Skip to main content

Intraoperative Monitoring

  • Chapter
  • First Online:
Liver Anesthesiology and Critical Care Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Perera MT, Mirza DF, Elias E. Liver transplantation: issues for the next 20 years. J Gastroenterol Hepatol. 2009;24(Suppl 3):S124–31.

    Article  PubMed  Google Scholar 

  2. Walia A, Schumann R. The evolution of liver transplantation practices. Curr Opin Organ Transplant. 2008;13(3):275–9.

    Article  PubMed  Google Scholar 

  3. Zarrinpar A, Busuttil RW. Liver transplantation: past, present and future. Nat Rev Gastroenterol Hepatol. 2013;10:434–40.

    Article  CAS  PubMed  Google Scholar 

  4. Jones PD, Hayashi PH, Sidney Barrit A IV. Liver transplantation in 2013: challenges and controversies. Minerva Gastroenterol Dietol. 2013;59(2):117–31.

    CAS  PubMed  Google Scholar 

  5. Shukla A, et al. Liver transplantation: east versus west. J Clin Exp Hepatol. 2013;3:243–53.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Stravitz RT, et al. Intensive care of patients with acute liver failure: recommendations of the U.S. Acute Liver Failure Study Group. Crit Care Med. 2007;35(11):2498–508.

    Article  PubMed  Google Scholar 

  7. Schumann R. Intraoperative resource utilization in anesthesia for liver transplantation in the United States: a survey. Anesth Analg. 2003;97(1):21–8; table of contents

    Article  PubMed  Google Scholar 

  8. Manley JL, et al. Controversies in anesthetic management of liver transplantation. HPB (Oxford). 2005;7(3):183–5.

    Article  Google Scholar 

  9. Morris-Stiff G, Gomez D, Prasad R. Quantitative assessment of hepatic function and its relevance to the liver surgeon. J Gastrointest Surg. 2009;13(2):374–85.

    Article  CAS  PubMed  Google Scholar 

  10. Rando K, et al. Optimizing cost-effectiveness in perioperative care for liver transplantation: a model for low- to medium-income countries. Liver Transpl. 2011;17(11):1247–78.

    Article  PubMed  Google Scholar 

  11. Ozhathil DK, et al. Impact on center volume on outcomes of increased-risk liver transplants. Liver Transpl. 2011;17(10):1191–9.

    Article  PubMed  Google Scholar 

  12. Hall TH, Dhir A. Anesthesia for liver transplantation. Semin Cardiothorac Vasc Anesth. 2013;17(3):180–94.

    Article  PubMed  Google Scholar 

  13. Giusto M, et al. Changes in nutritional status after liver transplantation. World J Gastroenterol. 2014;20(31):10682–90.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Kosola S, et al. Cholesterol metabolism altered and FGF21 levels high after pediatric liver transplantation despite normal serum lipids. Am J Transplant. 2012;12(10):2815–24.

    Article  CAS  PubMed  Google Scholar 

  15. Doycheva I, Leise MD, Watt KD. The intestinal microbiome and the liver transplant recipient: what we know and what we need to know. Transplantation. 2016;100(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  16. Laryea M, et al. Metabolic syndrome in liver transplant recipients: prevalence and association with major vascular events. Liver Transpl. 2007;13(8):1109–14.

    Article  PubMed  Google Scholar 

  17. Ammori JB, et al. Effect of intraoperative hyperglycemia during liver transplantation. J Surg Res. 2007;140(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  18. Park C, et al. Severe intraoperative hyperglycemia is independently associated with surgical site infection after liver transplantation. Transplantation. 2009;87(7):1031–6.

    Article  PubMed  Google Scholar 

  19. Park CS. Predictive roles of intraoperative blood glucose for post-transplant outcomes in liver transplantation. World J Gastroenterol. 2015;21(22):6835–41.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Gedik E, et al. Blood glucose regulation during living-donor liver transplant surgery. Exp Clin Transplant. 2015;13(Suppl 1):294–300.

    Article  PubMed  Google Scholar 

  21. Gillispie A, et al. Effect of extended cold ischemia time on glucose metabolism in liver grafts: experimental study in pigs. J Hepato-Biliary-Pancreat Surg. 2007;14(2):183–8.

    Article  Google Scholar 

  22. Nowak G, et al. Metabolic changes in the liver graft monitored continuously with microdialysis during liver transplantation in a pig model. Liver Transpl. 2002;8(5):424–32.

    Article  PubMed  Google Scholar 

  23. Tsinari KK, et al. Factors affecting metabolic and electrolyte changes after reperfusion in liver transplantation. Transplant Proc. 2004;36(10):3051–6.

    Article  CAS  PubMed  Google Scholar 

  24. Haugaa H, et al. Early bedside detection of ischemia and rejection in liver transplants by microdialysis. Liver Transpl. 2012;18(7):839–49.

    Article  PubMed  Google Scholar 

  25. Pischke SE, et al. Hepatic and abdominal carbon dioxide measurements detect and distinguish hepatic artery occlusion and portal vein occlusion in pigs. Liver Transpl. 2012;18(12):1485–94.

    Article  PubMed  Google Scholar 

  26. Haugaa H, et al. Clinical experience with microdialysis catheters in pediatric liver transplants. Liver Transpl. 2013;19(3):305–14.

    Article  PubMed  Google Scholar 

  27. Bernal W, et al. Blood lactate as an early predictor of outcome in paracetamol-induced acute liver failure: a cohort study. Lancet. 2002;359(9306):558–63.

    Article  CAS  PubMed  Google Scholar 

  28. Waelgaard L, et al. Microdialysis monitoring of liver grafts by metabolic parameters, cytokine production, and complement activation. Transplantation. 2008;86(8):1096–103.

    Article  CAS  PubMed  Google Scholar 

  29. Shah AD, Wood DM, Dargan PI. Understanding lactic acidosis in paracetamol (acetaminophen) poisoning. Br J Clin Pharmacol. 2011;71(1):20–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Murphy ND, et al. Liver and intestinal lactate metabolism in patients with acute hepatic failure undergoing liver transplantation. Crit Care Med. 2001;29(11):2111–8.

    Article  CAS  PubMed  Google Scholar 

  31. Silva MA, et al. Interstitial lactic acidosis in the graft during organ harvest, cold storage, and reperfusion of human liver allografts predicts subsequent ischemia reperfusion injury. Transplantation. 2006;82(2):227–33.

    Article  CAS  PubMed  Google Scholar 

  32. Walker V. Ammonia toxicity and its prevention in inherited defects of the urea cycle. Diabetes Obes Metab. 2009;11(9):823–35.

    Article  CAS  PubMed  Google Scholar 

  33. Cordoba J, Minguez B. Hepatic encephalopathy. Semin Liver Dis. 2008;28(1):70–80.

    Article  PubMed  Google Scholar 

  34. Belanger M, et al. Mild hypothermia prevents brain edema and attenuates up-regulation of the astrocytic benzodiazepine receptor in experimental acute liver failure. J Hepatol. 2005;42(5):694–9.

    Article  CAS  PubMed  Google Scholar 

  35. Raghavan M, Marik PE. Therapy of intracranial hypertension in patients with fulminant hepatic failure. Neurocrit Care. 2006;4(2):179–89.

    Article  CAS  PubMed  Google Scholar 

  36. Ong JP, et al. Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med. 2003;114(3):188–93.

    Article  CAS  PubMed  Google Scholar 

  37. Butterworth RF. Pathophysiology of hepatic encephalopathy: the concept of synergism. Hepatol Res. 2008;38(s1The 6 Japan Society of Hepatology Single Topic Conference: Liver Failure: Recent Progress and Pathogenesis to Management. 28-29 September 2007, Iwate, Japan):S116–21.

    Article  CAS  PubMed  Google Scholar 

  38. Sawhney R, et al. Role of ammonia, inflammation, and cerebral oxygenation in brain dysfunction of acute-on-chronic liver failure patients. Liver Transpl. 2016;22(6):732–42.

    Article  PubMed  Google Scholar 

  39. Serkova NJ, et al. Early detection of graft failure using the blood metabolic profile of a liver recipient. Transplantation. 2007;83(4):517–21.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Hrydziuszko O, et al. Application of metabolomics to investigate the process of human orthotopic liver transplantation: a proof-of-principle study. OMICS. 2010;14(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  41. Cimen S, et al. Implications of hyponatremia in liver transplantation. J Clin Med. 2015;4(1):66–74.

    Article  CAS  Google Scholar 

  42. Mandell MS, et al. Risk factors associated with acute heart failure during liver transplant surgery: a case control study. Transplantation. 2015;99(4):873–8.

    Article  PubMed  Google Scholar 

  43. Xia VW, et al. Predictors of hyperkalemia in the prereperfusion, early postreperfusion, and late postreperfusion periods during adult liver transplantation. Anesth Analg. 2007;105(3):780–5.

    Article  PubMed  Google Scholar 

  44. Yun BC, Kim WR. Hyponatremia in hepatic encephalopathy: an accomplice or innocent bystander? Am J Gastroenterol. 2009;104(6):1390–1.

    Article  PubMed  Google Scholar 

  45. de Morais BS, et al. Central pontine myelinolysis after liver transplantation: is sodium the only villain? Case report. Rev Bras Anestesiol. 2009;59(3):344–9.

    Article  PubMed  Google Scholar 

  46. Biggins SW, et al. Evidence-based incorporation of serum sodium concentration into MELD. Gastroenterology. 2006;130(6):1652–60.

    Article  PubMed  Google Scholar 

  47. Luca A, et al. An integrated MELD model including serum sodium and age improves the prediction of early mortality in patients with cirrhosis. Liver Transpl. 2007;13(8):1174–80.

    Article  PubMed  Google Scholar 

  48. Nadeem A, et al. Chloride-liberal fluids are associated with acute kidney injury after liver transplantation. Crit Care. 2014;18(6):625–34.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Boon AP, et al. Central pontine myelinolysis in liver transplantation. J Clin Pathol. 1991;44(11):909–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Lee EM, et al. Risk factors for central pontine and extrapontine myelinolysis following orthotopic liver transplantation. Eur Neurol. 2009;62(6):362–8.

    Article  PubMed  Google Scholar 

  51. Singh N, Yu VL, Gayowski T. Central nervous system lesions in adult liver transplant recipients: clinical review with implications for management. Medicine (Baltimore). 1994;73(2):110–8.

    Article  CAS  Google Scholar 

  52. Wszolek ZK, et al. Pontine and extrapontine myelinolysis following liver transplantation. Relationship to serum sodium. Transplantation. 1989;48(6):1006–12.

    Article  CAS  PubMed  Google Scholar 

  53. Kumar S, et al. Central pontine myelinolysis, an update. Neurol Res. 2006;28(3):360–6.

    Article  PubMed  Google Scholar 

  54. Choi JH, Lee J, Park CM. Magnesium therapy improves thromboelastographic findings before liver transplantation: a preliminary study. Can J Anaesth. 2005;52(2):156–9.

    Article  PubMed  Google Scholar 

  55. Yuan D, et al. Hepatectomy-related hypophosphatemia may predict donor liver dysfunction in live-donor liver transplantation. Transplant Proc. 2010;42(10):4548–51.

    Article  CAS  PubMed  Google Scholar 

  56. Filik L, et al. Hypophosphatemia in living liver donors. Transplant Proc. 2006;38(2):559–61.

    Article  CAS  PubMed  Google Scholar 

  57. Nadim MK. Intraoperative hemodialysis during liver transplantation: a decade of experience. Liver Transpl. 2014;20(7):756–64.

    Article  PubMed  Google Scholar 

  58. Han SB, et al. Risk factors for inadvertent hypothermia during adult living-donor liver transplantation. Transplant Proc. 2014;46(3):705–8.

    Article  CAS  PubMed  Google Scholar 

  59. Leake I. Out in the cold: new supercooling technique extends liver storage time. Nat Rev Gastroenterol Hepatol. 2014;11(9):517.

    Article  PubMed  Google Scholar 

  60. D’Amico DF, et al. Thermal homeostasis and liver transplantation. Acta Biomed. 2003;74(Suppl 2):30–3.

    PubMed  Google Scholar 

  61. Madrid E, et al. Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults. Cochrane Database Syst Rev. 2016;4:CD009016.

    PubMed  Google Scholar 

  62. Vaquero J, Rose C, Butterworth RF. Keeping cool in acute liver failure: rationale for the use of mild hypothermia. J Hepatol. 2005;43(6):1067–77.

    Article  CAS  PubMed  Google Scholar 

  63. Olthof PB, et al. Protective mechanisms of hypothermia in liver surgery and transplantation. Mol Med. 2015;21:833–46.

    Article  CAS  PubMed Central  Google Scholar 

  64. Hartmann M, Szalai C, Saner FH. Hemostasis in liver transplantation: pathophysiology, monitoring, and treatment. World J Gastroenterol. 2016;22(4):1541–50.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Nacoti M, et al. Coagulopathy and transfusion therapy in pediatric liver transplantation. World J Gastroenterol. 2016;22(6):2005–23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Trzebicki J, et al. The use of thromboelastometry in the assessment of hemostasis during orthotopic liver transplantation reduces the demand for blood products. Ann Transplant. 2010;15(3):19–24.

    PubMed  Google Scholar 

  67. Detry O, et al. Avoiding blood products during liver transplantation. Transplant Proc. 2005;37(6):2869–70.

    Article  CAS  PubMed  Google Scholar 

  68. Dalmau A, Sabate A, Aparicio I. Hemostasis and coagulation monitoring and management during liver transplantation. Curr Opin Organ Transplant. 2009;14(3):286–90.

    Article  PubMed  Google Scholar 

  69. Lisman T, Ariens RA. Alterations in fibrine structure in patients with liver diseases. Semin Thromb Hemost. 2016;42(4):389–96.

    Article  CAS  PubMed  Google Scholar 

  70. Roullet S, et al. Rotation thromboelastometry detects thrombocytopenia and hypofibrinogenaemia during orthotopic liver transplantation. Br J Anaesth. 2010;104(4):422–8.

    Article  CAS  PubMed  Google Scholar 

  71. Coakley M, et al. Transfusion triggers in orthotopic liver transplantation: a comparison of the thromboelastometry analyzer, the thromboelastogram, and conventional coagulation tests. J Cardiothorac Vasc Anesth. 2006;20(4):548–53.

    Article  PubMed  Google Scholar 

  72. Herbstreit F, et al. Monitoring of haemostasis in liver transplantation: comparison of laboratory based and point of care tests. Anaesthesia. 2010;65(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  73. Leon-Justel A, et al. Point-of-care haemostasis monitoring during liver transplantation reduces transfusion requirements and improves patient outcome. Clin Chim Acta. 2015;446:277–83.

    Article  CAS  PubMed  Google Scholar 

  74. Huang PH, et al. Accuracy and trending of continuous noninvasive hemoglobin monitoring in patients undergoing liver transplantation. Transplant Proc. 2016;48(4):1067–70.

    Article  CAS  PubMed  Google Scholar 

  75. Lisman T, et al. Recombinant factor VIIa improves clot formation but not fibrolytic potential in patients with cirrhosis and during liver transplantation. Hepatology. 2002;35(3):616–21.

    Article  PubMed  Google Scholar 

  76. Lodge JP, et al. Efficacy and safety of repeated perioperative doses of recombinant factor VIIa in liver transplantation. Liver Transpl. 2005;11(8):973–9.

    Article  PubMed  Google Scholar 

  77. Jalan R, et al. Pathogenesis of intracranial hypertension in acute liver failure: inflammation, ammonia and cerebral blood flow. J Hepatol. 2004;41(4):613–20.

    Article  CAS  PubMed  Google Scholar 

  78. Clemmesen JO, et al. Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology. 1999;29(3):648–53.

    Article  CAS  PubMed  Google Scholar 

  79. Philips BJ, et al. Cerebral blood flow and metabolism in patients with chronic liver disease undergoing orthotopic liver transplantation. Hepatology. 1998;27(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  80. Steadman RH, Van Rensburg A, Kramer DJ. Transplantation for acute liver failure: perioperative management. Curr Opin Organ Transplant. 2010;15(3):368–73.

    Article  PubMed  Google Scholar 

  81. Mohsenin V. Assessment and management of cerebral edema and intracranial hypertension in acute liver failure. J Crit Care. 2013;28(5):783–91.

    Article  PubMed  Google Scholar 

  82. Ferro JM, Viana P, Santos P. Management of neurologic manifestations in patients with liver disease. Curr Treat Options Neurol. 2016;18:37–53.

    Article  PubMed  Google Scholar 

  83. Reeves RR, Struve FA, Burke RS. Quantitative EEG analysis before and after liver transplantation. Clin EEG Neurosci. 2006;37(1):34–40.

    Article  PubMed  Google Scholar 

  84. Reeves RR, et al. P300 cognitive evoked potentials before and after liver transplantation. Metab Brain Dis. 2007;22(2):139–44.

    Article  PubMed  Google Scholar 

  85. Hussain E, et al. EEG abnormalities are associated with increased risk of transplant or poor outcome in children with acute liver failure. J Pediatr Gastroenterol Nutr. 2014;58(4):449–56.

    Article  PubMed  Google Scholar 

  86. Hwang S. Continuous peritransplant assessment of consciousness using bispectral index monitoring for patients with fulminant hepatic failure undergoing urgent liver transplantation. Clin Transpl. 2010;24(1):91–7.

    Article  Google Scholar 

  87. Dahaba AA, et al. The utility of using bispectral index monitoring as an early intraoperative indicator of initial poor graft function after orthotopic or split-graft liver transplantation. Gut. 2009;58(4):605–6.

    Article  CAS  PubMed  Google Scholar 

  88. Dahaba AA, et al. Sensitivity and specificity of bispectral index for classification of overt hepatic encephalopathy: a multicentre, observer blinded, validation study. Gut. 2008;57(1):77–83.

    Article  CAS  PubMed  Google Scholar 

  89. Vivien B, et al. Detection of brain death onset using the bispectral index in severely comatose patients. Intensive Care Med. 2002;28(4):419–25.

    Article  PubMed  Google Scholar 

  90. Kang JG, et al. The relationship between inhalational anesthetic requirements and the severity of liver disease in liver transplant recipients according to three phases of liver transplantation. Transplant Proc. 2010;42(3):854–7.

    Article  CAS  PubMed  Google Scholar 

  91. Montagnese S, et al. Prognostic benefit of the addition of a quantitative index of hepatic encephalopathy to the MELD score: the MELD-EEG. Liver Int. 2015;35(1):58–64.

    Article  PubMed  Google Scholar 

  92. Nissen P, et al. Near-infrared spectroscopy for evaluation of cerebral autoregulation during orthotopic liver transplantation. Neurocrit Care. 2009;11(2):235–41.

    Article  PubMed  Google Scholar 

  93. Madsen PL, et al. Interference of cerebral near-infrared oximetry in patients with icterus. Anesth Analg. 2000;90(2):489–93.

    CAS  PubMed  Google Scholar 

  94. Sidi A, Mahla ME. Noninvasive monitoring of cerebral perfusion by transcranial Doppler during fulminant hepatic failure and liver transplantation. Anesth Analg. 1995;80(1):194–200.

    CAS  PubMed  Google Scholar 

  95. Bindi ML, et al. Transcranial doppler sonography is useful for the decision-making at the point of care in patients with acute hepatic failure: a single centre’s experience. J Clin Monit Comput. 2008;22(6):449–52.

    Article  CAS  PubMed  Google Scholar 

  96. Zheng Y, et al. Continuous cerebral blood flow autoregulation monitoring in patients undergoing liver transplantation. Neurocrit Care. 2012;17(1):77–84.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Aggarwal S, et al. Cerebral hemodynamic and metabolic profiles in fulminant hepatic failure: relationship to outcome. Liver Transpl. 2005;11(11):1353–60.

    Article  PubMed  Google Scholar 

  98. Blei AT, et al. Complications of intracranial pressure monitoring in fulminant hepatic failure. Lancet. 1993;341(8838):157–8.

    Article  CAS  PubMed  Google Scholar 

  99. Le TV, et al. Insertion of intracranial pressure monitors in fulminant hepatic failure patients: early experience using recombinant factor VII. Neurosurgery. 2010;66(3):455–8. discussion 458

    Article  PubMed  Google Scholar 

  100. Bacani CJ, et al. Emergent, controlled lumbar drainage for intracranial pressure monitoring during orthotopic liver transplantation. Neurocrit Care. 2011;14(3):447–52.

    Article  PubMed  Google Scholar 

  101. Martinez-Manas RM, et al. Camino intracranial pressure monitor: prospective study of accuracy and complications. J Neurol Neurosurg Psychiatry. 2000;69(1):82–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Munoz SJ, Rajender Reddy K, Lee W. The coagulopathy of acute liver failure and implications for intracranial pressure monitoring. Neurocrit Care. 2008;9(1):103–7.

    Article  PubMed  Google Scholar 

  103. Karvellas CJ, et al. Outcomes and complications of intracranial pressure monitoring in acute liver failure: a retrospective cohort study. Crit Care Med. 2014;42(5):1157–67.

    Article  PubMed Central  PubMed  Google Scholar 

  104. Alonso J, Cordoba J, Rovira A. Brain magnetic resonance in hepatic encephalopathy. Semin Ultrasound CT MR. 2014;35(2):136–52.

    Article  PubMed  Google Scholar 

  105. Yan S, et al. Clinical utility of an automated pupillometer for assessing and monitoring recipients of liver transplantation. Liver Transpl. 2009;15(12):1718–27.

    Article  PubMed  Google Scholar 

  106. Moller S, Dumcke CW, Krag A. The heart and the liver. Expert Rev Gastroenterol Hepatol. 2009;3(1):51–64.

    Article  PubMed  Google Scholar 

  107. Ripoli C, Yotti R, Banares R. The heart in liver transplantation. J Hepatol. 2011;54:810–22.

    Article  Google Scholar 

  108. Raval Z, et al. Cardiac risk assessment of liver transplant candidate. J Am Coll Cardiol. 2011;58:223–31.

    Article  PubMed  Google Scholar 

  109. Della Rocca G, et al. Arterial pulse cardiac output agreement with thermodilution in patients in hyperdynamic conditions. J Cardiothorac Vasc Anesth. 2008;22(5):681–7.

    Article  PubMed  Google Scholar 

  110. Carey WD, et al. The prevalence of coronary artery disease in liver transplant candidates over age 50. Transplantation. 1995;59(6):859–64.

    Article  CAS  PubMed  Google Scholar 

  111. Zaky A, Bendjelid K. Appraising cardiac dysfunction in liver transplantation: an ongoing challenge. Liver Int. 2015;35(1):12–29.

    Article  PubMed  Google Scholar 

  112. Ozier Y, Klinck JR. Anesthetic management of hepatic transplantation. Curr Opin Anaesthesiol. 2008;21(3):391–400.

    Article  PubMed  Google Scholar 

  113. Nissen P, Friederiksen HJ, Secher NH. Intraoperative hemodynamic monitoring during liver transplantation: goals and devices. Minerva Gastroenterol Dietol. 2010;56(3):261–77.

    CAS  PubMed  Google Scholar 

  114. Rudnick MR, De Marchi L, Plotkin JS. Hemodynamic monitoring during liver transplantation: a state of the art review. World J Hepatol. 2015;7(10):1302–11.

    Article  PubMed Central  PubMed  Google Scholar 

  115. Ripoll C, et al. Cardiac dysfunction during liver transplantation: incidence and preoperative predictors. Transplantation. 2008;85(12):1766–72.

    Article  PubMed  Google Scholar 

  116. Robertson A. Intraoperative management of liver transplantation in patients with hypertrophic cardiomyopathy: a review. Transplant Proc. 2010;42(5):1721–3.

    Article  CAS  PubMed  Google Scholar 

  117. Aggarwal S, et al. Postreperfusion syndrome: hypotension after reperfusion of the transplanted liver. J Crit Care. 1993;8(3):154–60. 113

    Article  CAS  PubMed  Google Scholar 

  118. Aufhauser DD, et al. Cardiac arrest associated with reperfusion of the liver during transplantation: incidence and proposal for management algorithm. Clin Transpl. 2013;27(2):185–92.

    Article  Google Scholar 

  119. Lee M, et al. Agreement between radial to femoral arterial blood pressure measurements during liver transplantation. Crit Care Resusc. 2015;17(2):101–7.

    PubMed  Google Scholar 

  120. Duran JA, et al. Best blood sample draw site during liver transplantation. Transplant Proc. 2009;41(3):991–3.

    Article  PubMed  Google Scholar 

  121. Krenn CG, De Wolf AM. Current approach to intraoperative monitoring in liver transplantation. Curr Opin Organ Transplant. 2008;13(3):285–90.

    Article  PubMed  Google Scholar 

  122. Arguedas MR, et al. Prospective evaluation of outcomes and predictors of mortality in patients with hepatopulmonary syndrome undergoing liver transplantation. Hepatology. 2003;37(1):192–7.

    Article  PubMed  Google Scholar 

  123. Mazzeo AT, et al. Significance of hypoxemia screening in candidates for liver transplantation: our experience. Transplant Proc. 2006;38(3):793–4.

    Article  CAS  PubMed  Google Scholar 

  124. Cosarderelioglu C, et al. Portopulmonary hypertension and liver transplant: recent review of the literature. Exp Clin Transplant. 2016;14(2):113–20.

    PubMed  Google Scholar 

  125. Kim SH, et al. Accuracy of continuous noninvasive hemoglobin monitoring: a systematic review and meta-analysis. Anesth Analg. 2014;119(2):332–46.

    Article  CAS  PubMed  Google Scholar 

  126. Della Rocca G, et al. Preload and haemodynamic assessment during liver transplantation: a comparison between the pulmonary artery catheter and transpulmonary indicator dilution techniques. Eur J Anaesthesiol. 2002;19(12):868–75.

    Article  CAS  PubMed  Google Scholar 

  127. Greim CA, et al. Continuous cardiac output monitoring during adult liver transplantation: thermal filament technique versus bolus thermodilution. Anesth Analg. 1997;85(3):483–8.

    Article  CAS  PubMed  Google Scholar 

  128. Feltracco P, et al. Limits and pitfalls of hemodynamic monitoring systems in liver transplantation surgery. Minerva Anestesiol. 2012;78(12):1372–84.

    CAS  PubMed  Google Scholar 

  129. Costa MG, et al. Continuous and intermittent cardiac output measurement in hyperdynamic conditions: pulmonary artery catheter vs. lithium dilution technique. Intensive Care Med. 2008;34(2):257–63.

    Article  PubMed  Google Scholar 

  130. Ferreira RM, do Amaral JL, Valiatti JL. Comparison between two methods for hemodynamic measurement: thermodilution and oesophageal doppler. Rev Assoc Med Bras. 2007;53(4):349–54.

    Article  PubMed  Google Scholar 

  131. Krejci V, et al. Comparison of calibrated and uncalibrated arterial pressure-based cardiac output monitors during orthotopic liver transplantation. Liver Transpl. 2010;16(6):773–82.

    PubMed  Google Scholar 

  132. Gwak MS, et al. Incidence of severe ventricular arrhythmias during pulmonary artery catheterization in liver allograft recipients. Liver Transpl. 2007;13(10):1451–4.

    Article  PubMed  Google Scholar 

  133. Bao FP, Wu J. Continuous versus bolus cardiac output monitoring during orthotopic liver transplantation. Hepatobiliary Pancreat Dis Int. 2008;7(2):138–44.

    PubMed  Google Scholar 

  134. Kim YK, et al. Comparison of stroke volume variations derived from radial and femoral arterial pressure waveforms during liver transplantation. Transplant Proc. 2009;41(10):4220–8.

    Article  CAS  PubMed  Google Scholar 

  135. Lee M, et al. Agreement in hemodynamic monitoring during orthotopic liver transplantation: a comparison of FloTrac/Vigileo and two monitoring sites with pulmonary artery catheter thermodilution. J Clin Monit Comput. 2017;31(2):343–51.

    Article  PubMed  Google Scholar 

  136. Schlögelhofer T, Gilly H, Schima H. Semi-invasive measurement of cardiac output based on pulse contour: a review and analysis. Can J Anesth. 2014;61:452–79.

    Article  Google Scholar 

  137. Hoftman N, et al. Peripheral venous pressure as a predictor of central venous pressure during orthotopic liver transplantation. J Clin Anesth. 2006;18(4):251–5.

    Article  PubMed  Google Scholar 

  138. De Wolf AM, et al. Right ventricular function during orthotopic liver transplantation. Anesth Analg. 1993;76(3):562–8.

    PubMed  Google Scholar 

  139. Siniscalchi A, et al. Right ventricular end-diastolic volume index as a predictor of preload status in patients with low right ventricular ejection fraction during orthotopic liver transplantation. Transplant Proc. 2005;37(6):2541–3.

    Article  CAS  PubMed  Google Scholar 

  140. Krenn CG, et al. Intrathoracic fluid volumes and pulmonary function during orthotopic liver transplantation. Transplantation. 2000;69(11):2394–400.

    Article  CAS  PubMed  Google Scholar 

  141. Fazakas J, et al. Volumetric hemodynamic changes and postoperative complications in liver transplant patients. Transplant Proc. 2011;43(4):1275–7.

    Article  CAS  PubMed  Google Scholar 

  142. Della Rocca G, Brondani A, Costa MG. Intraoperative hemodynamic monitoring during organ transplantation: what is new? Curr Opin Organ Transplant. 2009;14(3):29–38.

    Article  Google Scholar 

  143. Starkel P, et al. Outcome of liver transplantation for patients with pulmonary hypertension. Liver Transpl. 2002;8(4):382–8.

    Article  PubMed  Google Scholar 

  144. Tam NL, He XS. Clinical management of portopulmonary hypertension. Hepatobiliary Pancreat Dis Int. 2007;6(5):464–9.

    PubMed  Google Scholar 

  145. Acosta F, et al. Does mixed venous oxygen saturation reflect the changes in cardiac output during liver transplantation? Transplant Proc. 2002;34(1):277.

    Article  CAS  PubMed  Google Scholar 

  146. Jardin F, et al. Reevaluation of hemodynamic consequences of positive pressure ventilation: emphasis on cyclic right ventricular afterloading by mechanical lung inflation. Anesthesiology. 1990;72(6):966–70.

    Article  CAS  PubMed  Google Scholar 

  147. Biais M, et al. Uncalibrated stroke volume variations are able to predict the hemodynamic effects of positive end-expiratory pressure in patients with acute lung injury or acute respiratory distress syndrome after liver transplantation. Anesthesiology. 2009;111(4):855–62.

    Article  PubMed  Google Scholar 

  148. Garutti I, et al. Extravascular lung water and pulmonary vascular permeability index measured at the end of surgery are independent predictors of prolonged mechanical ventilation in patients undergoing liver transplantation. Anesth Analg. 2015;121(3):736–45.

    Article  PubMed  Google Scholar 

  149. Biais M, et al. Uncalibrated pulse contour-derived stroke volume variation predicts fluid responsiveness in mechanically ventilated patients undergoing liver transplantation. Br J Anaesth. 2008;101(6):761–8.

    Article  CAS  PubMed  Google Scholar 

  150. Konur H, et al. Evaluation of pleth variability index as a predictor of fluid responsiveness during orthotopic liver transplantation. Kaohsiung J Med Sci. 2016;32(7):373–80.

    Article  PubMed  Google Scholar 

  151. Burtenshaw AJ, Isaac JL. The role of trans-oesophageal echocardiography for perioperative cardiovascular monitoring during orthotopic liver transplantation. Liver Transpl. 2006;12(11):1577–83.

    Article  PubMed  Google Scholar 

  152. Wax DB, et al. Transesophageal echocardiography utilization in high-volume liver transplantation centers in the United States. J Cardiothorac Vasc Anesth. 2008;22(6):811–3.

    Article  PubMed  Google Scholar 

  153. Soong W, et al. United States practice patterns in the use of transesophageal echocardiography during adult liver transplantation. J Cardiothorac Vasc Anesth. 2014;28(3):635–9.

    Article  PubMed  Google Scholar 

  154. De Wolf A. Transesophageal echocardiography and orthotopic liver transplantation: general concepts. Liver Transpl Surg. 1999;5(4):339–40.

    Article  PubMed  Google Scholar 

  155. Burger-Klepp U, et al. Transesophageal echocardiography during orthotopic liver transplantation in patients with esophageal varices. Transplantation. 2012;94(2):192–6.

    Article  PubMed  Google Scholar 

  156. Markin NW, et al. The safety of transesophageal echocardiography in patients undergoing orthotopic liver transplantation. J Cardiothorac Vasc Anesth. 2015;29(3):588–93.

    Article  PubMed  Google Scholar 

  157. Feierman D. Case presentation: transesophageal echocardiography during orthotopic liver transplantation—not only a different diagnosis, but different management. Liver Transpl Surg. 1999;5(4):340–1.

    Article  CAS  PubMed  Google Scholar 

  158. Ellenberger C, et al. Cardiovascular collapse due to massive pulmonary thromboembolism during orthotopic liver transplantation. J Clin Anesth. 2006;18(5):367–71.

    Article  PubMed  Google Scholar 

  159. Rosendal C, et al. Right ventricular function during orthotopic liver transplantation: three-dimensional transesophageal echocardiography and thermodilution. Ann Transplant. 2012;17(1):21–30.

    Article  PubMed  Google Scholar 

  160. Planinsic RM, et al. Diagnosis and treatment of intracardiac thrombosis during orthotopic liver transplantation. Anesth Analg. 2004;99(2):353–6; table of contents

    Article  PubMed  Google Scholar 

  161. Shapiro RS, et al. Use of intraoperative Doppler ultrasound to diagnose hepatic venous obstruction in a right lobe living donor liver transplant. Liver Transpl. 2001;7(6):547–50.

    Article  CAS  PubMed  Google Scholar 

  162. Puhl G, et al. Initial hepatic microcirculation correlates with early graft function in human orthotopic liver transplantation. Liver Transpl. 2005;11(5):555–63.

    Article  PubMed  Google Scholar 

  163. Lisik W, et al. Intraoperative blood flow measurements in organ allografts can predict postoperative function. Transplant Proc. 2007;39(2):371–2.

    Article  CAS  PubMed  Google Scholar 

  164. Hoekstra LT, et al. Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg. 2013;257(1):27–36.

    Article  PubMed  Google Scholar 

  165. Nagel RA, et al. Use of quantitative liver function tests—caffein clearance and galactose elimination capacity—after orthotopic liver transplantation. J Hepatol. 1990;10(2):149–57.

    Article  CAS  PubMed  Google Scholar 

  166. Ecochard M, et al. Could metabolic liver function tests predict mortality on waiting list for liver transplantation? A study on 560 patients. Clin Transpl. 2011;25(5):755–65.

    Article  Google Scholar 

  167. Dubray BJ, Zarrinpar A. Quantification of hepatic functional capacity: a call for standardisation. Expert Rev Gastroenterol Hepatol. 2016;10(1):9–11.

    Article  CAS  Google Scholar 

  168. Bruns H, et al. Early markers of reperfusion injury after liver transplantation: association with primary dysfunction. Hepatobiliary Pancreat Dis Int. 2015;14(3):246–52.

    Article  PubMed  Google Scholar 

  169. Garcia-Criado A, et al. Doppler ultrasound findings in the hepatic artery shortly after liver transplantation. Am J Roentgenol. 2009;193(1):128–35.

    Article  Google Scholar 

  170. Feng AC, et al. Hepatic hemodynamic changes during liver transplantation: a review. World J Gastroenterol. 2014;20(32):11131–41.

    Article  PubMed Central  PubMed  Google Scholar 

  171. Bueno J, et al. Intraoperative flow measurement of native liver and allograft during orthotopic liver transplantation in children. Transplant Proc. 2007;39(7):2278–9.

    Article  CAS  PubMed  Google Scholar 

  172. Jamieson LH, et al. Doppler ultrasound velocities and resistive indexes immediately after pediatric transplantation: normal ranges and predictors of failure. Am J Roentgenol. 2014;203(1):W110–6.

    Article  Google Scholar 

  173. Kaneko J, et al. Implantable Doppler probe for continuous monitoring of blood flow after liver transplantation. Hepato-Gastroenterology. 2005;52(61):194–6.

    PubMed  Google Scholar 

  174. Aki TJ, et al. Wireless monitor of liver hemodynamics in vivo. PLoS One. 2014;9(7):e102396.

    Article  Google Scholar 

  175. Schutz W, et al. Is it feasible to monitor total hepatic blood flow by use of transesophageal echography? An experimental study in pigs. Intensive Care Med. 2001;27(3):580–5.

    Article  CAS  PubMed  Google Scholar 

  176. Kortgen A, et al. Prospective assessment of hepatic function and mechanisms of dysfunction in the critically ill. Shock. 2009;32(4):358–65.

    Article  PubMed  Google Scholar 

  177. Chan RW, et al. The potential clinical utility of serial plasma albumin mRNA monitoring for the post-liver transplantation management. Clin Biochem. 2013;46(15):1313–9.

    Article  CAS  PubMed  Google Scholar 

  178. Schlegel A, Kron P, Dutkowski P. Hypothermic machine perfusion in liver transplantation. Curr Opin Organ Transplant. 2016;21(3):308–14.

    Article  CAS  PubMed  Google Scholar 

  179. Karangwa SA, et al. Machine perfusion of donor livers for transplantation: a proposal for standardized nomenclature and reporting guidelines. Am J Transplant. 2016;16(10):2932–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  180. Verhoeven CJ, et al. Biomarkers to assess graft quality during conventional and machine preservation in liver transplantation. J Hepatol. 2014;61:672–84.

    Article  CAS  PubMed  Google Scholar 

  181. Oellerich M, Armstrong VW. The MEGX test: a tool for the real-time assessment of hepatic function. Ther Drug Monit. 2001;23(2):81–92.

    Article  CAS  PubMed  Google Scholar 

  182. Levesque E, et al. Plasma disappearance rate of indocyanine green: a tool to evaluate early graft outcome after liver transplantation. Liver Transpl. 2009;15(10):1358–64.

    Article  PubMed  Google Scholar 

  183. Kortgen A, et al. Vasoactive mediators in patients with acute liver failure treated with albumin dialysis. Liver Int. 2010;30(4):634–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claus G. Krenn MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krenn, C.G., Nicolic, M. (2018). Intraoperative Monitoring. In: Wagener, G. (eds) Liver Anesthesiology and Critical Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-64298-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64298-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64297-0

  • Online ISBN: 978-3-319-64298-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics