Advertisement

Kinetic Simulations of Electron Acceleration at Mercury

  • Jörg Büchner
  • Patrick Kilian
  • Patricio A. Muñoz
  • Felix Spanier
  • Fabien Widmer
  • Xiaowei Zhou
  • Neeraj Jain
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)

Abstract

In preparation of the ESA-JAXA mission Bepi Colombo we reconsidered the electron acceleration near Mercury. We first reviewed the existing observations starting from NASA’s Mariner-10 (1974–1975). Some of them later were shown to be inaccurate. Recently NASA’s Messenger mission newly observed energetic electrons including bursts of energies up to 100–200 keV. This by far exceeds the electron energies in the upstream solar wind. The acceleration mechanisms are, however, still not well understood. We derive models of electron acceleration near Mercury by passing strong interplanetary shocks, by reconnection at the magnetopause and in the Hermean magnetotail. We obtained the resulting electron energies and spectra in the near-Mercury MHD- and kinetic plasma turbulence as well as due to electric field structures by means of test particle calculations and also by fully self-consistent kinetic two- and three-dimensional PIC-code simulations whose results and, therefore, the acceleration mechanisms should be verified by the coming ESA-JAXA Bepi-Colombo mission to Mercury.

Notes

Acknowledgements

This work was possible only due to the support by the German Science Foundation “Schwerpunktprogramm Planetmag.” Jörg Büchner, Neeraj Jain, Patricio A. Muñoz also acknowledge their support by the Max-Planck-Princeton Center for Plasma Physics, Fabien Widmer and Neeraj Jain also their support by the German Science Foundation CRC 963 and Xiaowei Zhou the support by the Max-Planck-Society for a post-doc stipend.

References

  1. Amano, T., Hoshino, M.: Electron injection at high Mach number quasiperpendicular shocks: surfing and drift acceleration. Astrophys. J. 661(1), 190–202 (2007)ADSGoogle Scholar
  2. Armstrong, T.P., Krimigis, S.M., Lanzerotti, L.J.: A reinterpretation of the reported energetic particle fluxes in the vicinity of Mercury. J. Geophys. Res. 80(28), 4015–4017 (1975)ADSGoogle Scholar
  3. Baker, D.N., Poh, G., Odstrcil, D., Arge, C.N., Benna, M., Johnson, C.L., Korth, H., Gershman, D.J., Ho, G.C., McClintock, W.E., Cassidy, T.A., Merkel, A., Raines, J.M., Schriver, D., Slavin, J.A., Solomon, S.C., Trávníček, P.M., Winslow, R.M., Zurbuchen, T.H.: Solar wind forcing at Mercury: WSA-ENLIL model results. J. Geophys. Res. Space Phys. 118(1), 45–57 (2013)ADSGoogle Scholar
  4. Baker, D.N., Dewey, R.M., Lawrence, D.J., Goldsten, J.O., Peplowski, P.N., Korth, H., Slavin, J.A., Krimigis, S.M., Anderson, B.J., Ho, G.C., L, R.: McNutt, Raines, J.M., Schriver, D., Solomon, S.C.: Intense energetic electron flux enhancements in Mercury’s magnetosphere: an integrated view with high-resolution observations from MESSENGER. J. Geophys. Res. Space Phys. 121(3), 2171–2184 (2016)ADSGoogle Scholar
  5. Balogh, A., Treumann, R.A.: Physics of Collisionless Shocks: Space Plasma Shock Waves. ISSI Scientific Report Series, vol. 12. Springer Science+Business Media, New York (2013)Google Scholar
  6. Bárta, M., Büchner, J., Karlický, M. Skála, J.: Spontaneous current-layer fragmentation and cascading reconnection in solar flares. I. Model and analysis. Astrophys. J. 737, 24 (2011)ADSGoogle Scholar
  7. Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laakso, H., Novara, M., Ferri, P., Middleton, H.R., Ziethe, R.: BepiColombo-comprehensive exploration of mercury: mission overview and science goals. Planet. Space Sci. 58(1–2), 2–20 (2010)ADSGoogle Scholar
  8. Bhattacharjee, A., Huang, Y.-M., Yang, H., Rogers, B.: Fast reconnection in high-lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009)ADSGoogle Scholar
  9. Boardsen, S.A., Slavin, J.A., Anderson, B.J., Korth, H., Schriver, D., Solomon, S.C.: Survey of coherent 1 Hz waves in Mercury’s inner magnetosphere from MESSENGER observations. J. Geophys. Res. Space Phys. 117(A12), A00M05 (2012)Google Scholar
  10. Boris, J.P.: Relativistic plasma simulation—optimization of a hybrid code. In: Boris, J., Shanny, R. (eds.) Proceedings of the Fourth Conference on the Numerical Simulation of Plasmas, Washington DC, pp. 3–67. Naval Research Laboratory, Washington, DC (1970)Google Scholar
  11. Büchner, J.: Astrophysical reconnection and collisionless dissipation. Plasma Phys. Controlled Fusion 49, B325–B339 (2007)ADSGoogle Scholar
  12. Büchner, J., Kuska, J.-P.: Consequences of strong ion acceleration in current sheets and due to reconnection. Adv. Space Res. 21(4), 567–572 (1998)ADSGoogle Scholar
  13. Büchner, J., Zelenyi, L.M.: The separatrix tentacle effect of ion acceleration to the plasma sheet boundary. Geophys. Res. Lett. 17(2), 127–130 (1990)ADSGoogle Scholar
  14. Büchner, J., Kuznetsova, M., Zelenyi, L.M.: Sheared field tearing mode instability and creation of flux ropes in the Earth magnetotail. Geophys. Res. Lett. 18(3), 385–388 (1991)ADSGoogle Scholar
  15. Burgess, D., Scholer, M.: Collisionless Shocks in Space Plasmas: Structure and Accelerated Particles. Cambridge University Press, Cambridge (2015)Google Scholar
  16. Burlaga, L.F.: Magnetic fields and plasmas in the inner heliosphere: Helios results. Planet. Space Sci. 49(14–15), 1619–1627 (2001)ADSGoogle Scholar
  17. Cliver, E.W., Feynman, J., Garrett, H.B.: An estimate of the maximum speed of the solar wind, 1938–1989. J. Geophys. Res. 95, 17103–17112 (1990)ADSGoogle Scholar
  18. Dahlin, J.T., Drake, J.F., Swisdak, M.: The mechanisms of electron heating and acceleration during magnetic reconnection. Phys. Plasmas 21(9), 092304 (2014)ADSGoogle Scholar
  19. Dahlin, J.T., Drake, J.F., Swisdak, M.: Electron acceleration in three-dimensional magnetic reconnection with a guide field. Phys. Plasmas 22(10), 100704 (2015)ADSGoogle Scholar
  20. Daughton, W., Roytershteyn, V., Albright, B.J., Karimabadi, H., Yin, L., Bowers, K.J.: Transition from collisional to kinetic regimes in large-scale reconnection layers. Phys. Rev. Lett. 103(6), 065004 (2009)ADSGoogle Scholar
  21. Delcourt, D.C., Seki, K., Terada, N., Miyoshi, Y.: Electron dynamics during substorm dipolarization in Mercury’s magnetosphere. Ann. Geophys. 23, 3389–3398 (2005)ADSGoogle Scholar
  22. Dewey, R., Slavin, J.A., Baker, D., Raines, J., Lawrence, D.: MESSENGER observations of energetic electron acceleration in Mercury’s magnetotail. In: AAS/Division for Planetary Sciences Meeting Abstracts, vol. 48, p. 117.02 (2016)ADSGoogle Scholar
  23. DiBraccio, G.A., Slavin, J.A., Imber, S.M., Gershman, D.J., Raines, J.M., Jackman, C.M., Boardsen, S.A., Anderson, B.J., Korth, H., Zurbuchen, T.H., McNutt, R.L., Solomon, S.C.: MESSENGER observations of flux ropes in Mercury’s magnetotail. Planet. Space Sci. 115, 77–89 (2015)ADSGoogle Scholar
  24. Drake, J.F., Swisdak, M., Che, H., Shay, M.A.: Electron acceleration from contracting magnetic islands during reconnection. Nature 443(7111), 553–556 (2006)ADSGoogle Scholar
  25. Drake, J.F., Opher, M., Swisdak, M., Chamoun, J.N.: A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J. 709(2), 963–974 (2010)ADSGoogle Scholar
  26. Dungey, J.W.: Noise-free neutral sheets. In: Guyenne, T.D. (ed.) Reconnection in Space Plasma. ESA Special Publication, vol. 285, pp. 15–19. European Space Agency, Paris (1989)Google Scholar
  27. Egedal, J., Daughton, W., Le, A.: Large-scale electron acceleration by parallel electric fields during magnetic reconnection. Nat. Phys. 8(4), 321–324 (2012)Google Scholar
  28. Egedal, J., Le, A., Daughton, W.: A review of pressure anisotropy caused by electron trapping in collisionless plasma, and its implications for magnetic reconnection. Phys. Plasmas 20(6), 061201 (2013)ADSGoogle Scholar
  29. Elkina, N., Büchner, J.: A new conservative unsplit method for the solution of the Vlasov equation. J. Comput. Phys. 213(2), 862–875 (2006)ADSMathSciNetzbMATHGoogle Scholar
  30. Eraker, J.H., Simpson, J.A.: Acceleration of charged particles in Mercury’s magnetosphere. J. Geophys. Res. 91, 9973–9993 (1986)ADSGoogle Scholar
  31. Esirkepov, T.Z.: Exact charge conservation scheme for particle-in-cell simulation with an arbitrary form-factor. Comput. Phys. Commun. 135(2), 144–153 (2001)ADSzbMATHGoogle Scholar
  32. Fu, X.R., Lu, Q.M., Wang, S.: The process of electron acceleration during collisionless magnetic reconnection. Phys. Plasmas 13(1), 012309 (2006)ADSGoogle Scholar
  33. Gershman, D.J., Zurbuchen, T.H., Fisk, L.A., Gilbert, J.A., Raines, J.M., Anderson, B.J., Smith, C.W., Korth, H., Solomon, S.C.: Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER. J. Geophys. Res. Space Phys. 117(A12), A00M02 (2012)Google Scholar
  34. Gershman, D.J., Slavin, J.A., Raines, J.M., Zurbuchen, T.H., Anderson, B.J., Korth, H., Baker, D.N., Solomon, S.C.: Magnetic flux pileup and plasma depletion in Mercury’s subsolar magnetosheath. J. Geophys. Res. Space Phys. 118(11), 7181–7199 (2013)ADSGoogle Scholar
  35. Gershman, D.J., Raines, M.J., Slavin, J.A., Zurbuchen, T.H., Anderson, B.J., Korth, H., Ho, G.C., Boardsen, S.A., Cassidy, T.A., Walsh, B.M., Solomon, S.C.: MESSENGER observations of solar energetic electrons within Mercury’s magnetosphere. J. Geophys. Res. Space Phys. 120, 8559–8571 (2015)ADSGoogle Scholar
  36. Gershman, D.J., Dorelli, J.C., DiBraccio, G.A., Raines, J.M., Slavin, J.A., Poh, G., Zurbuchen, T.H.: Ion-scale structure in Mercury’s magnetopause reconnection diffusion region. Geophys. Res. Lett. 43, 5935–5942 (2016)ADSGoogle Scholar
  37. Gordovskyy, M., Browning, P.K., Vekstein, G.E.: Particle acceleration in a transient magnetic reconnection event. Astron. Astrophys. 519, A21 (2010)ADSGoogle Scholar
  38. Guo, J.-N., Büchner, J., Otto, A., Santos, J., Marsch, E., Gan, W.-Q.: Is the 3-D magnetic null point with a convective electric field an efficient particle accelerator? Astron. Astrophys. 513, A73 (2010)Google Scholar
  39. Guo, F., Liu, Y.-H., Daughton, W., Li, H.: Particle acceleration and plasma dynamics during magnetic reconnection in the magnetically dominated regime. Astrophys. J. 806(2), 167 (2015)ADSGoogle Scholar
  40. Harris, E.G.: On a plasma sheath separating regions of oppositely directed magnetic field. Nuovo Cim. 23(1), 115–121 (1962)ADSzbMATHGoogle Scholar
  41. Ho, G.C., Krimigis, S., Gold, R., Baker, D., Slavin, J.A., Anderson, B.J., Korth, H., Starr, R.D., Lawrence, D.J., McNutt, R.L., Solomon, S.C.: MESSENGER observations of transient bursts of energetic electrons in mercury’s magnetosphere. Science 333(6051), 1865–1868 (2011)ADSGoogle Scholar
  42. Ho, G.C., Krimigis, S.M., Gold, R.E., Baker, D.N., Anderson, B.J., Korth, H., Slavin, J.A., McNutt, R.L., Winslow, R.M., Solomon, S.C.: Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere. J. Geophys. Res. Space Phys. 117(A12), A00M04 (2012)Google Scholar
  43. Hockney, R.W., Eastwood, J.W.: Computer Simulation Using Particles. Hilger, Bristol (1988)zbMATHGoogle Scholar
  44. Hoshino, M.: Electron surfing acceleration in magnetic reconnection. J. Geophys. Res. Space Phys. 110(A10), 1–8 (2005)Google Scholar
  45. Hoshino, M., Lyubarsky, Y.: Relativistic reconnection and particle acceleration. Space Sci. Rev. 173(1–4), 521–533 (2012)ADSGoogle Scholar
  46. Hoshino, M., Shimada, N.: Nonthermal electrons at high mach number shocks: electron shock surfing acceleration. Astrophys. J. 572(2), 880–887 (2002)ADSGoogle Scholar
  47. Hoshino, M., Mukai, T., Terasawa, T., Shinohara, I.: Suprathermal electron acceleration in magnetic reconnection. J. Geophys. Res. Space Phys. 106(A11), 25979–25997 (2001)ADSGoogle Scholar
  48. Kato, T.N.: Energy loss of high-energy particles in particle-in-cell simulation (2013). arXiv preprint 1312.5507Google Scholar
  49. Kilian, P., Burkart, T., Spanier, F.: The influence of the mass ratio on particle acceleration by the filamentation instability. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’11, pp. 5–13. Springer, Berlin, Heidelberg (2012)Google Scholar
  50. Kilian, P., Ganse, U., Spanier, F.: Different choices of the form factor in particle-in-cell simulations. In: Pogorelov, N.V., Audit, E., Zank, G.P. (eds.) Numerical Modeling of Space Plasma Flows (ASTRONUM2012). Astronomical Society of the Pacific Conference Series, vol. 474 p. 208 (2013)Google Scholar
  51. Kirsch, E., Richter, A.K.: Possible detection of low energy ions and electrons from planet Mercury by the HELIOS spacecraft. Ann. Geophys. 3, 13–18 (1985)ADSGoogle Scholar
  52. Lawrence, D.J., Anderson, B.J., Baker, D.N., Feldman, W.C., Ho, G.C., Korth, H., McNutt, R.L., Peplowski, P.N., Solomon, S.C., Starr, R.D., Vandegriff, J.D., Winslow, R.M.: Comprehensive survey of energetic electron events in Mercury’s magnetosphere with data from the MESSENGER Gamma-Ray and Neutron Spectrometer. J. Geophys. Res. Space Phys. 120(4), 2851–2876 (2015)ADSGoogle Scholar
  53. Le, G., Chi, P., Blanco-Cano, X., Boardsen, S., Slavin, J.A., Anderson, B.J., Korth, H.: Upstream ultra-low frequency waves in Mercury’s foreshock region: MESSENGER magnetic field observations. J. Geophys. Res. Space Phys. 118(6), 2809–2823 (2013)ADSGoogle Scholar
  54. Li, Y., Lin, J.: Acceleration of electrons and protons in reconnecting current sheets including single or multiple X-points. Sol. Phys. 279(1), 91–113 (2012)ADSGoogle Scholar
  55. Liu, Y., Richardson, J., Belcher, J.: A statistical study of the properties of interplanetary coronal mass ejections from 0.3 to 5.4AU. Planet. Space Sci. 53(1–3), 3–17 (2005)ADSGoogle Scholar
  56. Lloyd-Ronning, N.M., Fryer, C.L.: Particle acceleration in relativistic electron-ion outflows (2016). arXiv preprint 1603.01490Google Scholar
  57. Loureiro, N., Schekochihin, A.A., Cowley, S.C.: Instability of current sheets and formation of plasmoid chains. Phys. Plasmas 14, 100703 (2007)ADSGoogle Scholar
  58. Loureiro, N.F., Schekochihin, A.A., Uzdensky, D.A.: Plasmoid and Kelvin-Helmholtz instabilities in Sweet-Parker current sheets. Phys. Rev. E 87(1), 013102 (2013)ADSGoogle Scholar
  59. Masters, A., Stawarz, L., Fujimoto, M., Schwartz, S.J., Sergis, N., Thomsen, M.F., Retinò, A., Hasegawa, H., Zieger, B., Lewis, G.R., Coates, A.J., Canu, P., Dougherty, M.K.: Electron acceleration to relativistic energies at a strong quasi-parallel shock wave. Nat. Phys. 9(3), 164–167 (2013)Google Scholar
  60. Matsukiyo, S.: Mach number dependence of electron heating in high Mach number quasiperpendicular shocks. Phys. Plasmas 17(4), 042901 (2010)ADSGoogle Scholar
  61. Matsumoto, Y., Amano, T., Kato, T.N., Hoshino, M.: Stochastic electron acceleration during spontaneous turbulent reconnection in a strong shock wave. Science 347(6225), 974–978 (2015)ADSGoogle Scholar
  62. May, J., Tonge, J., Ellis, I., Mori, W.B., Fiuza, F., Fonseca, R.A., Silva, L.O., Ren, C.: Enhanced stopping of macro-particles in particle-in-cell simulations. Phys. Plasmas 21(5), 052703 (2014)ADSGoogle Scholar
  63. McClements, K.G., Dieckmann, M.E., Ynnerman, A., Chapman, S.C., Dendy, R.O.: Surfatron and stochastic acceleration of electrons at supernova remnant shocks. Phys. Rev. Lett. 87(25), 255002 (2001)ADSGoogle Scholar
  64. Melzani, M., Walder, R., Folini, D., Winisdoer, C., Favre, J.M.: The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness. Astron. Astrophys. 570, A112 (2014)ADSGoogle Scholar
  65. Muñoz, P.A., Büchner, J.: Non-Maxwellian electron distribution functions due to self-generated turbulence in collisionless guide-field reconnection. Phys. Plasmas 23(10), 102103 (2016)ADSGoogle Scholar
  66. Muñoz, P.A., Kilian, P., Büchner, J.: Instabilities of collisionless current sheets revisited: the role of anisotropic heating. Phys. Plasmas 21(11), 112106 (2014)ADSGoogle Scholar
  67. Muñoz, P.A., Told, D., Kilian, P., Büchner, J., Jenko, F.: Gyrokinetic and kinetic particle-in-cell simulations of guide-field reconnection. I. Macroscopic effects of the electron flows. Phys. Plasmas 22(8), 082110 (2015)Google Scholar
  68. Northrop, T.G.: The Adiabatic Motion of Charged Particles. Interscience, New York (1963)zbMATHGoogle Scholar
  69. Oka, M., Phan, T.-D., Krucker, S., Fujimoto, M., Shinohara, I.: Electron acceleration by multi-island coalescence. Astrophys. J. 714(1), 915–926 (2010)ADSGoogle Scholar
  70. Papadopoulos, K.: Electron heating in superhigh mach number shocks. Astrophys. Space Sci. 144(1–2), 535–547 (1988)ADSGoogle Scholar
  71. Pritchett, P.L.: Relativistic electron production during guide field magnetic reconnection. J. Geophys. Res. 111(April), A10212 (2006)ADSGoogle Scholar
  72. Ricci, P., Lapenta, G., Brackbill, J.U.: Electron acceleration and heating in collisionless magnetic reconnection. Phys. Plasmas 10(9), 3554 (2003)ADSGoogle Scholar
  73. Sarantos, M., Slavin, J.A.: On the possible formation of Alfvén wings at Mercury during encounters with coronal mass ejections. Geophys. Res. Lett. 36(4), L04107 (2009)ADSGoogle Scholar
  74. Sarantos, M., Killen, R.M., Kim, D.: Predicting the long-term solar wind ion-sputtering source at Mercury. Planet. Space Sci. 55(11), 1584–1595 (2007)ADSGoogle Scholar
  75. Schreiner, C., Spanier, F.: Wave-particle-interaction in kinetic plasmas. Comput. Phys. Commun. 185(7), 1981–1986 (2014)ADSMathSciNetGoogle Scholar
  76. Schreiner, C., Kilian, P., Spanier, F.: Particle scattering off of right-handed dispersive waves. Astrophys. J. 834(2), 161 (2017)ADSGoogle Scholar
  77. Shimada, N., Hoshino, M.: Strong electron acceleration at high Mach number shock waves: simulation study of electron dynamics. Astrophys. J. 543(1), L67–L71 (2000)ADSGoogle Scholar
  78. Simpson, J.A., Eraker, J.H., Lamport, J.E., Walpole, P.H.: Electrons and protons accelerated in mercury’s magnetic field. Science 185(4146), 160–166 (1974)ADSGoogle Scholar
  79. Skála, J., Baruffa, F., Büchner, J., Rampp, M.: The 3D MHD code GOEMHD3 for astrophysical plasmas with large Reynolds numbers. Code description, verification, and computational performance. Astron. Astrophys. 580, A48 (2015)ADSGoogle Scholar
  80. Slavin, J.A., Holzer, R.E.: The effect of erosion on the solar wind stand-off distance at Mercury. J. Geophys. Res. 84, 2076–2082 (1979)ADSGoogle Scholar
  81. Slavin, J.A., Holzer, R.E.: Solar wind flow about the terrestrial planets. I - Modeling bow shock position and shape. J. Geophys. Res. 86, 11401–11418 (1981)ADSGoogle Scholar
  82. Slavin, J.A., Acuña, M.H., Anderson, B.J., Baker, D.N., Benna, M., Boardsen, S.A., Gloeckler, G., Gold, R.E., Ho, G.C., Korth, H., Krimigis, S.M., McNutt, R.L., Raines, J.M., Sarantos, M., Schriver, D., Solomon, S.C., Trávníček, P., Zurbuchen, T.H.: MESSENGER observations of magnetic reconnection in mercury’s magnetosphere. Science 324, 606 (2009)ADSGoogle Scholar
  83. Slavin, J.A., Anderson, B.J., Baker, D.N., Benna, M., Boardsen, S.A., Gold, R.E., Ho, G.C., Imber, S.M., Korth, H., Krimigis, S.M., McNutt, R.L., Raines, J.M., Sarantos, M., Schriver, D., Solomon, S.C., Trávníček, P., Zurbuchen, T.H.: MESSENGER and Mariner 10 flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. Space Phys. 117(A1), A01215 (2012)ADSGoogle Scholar
  84. Slavin, J.A., DiBraccio, G.A., Gershman, D.J., Imber, S.M., Poh, G.K., Raines, J.M., Zurbuchen, T.H., Jia, X., Baker, D.N., Glassmeier, K.-H., Livi, S.A., Boardsen, S.A., Cassidy, T.A., Sarantos, M., Sundberg, T., Masters, A., Johnson, C.L., Winslow, R.M., Anderson, B.J., Korth, H., McNutt, R.L., Solomon, S.C.: MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions. J. Geophys. Res. Space Phys. 119(10), 8087–8116 (2014)ADSGoogle Scholar
  85. Smart, D.F., Shea, M.A.: A simplified model for timing the arrival of solar flare-initiated shocks. J. Geophys. Res. Space Phys. 90(A1), 183–190 (1985)ADSGoogle Scholar
  86. Speiser, T.W.: Conductivity without collisions or noise. Planet. Space Sci. 18, 613–622 (1970)ADSGoogle Scholar
  87. Spitkovsky, A.: Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. 682(1), L5–L8 (2008)ADSGoogle Scholar
  88. Spreiter, J.R., Summers, A.L., Alksne, A.Y.: Hydromagnetic flow around the magnetosphere. Planet. Space Sci. 14, 223 (1966)ADSGoogle Scholar
  89. Stix, T.H.: Waves in Plasma. Springer, New York (1992)zbMATHGoogle Scholar
  90. Sulaiman, A.H., Masters, A., Dougherty, M.K., Burgess, D., Fujimoto, M., Hospodarsky, G.B.: Quasiperpendicular high Mach number shocks. Phys. Rev. Lett. 115(12), 125001 (2015)ADSGoogle Scholar
  91. Sun, W.J., Fu, S.Y., Slavin, J.A., Raines, J.M., Zong, Q.G., Poh, G.K., Zurbuchen, T.H.: Spatial distribution of Mercury’s flux ropes and reconnection fronts: MESSENGER observations. J. Geophys. Res. Space Phys. 121 (2016). doi:10.1002/2016JA022787CrossRefADSGoogle Scholar
  92. Sundberg, T., Boardsen, S.A., Slavin, J.A., Uritsky, V.M., Anderson, B.J., Korth, H., Gershman, D.J., Raines, J.M., Zurbuchen, T.H., Solomon, S.C.: Cyclic reformation of a quasi-parallel bow shock at Mercury: MESSENGER observations. J. Geophys. Res. Space Phys. 118(10), 6457–6464 (2013)ADSGoogle Scholar
  93. Treumann, R.A.: Fundamentals of collisionless shocks for astrophysical application, 1. Non-relativistic shocks. Astron. Astrophys. Rev. 17(4), 409–535 (2009)ADSGoogle Scholar
  94. Uritsky, V.M., Slavin, J.A., Khazanov, G.V., Donovan, E.F., Boardsen, S.A., Anderson, B.J., Korth, H.: Kinetic-scale magnetic turbulence and finite Larmor radius effects at Mercury. J. Geophys. Res. Space Phys. 116(A9), A09236 (2011)ADSGoogle Scholar
  95. Vay, J.L.: Simulation of beams or plasmas crossing at relativistic velocity. Phys. Plasmas 15, 056701 (2008)ADSGoogle Scholar
  96. Yee, K.: Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media. IEEE Trans. Antennas Propag. 14(3), 302–307 (1966)ADSzbMATHGoogle Scholar
  97. Wan, W., Lapenta, G., Delzanno, G.L., Egedal, J.: Electron acceleration during guide field magnetic reconnection. Phys. Plasmas 15(3), 032903 (2008)ADSGoogle Scholar
  98. Widmer, F., Büchner, J., Yokoi, N.: Characterizing plasmoid reconnection by turbulence dynamics. Phys. Plasmas 23(9), 092304 (2016)ADSGoogle Scholar
  99. Winslow, R.M., Anderson, B.J., Johnson, C.L., Slavin, J.A., Korth, H., M.E., Purucker, Baker, D.N., Solomon, S.C.: Mercury’s magnetopause and bow shock from MESSENGER Magnetometer observations. J. Geophys. Res. Space Phys. 118(5), 2213–2227 (2013)ADSGoogle Scholar
  100. Wood, P., Neukirch, T.: Electron acceleration in reconnecting current sheets. Sol. Phys. 226(1), 73–95 (2005)ADSGoogle Scholar
  101. Zank, G.P., Hunana, P., Mostafavi, P., Roux, J.A.L., Li, G., Webb, G.M., Khabarova, O., Cummings, A., Stone, E., Decker, R.: Diffusive shock acceleration and reconnection acceleration processes. Astrophys. J. 814(2), 137 (2015)ADSGoogle Scholar
  102. Zelenyi, L., Oka, M., Malova, H., Fujimoto, M., Delcourt, D., Baumjohann, W.: Particle acceleration in mercury’s magnetosphere. Space Sci. Rev. 132, 593–609 (2007)ADSGoogle Scholar
  103. Zenitani, S., Hoshino, M.: The generation of nonthermal particles in the relativistic magnetic reconnection of pair plasmas. Astrophys. J. 562(1), L63–L66 (2001)ADSGoogle Scholar
  104. Zharkova, V.V., Gordovskyy, M.: Energy spectra of particles accelerated in a reconnecting current sheet with the guiding magnetic field. Mon. Not. R. Astron. Soc. 356(3), 1107–1116 (2005)ADSGoogle Scholar
  105. Zhou, X., Büchner, J., Bárta, M., Gan, W., Liu, S.: Electron acceleration by cascading reconnection in the solar corona. I. Magnetic gradient and curvature drift effects. Astrophys. J. 815 6 (2015)ADSGoogle Scholar
  106. Zhou, X., Büchner, J., Bárta, M., Gan, W., Liu, S.: Electron acceleration by cascading reconnection in the solar corona. II. Resistive electric field effects. Astrophys. J. 827, 94 (2016)ADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Jörg Büchner
    • 1
  • Patrick Kilian
    • 1
    • 2
  • Patricio A. Muñoz
    • 1
  • Felix Spanier
    • 2
  • Fabien Widmer
    • 1
    • 3
  • Xiaowei Zhou
    • 4
  • Neeraj Jain
    • 1
  1. 1.Max Planck Institute for Solar System ResearchGöttingenGermany
  2. 2.Centre for Space ResearchNorth-West UniversityPotchefstroomSouth Africa
  3. 3.Institut de Recherche sur la Fusion MagnétiqueSaint-Paul-lez-DuranceFrance
  4. 4.Purple Mountain Observatory of the Chinese Academy of SciencesNanjingPeople’s Republic of China

Personalised recommendations