Physiology and Anatomy of the Liver

  • Teresa Anita Mulaikal
  • Jean C. Emond


This chapter will review the anatomy and physiology of the liver as it pertains to the anesthetic management during liver surgery and transplantation. Anesthetic management of the patient with chronic liver disease requires a thorough understanding of the alterations induced in cirrhosis that affect many organ systems. For example liver surgery for ablation of tumors may reduce the functional mass of the liver resulting in systemic changes that alter hemodynamics and renal function. In liver transplantation, the body is deprived of all liver function during the implantation phase and may receive a new liver with impaired initial function. All types of liver surgery may cause hepatic ischemia and reperfusion injury that may induce both acute and chronic systemic alterations. Thus, an understanding of the structure and function of the liver, is critical for managing the changes in the liver induced during surgery. This knowledge, applied throughout the peri-operative period...


Liver anatomy Liver segments External anatomy Embryology Hepatocytes Liver function 


  1. 1.
    Ankoma-Sey V. Hepatic regeneration-revisiting the myth of prometheus. News Physiol Sci. 1999;14:149–55.PubMedGoogle Scholar
  2. 2.
    Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology. 2009;137(1):62–79.CrossRefGoogle Scholar
  3. 3.
    Kaestner KH. The making of the liver: developmental competence in foregut endoderm and induction of the hepatogenic program. Cell Cycle. 2005;4(9):1146–8.CrossRefGoogle Scholar
  4. 4.
    Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken). 2008;291(6):614–27.CrossRefGoogle Scholar
  5. 5.
    Tanimizu N, Miyajima A. Molecular mechanism of liver development and regeneration. Int Rev Cytol. 2007;259:1–48.CrossRefGoogle Scholar
  6. 6.
    Zhao R, Duncan SA. Embryonic development of the liver. Hepatology. 2005;41(5):956–67.CrossRefGoogle Scholar
  7. 7.
    Bismuth H. Surgical anatomy and anatomical surgery of the liver. World J Surg. 1982;6(1):3–9.CrossRefGoogle Scholar
  8. 8.
    Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology. 2006;43(2 Suppl 1):S54–62.CrossRefGoogle Scholar
  9. 9.
    Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. Am J Pathol. 2010;176(1):2–13.CrossRefGoogle Scholar
  10. 10.
    Reynaert H, Thompson MG, Thomas T, Geerts A. Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut. 2002;50(4):571–81.CrossRefGoogle Scholar
  11. 11.
    Ito T. Cytological studies on stellate cells of Kupffer and fat-storing cells in the capillary wall of human liver. Acta Anat Jpn. 1951;26(42):42–74.Google Scholar
  12. 12.
    Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88(1):125–72.CrossRefGoogle Scholar
  13. 13.
    Soon RK Jr, Yee HF Jr. Stellate cell contraction: role, regulation, and potential therapeutic target. Clin Liver Dis. 2008;12(4):791–803. viiiCrossRefGoogle Scholar
  14. 14.
    De Gottardi A, Shaw S, Sagesser H, Reichen J. Type A, but not type B, endothelin receptor antagonists significantly decrease portal pressure in portal hypertensive rats. J Hepatol. 2000;33(5):733–7.CrossRefGoogle Scholar
  15. 15.
    Merigan TC Jr, Plotkin GR, Davidson CS. Effect of intravenously administered posterior pituitary extract on hemorrhage from bleeding esophageal varices. A controlled evaluation. N Engl J Med. 1962;266:134–5.CrossRefGoogle Scholar
  16. 16.
    Chojkier M, Groszmann RJ, Atterbury CE, et al. A controlled comparison of continuous intraarterial and intravenous infusions of vasopressin in hemorrhage from esophageal varices. Gastroenterology. 1979;77(3):540–6.PubMedGoogle Scholar
  17. 17.
    Schneider AW, Kalk JF, Klein CP. Effect of losartan, an angiotensin II receptor antagonist, on portal pressure in cirrhosis. Hepatology. 1999;29(2):334–9.CrossRefGoogle Scholar
  18. 18.
    Gonzalez-Abraldes J, Albillos A, Banares R, et al. Randomized comparison of long-term losartan versus propranolol in lowering portal pressure in cirrhosis. Gastroenterology. 2001;121(2):382–8.CrossRefGoogle Scholar
  19. 19.
    Shah V, Haddad FG, Garcia-Cardena G, et al. Liver sinusoidal endothelial cells are responsible for nitric oxide modulation of resistance in the hepatic sinusoids. J Clin Invest. 1997;100(11):2923–30.CrossRefGoogle Scholar
  20. 20.
    McCuskey RS. The hepatic microvascular system in health and its response to toxicants. Anat Rec (Hoboken). 2008;291(6):661–71.CrossRefGoogle Scholar
  21. 21.
    Wiest R, Groszmann RJ. The paradox of nitric oxide in cirrhosis and portal hypertension: too much, not enough. Hepatology. 2002;35(2):478–91.CrossRefGoogle Scholar
  22. 22.
    Groszmann RJ, Abraldes JG. Portal hypertension: from bedside to bench. J Clin Gastroenterol. 2005;39(4 Suppl 2):S125–30.CrossRefGoogle Scholar
  23. 23.
    Fernandez M, Mejias M, Angermayr B, Garcia-Pagan JC, Rodes J, Bosch J. Inhibition of VEGF receptor-2 decreases the development of hyperdynamic splanchnic circulation and portal-systemic collateral vessels in portal hypertensive rats. J Hepatol. 2005;43(1):98–103.CrossRefGoogle Scholar
  24. 24.
    Moreau R. VEGF-induced angiogenesis drives collateral circulation in portal hypertension. J Hepatol. 2005;43(1):6–8.CrossRefGoogle Scholar
  25. 25.
    Gao B, Jeong WI, Tian Z. Liver: an organ with predominant innate immunity. Hepatology. 2008;47(2):729–36.CrossRefGoogle Scholar
  26. 26.
    Teoh NC, Farrell GC. Hepatic ischemia reperfusion injury: pathogenic mechanisms and basis for hepatoprotection. J Gastroenterol Hepatol. 2003;18(8):891–902.CrossRefGoogle Scholar
  27. 27.
    Cataldegirmen G, Zeng S, Feirt N, et al. RAGE limits regeneration after massive liver injury by coordinated suppression of TNF-alpha and NF-kappaB. J Exp Med. 2005;201(3):473–84.CrossRefGoogle Scholar
  28. 28.
    Lau AH, Thomson AW. Dendritic cells and immune regulation in the liver. Gut. 2003;52(2):307–14.CrossRefGoogle Scholar
  29. 29.
    Gordillo M, Evans T, Gouon-Evans V. Orchestrating liver development. Development. 2015;142(12):2094–108.CrossRefGoogle Scholar
  30. 30.
    Katz NR. Methods for the study of liver cell heterogeneity. Histochem J. 1989;21(9–10):517–29.CrossRefGoogle Scholar
  31. 31.
    Gebhardt R. Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol Ther. 1992;53(3):275–354.CrossRefGoogle Scholar
  32. 32.
    Katz NR. Metabolic heterogeneity of hepatocytes across the liver acinus. J Nutr. 1992;122(3 Suppl):843–9.CrossRefGoogle Scholar
  33. 33.
    Hepatic zonation of carbohydrate metabolism. Nutr Rev. 1989;47(7):219–21.Google Scholar
  34. 34.
    Yoon JC, Yang CM, Song Y, Lee JM. Natural killer cells in hepatitis C: current progress. World J Gastroenterol. 2016;22(4):1449–60.CrossRefGoogle Scholar
  35. 35.
    Weiler-Normann C, Rehermann B. The liver as an immunological organ. J Gastroenterol Hepatol. 2004;19(7):279–83.CrossRefGoogle Scholar
  36. 36.
    Bandyopadhyay K, Marrero I, Kumar V. NKT cell subsets as key participants in liver physiology and pathology. Cell Mol Immunol. 2016;13(3):337–46.CrossRefGoogle Scholar
  37. 37.
    Shuai Z, Leung MW, He X, et al. Adaptive immunity in the liver. Cell Mol Immunol. 2016;13(3):354–68.CrossRefGoogle Scholar
  38. 38.
    Sheth K, Bankey P. The liver as an immune organ. Curr Opin Crit Care. 2001;7(2):99–104.CrossRefGoogle Scholar
  39. 39.
    Crispe IN. The liver as a lymphoid organ. Annu Rev Immunol. 2009;27:147–63.CrossRefGoogle Scholar
  40. 40.
    Anderson D, Billingham RE, Lampkin GH, Medawar PB. The use of skin grafting to distinguish between monozygotic and dizygotic twins in cattle. Heredity. 1951;5(3):379–97.CrossRefGoogle Scholar
  41. 41.
    Billingham RE, Lampkin GH, Medawar PB, Williams HL. Tolerance to homografts, twin diagnosis, and the freemartin condition in cattle. Heredity. 1952;6(2):201–12.CrossRefGoogle Scholar
  42. 42.
    Owen RD. Immunogenetic consequences of vascular anastomoses between bovine twins. Science. 1945;102:400–1.CrossRefGoogle Scholar
  43. 43.
    Calne RY, Sells RA, Pena JR, et al. Induction of immunological tolerance by porcine liver allografts. Nature. 1969;223(5205):472–6.CrossRefGoogle Scholar
  44. 44.
    Thomson AW, Lu L. Are dendritic cells the key to liver transplant tolerance? Immunol Today. 1999;20(1):27–32.CrossRefGoogle Scholar
  45. 45.
    Crispe IN, Giannandrea M, Klein I, John B, Sampson B, Wuensch S. Cellular and molecular mechanisms of liver tolerance. Immunol Rev. 2006;213:101–18.CrossRefGoogle Scholar
  46. 46.
    Grakoui A, Crispe IN. Presentation of hepatocellular antigens. Cell Mol Immunol. 2016;13(3):293–300.CrossRefGoogle Scholar
  47. 47.
    Wilkinson GR. Drug metabolism and variability among patients in drug response. N Engl J Med. 2005;352(21):2211–21.CrossRefGoogle Scholar
  48. 48.
    Chan LN, Anderson GD. Pharmacokinetic and pharmacodynamic drug interactions with ethanol (alcohol). Clin Pharmacokinet. 2014;53(12):1115–36.CrossRefGoogle Scholar
  49. 49.
    Frezza M, di Padova C, Pozzato G, Terpin M, Baraona E, Lieber CS. High blood alcohol levels in women. The role of decreased gastric alcohol dehydrogenase activity and first-pass metabolism. N Engl J Med. 1990;322(2):95–9.CrossRefGoogle Scholar
  50. 50.
    Chalasani N, Bonkovsky HL, Fontana R, et al. Features and outcomes of 899 patients with drug-induced liver injury: the DILIN prospective study. Gastroenterology. 2015;148(7):1340–1352.e7.CrossRefGoogle Scholar
  51. 51.
    Glue P, Clement RP. Cytochrome P450 enzymes and drug metabolism—basic concepts and methods of assessment. Cell Mol Neurobiol. 1999;19(3):309–23.CrossRefGoogle Scholar
  52. 52.
    Goodman LS, Gilman A, Brunton LL, Lazo JS, Parker KL. Goodman and Gilman’s the pharmacological basis of therapeutics. 11th ed. New York: McGraw-Hill; 2006.Google Scholar
  53. 53.
    Lee WM. Drug-induced hepatotoxicity. N Engl J Med. 2003;349(5):474–85.CrossRefGoogle Scholar
  54. 54.
    Bromley PN, Cottam SJ, Hilmi I, et al. Effects of intraoperative N-acetylcysteine in orthotopic liver transplantation. Br J Anaesth. 1995;75(3):352–4.CrossRefGoogle Scholar
  55. 55.
    Thies JC, Teklote J, Clauer U, et al. The efficacy of N-acetylcysteine as a hepatoprotective agent in liver transplantation. Transpl Int. 1998;11(Suppl 1):S390–2.CrossRefGoogle Scholar
  56. 56.
    Hilmi IA, Peng Z, Planinsic RM, et al. N-acetylcysteine does not prevent hepatorenal ischaemia-reperfusion injury in patients undergoing orthotopic liver transplantation. Nephrol Dial Transplant. 2010;25(7):2328–33.CrossRefGoogle Scholar
  57. 57.
    Hediger MA, Clemencon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol Asp Med. 2013;34(2–3):95–107.CrossRefGoogle Scholar
  58. 58.
    Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem Sci. 1992;17(11):463–8.CrossRefGoogle Scholar
  59. 59.
    Doring B, Petzinger E. Phase 0 and phase III transport in various organs: combined concept of phases in xenobiotic transport and metabolism. Drug Metab Rev. 2014;46(3):261–82.CrossRefGoogle Scholar
  60. 60.
    Harden CL, Leppik I. Optimizing therapy of seizures in women who use oral contraceptives. Neurology. 2006;67(12 Suppl 4):S56–8.CrossRefGoogle Scholar
  61. 61.
    Han HS, Kang G, Kim JS, Choi BH, Koo SH. Regulation of glucose metabolism from a liver-centric perspective. Exp Mol Med. 2016;48:e218.CrossRefGoogle Scholar
  62. 62.
    Adeva-Andany MM, Gonzalez-Lucan M, Donapetry-Garcia C, Fernandez-Fernandez C, Ameneiros-Rodriguez E. Glycogen metabolism in humans. BBA Clin. 2016;5:85–100.CrossRefGoogle Scholar
  63. 63.
    Bhattacharya K. Investigation and management of the hepatic glycogen storage diseases. Transl Pediatr. 2015;4(3):240–8.PubMedPubMedCentralGoogle Scholar
  64. 64.
    Roscher A, Patel J, Hewson S, et al. The natural history of glycogen storage disease types VI and IX: long-term outcome from the largest metabolic center in Canada. Mol Genet Metab. 2014;113(3):171–6.CrossRefGoogle Scholar
  65. 65.
    Lemberg A, Fernandez MA. Hepatic encephalopathy, ammonia, glutamate, glutamine and oxidative stress. Ann Hepatol. 2009;8(2):95–102.PubMedGoogle Scholar
  66. 66.
    Scott TR, Kronsten VT, Hughes RD, Shawcross DL. Pathophysiology of cerebral oedema in acute liver failure. World J Gastroenterol. 2013;19(48):9240–55.CrossRefGoogle Scholar
  67. 67.
    Albrecht J, Norenberg MD. Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology. 2006;44(4):788–94.CrossRefGoogle Scholar
  68. 68.
    Detry O, De Roover A, Honore P, Meurisse M. Brain edema and intracranial hypertension in fulminant hepatic failure: pathophysiology and management. World J Gastroenterol. 2006;12(46):7405–12.CrossRefGoogle Scholar
  69. 69.
    Ranjan P, Mishra AM, Kale R, Saraswat VA, Gupta RK. Cytotoxic edema is responsible for raised intracranial pressure in fulminant hepatic failure: in vivo demonstration using diffusion-weighted MRI in human subjects. Metab Brain Dis. 2005;20(3):181–92.CrossRefGoogle Scholar
  70. 70.
    Masoro EJ. Lipids and lipid metabolism. Annu Rev Physiol. 1977;39:301–21.CrossRefGoogle Scholar
  71. 71.
    Kleiner DE, Brunt EM, Van Natta M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41(6):1313–21.CrossRefGoogle Scholar
  72. 72.
    Tessari P, Coracina A, Cosma A, Tiengo A. Hepatic lipid metabolism and non-alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis. 2009;19(4):291–302.CrossRefGoogle Scholar
  73. 73.
    Alberti KG, Zimmet P, Shaw J. The metabolic syndrome—a new worldwide definition. Lancet. 2005;366(9491):1059–62.CrossRefGoogle Scholar
  74. 74.
    Marchesini G, Brizi M, Bianchi G, et al. Nonalcoholic fatty liver disease: a feature of the metabolic syndrome. Diabetes. 2001;50(8):1844–50.CrossRefGoogle Scholar
  75. 75.
    Sheth SG, Gordon FD, Chopra S. Nonalcoholic steatohepatitis. Ann Intern Med. 1997;126(2):137–45.CrossRefGoogle Scholar
  76. 76.
    Amitrano L, Guardascione MA, Brancaccio V, Balzano A. Coagulation disorders in liver disease. Semin Liver Dis. 2002;22(1):83–96.CrossRefGoogle Scholar
  77. 77.
    Caldwell SH, Hoffman M, Lisman T, et al. Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology. 2006;44(4):1039–46.CrossRefGoogle Scholar
  78. 78.
    Kaul VV, Munoz SJ. Coagulopathy of liver disease. Curr Treat Options Gastroenterol. 2000;3(6):433–8.CrossRefGoogle Scholar
  79. 79.
    Mitchell O, Feldman DM, Diakow M, Sigal SH. The pathophysiology of thrombocytopenia in chronic liver disease. Hepat Med. 2016;8:39–50.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Sogaard KK, Horvath-Puho E, Gronbaek H, Jepsen P, Vilstrup H, Sorensen HT. Risk of venous thromboembolism in patients with liver disease: a nationwide population-based case-control study. Am J Gastroenterol. 2009;104(1):96–101.CrossRefGoogle Scholar
  81. 81.
    Tripodi A, Chantarangkul V, Mannucci PM. Acquired coagulation disorders: revisited using global coagulation/anticoagulation testing. Br J Haematol. 2009;147(1):77–82.CrossRefGoogle Scholar
  82. 82.
    Leebeek FW, Rijken DC. The fibrinolytic status in liver diseases. Semin Thromb Hemost. 2015;41(5):474–80.CrossRefGoogle Scholar
  83. 83.
    Tripodi A. The coagulopathy of chronic liver disease: is there a causal relationship with bleeding? No. Eur J Intern Med. 2010;21(2):65–9.CrossRefGoogle Scholar
  84. 84.
    Basili S, Raparelli V, Violi F. The coagulopathy of chronic liver disease: is there a causal relationship with bleeding? Yes. Eur J Intern Med. 2010;21(2):62–4.CrossRefGoogle Scholar
  85. 85.
    Dhainaut JF, Marin N, Mignon A, Vinsonneau C. Hepatic response to sepsis: interaction between coagulation and inflammatory processes. Crit Care Med. 2001;29(7 Suppl):S42–7.CrossRefGoogle Scholar
  86. 86.
    Peck-Radosavljevic M, Zacherl J, Meng YG, et al. Is inadequate thrombopoietin production a major cause of thrombocytopenia in cirrhosis of the liver? J Hepatol. 1997;27(1):127–31.CrossRefGoogle Scholar
  87. 87.
    Peck-Radosavljevic M, Wichlas M, Zacherl J, et al. Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production. Blood. 2000;95(3):795–801.PubMedGoogle Scholar
  88. 88.
    Shen M, Shi H. Sex hormones and their receptors regulate liver energy homeostasis. Int J Endocrinol. 2015;2015:294278.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Division of Cardiothoracic and Critical Care MedicineColumbia University Medical CenterNew YorkUSA
  2. 2.Department of SurgeryColumbia University Medical CenterNew YorkUSA

Personalised recommendations