Physical Processes in the Dusty Plasma of the Enceladus Plume

  • Victoria Yaroshenko
  • Patrick Meier
  • Hermann Lühr
  • Uwe Motschmann
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)

Abstract

This chapter presents a short overview of physical processes in a specific plasma region (a so-called plume) found by the Cassini orbiter in the vicinity of the icy moon Enceladus. In particular, we summarize highlights of scientific results which have been performed by German research groups in GFZ German Research Centre for Geosciences, Potsdam and Technical University of Braunschweig as part of the Special Priority Program “PlanetMag” of the Deutsche Forschungsgemeinschaft between 2013 and 2016. The highlights cover mostly those theoretical and numerical studies in which measurements of different Cassini instruments could be compared with theory or where the phenomenon has a diagnostic application. Dust charging, role of dust size distributions, and dust charge fluctuations are discussed. The findings are used for interpretations of the Cassini Plasma Spectrometer data and improve constraints on the dust characteristics. Then the main forces and dust dynamics are discussed in conditions relevant for the near-Enceladus environment. It is also examined how the charged dust can affect the plasma shielding length which is of importance for the reliable Cassini Langmuir probe measurements. Considering the dust grains as heavy negative ion species, the electric conductivity tensor is modified, whose elements are the key quantities for understanding the magnetic field perturbations registered by the Cassini Magnetometer during Enceladus flybys.

References

  1. Cassidy, T.A., Johnson, R.E.: Icarus 209, 696 (2010)ADSCrossRefGoogle Scholar
  2. Cui, C., Goree, J.: IEEE Trans. Plasma Sci. 22, 151 (1994)ADSCrossRefGoogle Scholar
  3. Dong, Y., Hill, T.W., Teolis, B.D., Magee, B.A., Waite, J.H.: J. Geophys. Res. 116, A10204 (2011)ADSGoogle Scholar
  4. Dong, Y., Hill, T.W., Ye, S.-Y.: J. Geophys. Res. Space Phys. 120, 915 (2015)ADSCrossRefGoogle Scholar
  5. Dougherty, M.K., et al.: Space Sci. Rev. 114, 331 (2004)ADSCrossRefGoogle Scholar
  6. Dzhanoev, A.R., Spahn, F., Yaroshenko, V., Lühr, H., Schmidt, J.: Phys. Rev. B 92, 125430 (2015)ADSCrossRefGoogle Scholar
  7. Epstein, P.S.: Phys. Rev. 23, 710–733 (1924)ADSCrossRefGoogle Scholar
  8. Farrell, W.M., Kurth, W.S., Tokar, R.L., et al.: Geophys. Res. Lett. 37, L20202 (2010)ADSGoogle Scholar
  9. Fleshman, B.L., Delamere, P.A., Bagenal, F.: Geophys. Res. Lett. 37, L03202 (2010)ADSCrossRefGoogle Scholar
  10. Goertz, C.K.: Rev. Geophys. 27, 271 (1989)ADSCrossRefGoogle Scholar
  11. Graps, A.L., et al.: Space Sci. Rev. 137, 435 (2008)ADSCrossRefGoogle Scholar
  12. Gurnett, D.A., et al.: Space Sci. Rev. 114, 395 (2004)ADSCrossRefGoogle Scholar
  13. Halevy, I., Stewart, S.T.: Geophys. Res. Lett. 35, L12203 (2008)ADSCrossRefGoogle Scholar
  14. Hansen, C.J., et al.: Nature 456, 477 (2008)ADSCrossRefGoogle Scholar
  15. Hill, T.W., et al.: J. Geophys. Res. 117, A05209 (2012)ADSGoogle Scholar
  16. Horányi, M.: Annu. Rev. Astrophys. 34, 383 (1996)ADSCrossRefGoogle Scholar
  17. Horányi, M., Hartquist, T.W., Havnes, O., Mendis, D.A., Morfill, G.E.: Rev. Geophys. 42, RG4002 (2004)ADSCrossRefGoogle Scholar
  18. Hsu, H.-W., Horányi, M., Kempf, S.: Earth Planets Space 65, 149 (2013)ADSCrossRefGoogle Scholar
  19. Itikawa, Y., Mason, N.: J. Phys. Chem. Ref. Data 34, 1 (2005)ADSCrossRefGoogle Scholar
  20. Jones, G.H., et al.: Geophys. Res. Lett. 36, L16204 (2009)ADSCrossRefGoogle Scholar
  21. Kempf, S., et al.: Planet. Space Sci. 54, 999 (2006)ADSCrossRefGoogle Scholar
  22. Kempf, S., Beckmann, U., Moragas-Klostermeyer, G., et al.: Icarus 193, 420 (2008)ADSCrossRefGoogle Scholar
  23. Kempf, S., et al.: Icarus 206, 446 (2010)ADSCrossRefGoogle Scholar
  24. Khrapak, S.A., et al.: Phys. Rev. E, 59, 6017 (1999)ADSCrossRefGoogle Scholar
  25. Kriegel, H., Simon, S., Motschmann, U., Saur, J., Neubauer, F.M., Persoon, A.M., Dougherty, M.K., Gurnett, D.A.: J. Geophys. Res. 116, A10223 (2011)ADSCrossRefGoogle Scholar
  26. Kriegel, H., et al.: J. Geophys. Res. 119, 2740 (2014)CrossRefGoogle Scholar
  27. Matsoukas, T., Russell, M.: J. Appl. Phys. 77, 4285 (1995)ADSCrossRefGoogle Scholar
  28. Matsoukas, T., Russell, M., Smith, M.: J. Vac. Sci. Technol. A14, 624 (1996)ADSCrossRefGoogle Scholar
  29. Meerschaert, M.M.: In: Meerschaert, M.M. (ed.) Mathematical Modeling, p. 251. Academic, Boston (2013)CrossRefGoogle Scholar
  30. Meier, P., Kriegel, H., Motschmann, U., Schmidt, J., et al.: Planet. Space Sci. 104, 216 (2014)ADSCrossRefGoogle Scholar
  31. Meier, P., Motschmann, U., Schmidt, J., et al.: Planet. Space Sci. 119, 208 (2015)ADSCrossRefGoogle Scholar
  32. Mendis, D.A., Axford, W.I.: Annu. Rev. Earth Planet. Sci. 2, 419 (1974)ADSCrossRefGoogle Scholar
  33. Morooka, M.W., et al.: J. Geophys. Res. 116, A12221 (2011)ADSCrossRefGoogle Scholar
  34. Piel, A., Melzer, A.: Plasma Phys. Controlled Fusion 44, R1 (2002)ADSCrossRefGoogle Scholar
  35. Porco, C.C., et al.: Science 311, 1393 (2006)ADSCrossRefGoogle Scholar
  36. Simon, S., et al.: J. Geophys. Res. 116, A04221 (2011)ADSCrossRefGoogle Scholar
  37. Smith, H.T., Johnson, R.E., Perry, M.E., et al.: J. Geophys. Res. 115, A10252 (2014)ADSGoogle Scholar
  38. Spahn, F., et al.: Science 311, 1416 (2006)ADSCrossRefGoogle Scholar
  39. Spencer, J.R., Pearl, J.C., Segura, M., Flasar, F. M., Mamoutkine, A., Romani, P., Buratti, B.J., Hendrix, A.R., Spilker, L.J., Lopes, R.M.C.: Science 311, 1401 (2006)ADSCrossRefGoogle Scholar
  40. Teolis, B.D., et al.: J. Geophys. Res. 115, A09222 (2010)ADSCrossRefGoogle Scholar
  41. Tokar, R.L., et al.: Science 311, 1409 (2006)ADSCrossRefGoogle Scholar
  42. Tokar, T.L., et al.: Geophys. Res. Lett. 36, L13203 (2009)ADSCrossRefGoogle Scholar
  43. Wahlund, J.E., et al.: Planet. Space Sci. 57, 1795 (2009)ADSCrossRefGoogle Scholar
  44. Waite, J.H. Jr., et al.: Science 311, 1419 (2006)ADSCrossRefGoogle Scholar
  45. Yaroshenko, V.V., Lühr, H.: J. Geophys. Res. 119, 6190 (2014)CrossRefGoogle Scholar
  46. Yaroshenko, V.V., Lühr, H.: Plasma Phys. Controlled Fusion 58, 014010 (2015)ADSCrossRefGoogle Scholar
  47. Yaroshenko, V., Lühr, H.: Icarus 278, 79 (2016)ADSCrossRefGoogle Scholar
  48. Yaroshenko, V.V., et al.: Planet. Space Sci. 57, 1807 (2009)ADSCrossRefGoogle Scholar
  49. Yaroshenko, V.V., Miloch, W.J., Thomas, H.M., Morfill, G.E.: J. Geophys. Res. Lett. 39, L18108 (2012)ADSCrossRefGoogle Scholar
  50. Yaroshenko, V.V., Lühr, H., Miloch, W.J.: J. Geophys. Res. 119, 221 (2014)CrossRefGoogle Scholar
  51. Yaroshenko, V.V., Miloch, W.J., Lühr, H.: Icarus 257, 1 (2015)ADSCrossRefGoogle Scholar
  52. Ye, S.-Y., et al.: J. Geophys. Res. 119, 3373 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Victoria Yaroshenko
    • 1
  • Patrick Meier
    • 2
  • Hermann Lühr
    • 3
  • Uwe Motschmann
    • 4
  1. 1.German Research Center for GeosciencesPotsdamGermany
  2. 2.Institute of Theoretical Physics and Institute for Geophysics and Extraterrestrial Physics, TU BraunschweigBraunschweigGermany
  3. 3.Deutsches GeoForschungsZentrum GFZPotsdamGermany
  4. 4.Institute of Theoretical Physics, TU BraunschweigBraunschweigGermany

Personalised recommendations