Skip to main content

Physiology and Anatomy of the Liver

  • Chapter
  • First Online:
Liver Anesthesiology and Critical Care Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ankoma-Sey V. Hepatic regeneration-revisiting the myth of prometheus. News Physiol Sci. 1999;14:149–55.

    CAS  PubMed  Google Scholar 

  2. Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137(1):62–79.

    Article  CAS  Google Scholar 

  3. Kaestner KH. The making of the liver: developmental competence in foregut endoderm and induction of the hepatogenic program. Cell Cycle. 2005;4(9):1146–8.

    Article  CAS  Google Scholar 

  4. Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken). 2008;291(6):614–27.

    Article  Google Scholar 

  5. Tanimizu N, Miyajima A. Molecular mechanism of liver development and regeneration. Int Rev Cytol. 2007;259:1–48.

    Article  CAS  Google Scholar 

  6. Zhao R, Duncan SA. Embryonic development of the liver. Hepatology. 2005;41(5):956–67.

    Article  CAS  Google Scholar 

  7. Bismuth H. Surgical anatomy and anatomical surgery of the liver. World J Surg. 1982;6(1):3–9.

    Article  CAS  Google Scholar 

  8. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):S54–62.

    Article  CAS  Google Scholar 

  9. Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol. 2010;176(1):2–13.

    Article  CAS  Google Scholar 

  10. Reynaert H, Thompson MG, Thomas T, Geerts A. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut. 2002;50(4):571–81.

    Article  CAS  Google Scholar 

  11. Ito T. Cytological studies on stellate cells of Kupffer and fat-storing cells in the capillary wall of human liver. Acta Anat Jpn. 1951;26(42):42–74.

    Google Scholar 

  12. Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72.

    Article  CAS  Google Scholar 

  13. Soon RK Jr, Yee HF Jr. Stellate cell contraction: role, regulation, and potential therapeutic target. Clin Liver Dis. 2008;12(4):791–803. viii

    Article  Google Scholar 

  14. De Gottardi A, Shaw S, Sagesser H, Reichen J. Type A, but not type B, endothelin receptor antagonists significantly decrease portal pressure in portal hypertensive rats. J Hepatol. 2000;33(5):733–7.

    Article  Google Scholar 

  15. Merigan TC Jr, Plotkin GR, Davidson CS. Effect of intravenously administered posterior pituitary extract on hemorrhage from bleeding esophageal varices. A controlled evaluation. N Engl J Med. 1962;266:134–5.

    Article  Google Scholar 

  16. Chojkier M, Groszmann RJ, Atterbury CE, et al. A controlled comparison of continuous intraarterial and intravenous infusions of vasopressin in hemorrhage from esophageal varices. Gastroenterology. 1979;77(3):540–6.

    CAS  PubMed  Google Scholar 

  17. Schneider AW, Kalk JF, Klein CP. Effect of losartan, an angiotensin II receptor antagonist, on portal pressure in cirrhosis. Hepatology. 1999;29(2):334–9.

    Article  CAS  Google Scholar 

  18. Gonzalez-Abraldes J, Albillos A, Banares R, et al. Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology. 2001;121(2):382–8.

    Article  CAS  Google Scholar 

  19. Shah V, Haddad FG, Garcia-Cardena G, et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest. 1997;100(11):2923–30.

    Article  CAS  Google Scholar 

  20. McCuskey RS. The hepatic microvascular system in health and its response to toxicants. Anat Rec (Hoboken). 2008;291(6):661–71.

    Article  Google Scholar 

  21. Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35(2):478–91.

    Article  CAS  Google Scholar 

  22. Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39(4 Suppl 2):S125–30.

    Article  Google Scholar 

  23. Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43(1):98–103.

    Article  CAS  Google Scholar 

  24. Moreau R. VEGF-induced angiogenesis drives collateral circulation in portal hypertension. J Hepatol. 2005;43(1):6–8.

    Article  CAS  Google Scholar 

  25. Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology. 2008;47(2):729–36.

    Article  CAS  Google Scholar 

  26. Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol. 2003;18(8):891–902.

    Article  CAS  Google Scholar 

  27. Cataldegirmen G, Zeng S, Feirt N, et al. RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-alpha and NF-kappaB. J Exp Med. 2005;201(3):473–84.

    Article  CAS  Google Scholar 

  28. Lau AH, Thomson AW. Dendritic cells and immune regulation in the liver. Gut. 2003;52(2):307–14.

    Article  CAS  Google Scholar 

  29. Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver development. Development. 2015;142(12):2094–108.

    Article  CAS  Google Scholar 

  30. Katz NR. Methods for the study of liver cell heterogeneity. Histochem J. 1989;21(9–10):517–29.

    Article  CAS  Google Scholar 

  31. Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992;53(3):275–354.

    Article  CAS  Google Scholar 

  32. Katz NR. Metabolic heterogeneity of hepatocytes across the liver acinus. J Nutr. 1992;122(3 Suppl):843–9.

    Article  CAS  Google Scholar 

  33. Hepatic zonation of carbohydrate metabolism. Nutr Rev. 1989;47(7):219–21.

    Google Scholar 

  34. Yoon JC, Yang CM, Song Y, Lee JM. Natural killer cells in hepatitis C: current progress. World J Gastroenterol. 2016;22(4):1449–60.

    Article  CAS  Google Scholar 

  35. Weiler-Normann C, Rehermann B. The liver as an immunological organ. J Gastroenterol Hepatol. 2004;19(7):279–83.

    Article  Google Scholar 

  36. Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol. 2016;13(3):337–46.

    Article  CAS  Google Scholar 

  37. Shuai Z, Leung MW, He X, et al. Adaptive immunity in the liver. Cell Mol Immunol. 2016;13(3):354–68.

    Article  CAS  Google Scholar 

  38. Sheth K, Bankey P. The liver as an immune organ. Curr Opin Crit Care. 2001;7(2):99–104.

    Article  CAS  Google Scholar 

  39. Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147–63.

    Article  CAS  Google Scholar 

  40. Anderson D, Billingham RE, Lampkin GH, Medawar PB. The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity. 1951;5(3):379–97.

    Article  Google Scholar 

  41. Billingham RE, Lampkin GH, Medawar PB, Williams HL. Tolerance to homografts, twin diagnosis, and the freemartin condition in cattle. Heredity. 1952;6(2):201–12.

    Article  Google Scholar 

  42. Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science. 1945;102:400–1.

    Article  CAS  Google Scholar 

  43. Calne RY, Sells RA, Pena JR, et al. Induction of immunological tolerance by porcine liver allografts. Nature. 1969;223(5205):472–6.

    Article  CAS  Google Scholar 

  44. Thomson AW, Lu L. Are dendritic cells the key to liver transplant tolerance? Immunol Today. 1999;20(1):27–32.

    Article  CAS  Google Scholar 

  45. Crispe IN, Giannandrea M, Klein I, John B, Sampson B, Wuensch S. Cellular and molecular mechanisms of liver tolerance. Immunol Rev. 2006;213:101–18.

    Article  Google Scholar 

  46. Grakoui A, Crispe IN. Presentation of hepatocellular antigens. Cell Mol Immunol. 2016;13(3):293–300.

    Article  CAS  Google Scholar 

  47. Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352(21):2211–21.

    Article  CAS  Google Scholar 

  48. Chan LN, Anderson GD. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol). Clin Pharmacokinet. 2014;53(12):1115–36.

    Article  CAS  Google Scholar 

  49. Frezza M, di Padova C, Pozzato G, Terpin M, Baraona E, Lieber CS. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med. 1990;322(2):95–9.

    Article  CAS  Google Scholar 

  50. Chalasani N, Bonkovsky HL, Fontana R, et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology. 2015;148(7):1340–1352.e7.

    Article  Google Scholar 

  51. Glue P, Clement RP. Cytochrome P450 enzymes and drug metabolism—basic concepts and methods of assessment. Cell Mol Neurobiol. 1999;19(3):309–23.

    Article  CAS  Google Scholar 

  52. Goodman LS, Gilman A, Brunton LL, Lazo JS, Parker KL. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006.

    Google Scholar 

  53. Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349(5):474–85.

    Article  CAS  Google Scholar 

  54. Bromley PN, Cottam SJ, Hilmi I, et al. Effects of intraoperative N-acetylcysteine in orthotopic liver transplantation. Br J Anaesth. 1995;75(3):352–4.

    Article  CAS  Google Scholar 

  55. Thies JC, Teklote J, Clauer U, et al. The efficacy of N-acetylcysteine as a hepatoprotective agent in liver transplantation. Transpl Int. 1998;11(Suppl 1):S390–2.

    Article  Google Scholar 

  56. Hilmi IA, Peng Z, Planinsic RM, et al. N-acetylcysteine does not prevent hepatorenal ischaemia-reperfusion injury in patients undergoing orthotopic liver transplantation. Nephrol Dial Transplant. 2010;25(7):2328–33.

    Article  CAS  Google Scholar 

  57. Hediger MA, Clemencon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Asp Med. 2013;34(2–3):95–107.

    Article  CAS  Google Scholar 

  58. Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992;17(11):463–8.

    Article  CAS  Google Scholar 

  59. Doring B, Petzinger E. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev. 2014;46(3):261–82.

    Article  Google Scholar 

  60. Harden CL, Leppik I. Optimizing therapy of seizures in women who use oral contraceptives. Neurology. 2006;67(12 Suppl 4):S56–8.

    Article  CAS  Google Scholar 

  61. Han HS, Kang G, Kim JS, Choi BH, Koo SH. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 2016;48:e218.

    Article  CAS  Google Scholar 

  62. Adeva-Andany MM, Gonzalez-Lucan M, Donapetry-Garcia C, Fernandez-Fernandez C, Ameneiros-Rodriguez E. Glycogen metabolism in humans. BBA Clin. 2016;5:85–100.

    Article  Google Scholar 

  63. Bhattacharya K. Investigation and management of the hepatic glycogen storage diseases. Transl Pediatr. 2015;4(3):240–8.

    PubMed  PubMed Central  Google Scholar 

  64. Roscher A, Patel J, Hewson S, et al. The natural history of glycogen storage disease types VI and IX: long-term outcome from the largest metabolic center in Canada. Mol Genet Metab. 2014;113(3):171–6.

    Article  CAS  Google Scholar 

  65. Lemberg A, Fernandez MA. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann Hepatol. 2009;8(2):95–102.

    PubMed  Google Scholar 

  66. Scott TR, Kronsten VT, Hughes RD, Shawcross DL. Pathophysiology of cerebral oedema in acute liver failure. World J Gastroenterol. 2013;19(48):9240–55.

    Article  Google Scholar 

  67. Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology. 2006;44(4):788–94.

    Article  CAS  Google Scholar 

  68. Detry O, De Roover A, Honore P, Meurisse M. Brain edema and intracranial hypertension in fulminant hepatic failure: pathophysiology and management. World J Gastroenterol. 2006;12(46):7405–12.

    Article  Google Scholar 

  69. Ranjan P, Mishra AM, Kale R, Saraswat VA, Gupta RK. Cytotoxic edema is responsible for raised intracranial pressure in fulminant hepatic failure: in vivo demonstration using diffusion-weighted MRI in human subjects. Metab Brain Dis. 2005;20(3):181–92.

    Article  Google Scholar 

  70. Masoro EJ. Lipids and lipid metabolism. Annu Rev Physiol. 1977;39:301–21.

    Article  CAS  Google Scholar 

  71. Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.

    Article  Google Scholar 

  72. Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2009;19(4):291–302.

    Article  CAS  Google Scholar 

  73. Alberti KG, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62.

    Article  Google Scholar 

  74. Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50(8):1844–50.

    Article  CAS  Google Scholar 

  75. Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. Ann Intern Med. 1997;126(2):137–45.

    Article  CAS  Google Scholar 

  76. Amitrano L, Guardascione MA, Brancaccio V, Balzano A. Coagulation disorders in liver disease. Semin Liver Dis. 2002;22(1):83–96.

    Article  CAS  Google Scholar 

  77. Caldwell SH, Hoffman M, Lisman T, et al. Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology. 2006;44(4):1039–46.

    Article  CAS  Google Scholar 

  78. Kaul VV, Munoz SJ. Coagulopathy of liver disease. Curr Treat Options Gastroenterol. 2000;3(6):433–8.

    Article  CAS  Google Scholar 

  79. Mitchell O, Feldman DM, Diakow M, Sigal SH. The pathophysiology of thrombocytopenia in chronic liver disease. Hepat Med. 2016;8:39–50.

    PubMed  PubMed Central  Google Scholar 

  80. Sogaard KK, Horvath-Puho E, Gronbaek H, Jepsen P, Vilstrup H, Sorensen HT. Risk of venous thromboembolism in patients with liver disease: a nationwide population-based case-control study. Am J Gastroenterol. 2009;104(1):96–101.

    Article  Google Scholar 

  81. Tripodi A, Chantarangkul V, Mannucci PM. Acquired coagulation disorders: revisited using global coagulation/anticoagulation testing. Br J Haematol. 2009;147(1):77–82.

    Article  Google Scholar 

  82. Leebeek FW, Rijken DC. The fibrinolytic status in liver diseases. Semin Thromb Hemost. 2015;41(5):474–80.

    Article  CAS  Google Scholar 

  83. Tripodi A. The coagulopathy of chronic liver disease: is there a causal relationship with bleeding? No. Eur J Intern Med. 2010;21(2):65–9.

    Article  Google Scholar 

  84. Basili S, Raparelli V, Violi F. The coagulopathy of chronic liver disease: is there a causal relationship with bleeding? Yes. Eur J Intern Med. 2010;21(2):62–4.

    Article  Google Scholar 

  85. Dhainaut JF, Marin N, Mignon A, Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med. 2001;29(7 Suppl):S42–7.

    Article  CAS  Google Scholar 

  86. Peck-Radosavljevic M, Zacherl J, Meng YG, et al. Is inadequate thrombopoietin production a major cause of thrombocytopenia in cirrhosis of the liver? J Hepatol. 1997;27(1):127–31.

    Article  CAS  Google Scholar 

  87. Peck-Radosavljevic M, Wichlas M, Zacherl J, et al. Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production. Blood. 2000;95(3):795–801.

    CAS  PubMed  Google Scholar 

  88. Shen M, Shi H. Sex hormones and their receptors regulate liver energy homeostasis. Int J Endocrinol. 2015;2015:294278.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Anita Mulaikal MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulaikal, T.A., Emond, J.C. (2018). Physiology and Anatomy of the Liver. In: Wagener, G. (eds) Liver Anesthesiology and Critical Care Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-64298-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64298-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64297-0

  • Online ISBN: 978-3-319-64298-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics