
    Chavez-Tapia NC, Alfaro-Lara R, Tellez-Avila F, Barrientos-Gutierrez T, Gonzalez-Chon O, Mendez-Sanchez N, et al. Prophylactic activated recombinant factor VII in liver resection and liver transplantation: systematic review and meta-analysis. PLoS One. 2011;6(7):e22581.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Vincent JL, Rossaint R, Riou B, Ozier Y, Zideman D, Spahn DR. Recommendations on the use of recombinant activated factor VII as an adjunctive treatment for massive bleeding—a European perspective. Crit Care (London, England). 2006;10(4):R120.CrossRefGoogle Scholar
  176. 176.
    Berrevoet F, de Hemptinne B. Use of topical hemostatic agents during liver resection. Dig Surg. 2007;24(4):288–93.PubMedCrossRefGoogle Scholar
  177. 177.
    Heaton N. Advances and methods in liver surgery: haemostasis. Eur J Gastroenterol Hepatol. 2005;17(Suppl 1):S3–12.PubMedCrossRefGoogle Scholar
  178. 178.
    Chapman WC, Clavien PA, Fung J, Khanna A, Bonham A. Effective control of hepatic bleeding with a novel collagen-based composite combined with autologous plasma: results of a randomized controlled trial. Arch Surg (Chicago, Ill: 1960). 2000;135(10):1200–4. discussion 5.CrossRefGoogle Scholar
  179. 179.
    Carless PA, Henry DA, Anthony DM. Fibrin sealant use for minimising peri-operative allogeneic blood transfusion. Cochrane Database Syst Rev 2003(2):CD004171.Google Scholar
  180. 180.
    Figueras J, Llado L, Miro M, Ramos E, Torras J, Fabregat J, et al. Application of fibrin glue sealant after hepatectomy does not seem justified: results of a randomized study in 300 patients. Ann Surg. 2007;245(4):536–42.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Gastroenterology and Hepatology, Department of Internal MedicineVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations