Modeling Magnetospheric Fields in the Jupiter System

  • Joachim Saur
  • Emmanuel Chané
  • Oliver Hartkorn
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)


The various processes which generate magnetic fields within the Jupiter system are exemplary for a large class of similar processes occurring at other planets in the solar system, but also around extrasolar planets. Jupiter’s large internal dynamo magnetic field generates a gigantic magnetosphere, which in contrast to Earth’s magnetosphere is strongly rotational driven and possesses large plasma sources located deeply within the magnetosphere. The combination of the latter two effects is the primary reason for Jupiter’s main auroral ovals. Jupiter’s moon Ganymede is the only known moon with an intrinsic dynamo magnetic field, which generates a mini-magnetosphere located within Jupiter’s larger magnetosphere including two auroral ovals. Ganymede’s mini-magnetosphere is qualitatively different compared the one from Jupiter. It possesses no bow shock but develops pronounced Alfvén wings similar to most of the extrasolar planets which orbit their host stars within 0.1 AU. New numerical models of Jupiter’s and Ganymede’s magnetospheres presented here provide quantitative insight into these magnetospheres and the processes which maintain them. Jupiter’s magnetospheric field is time-variable on various scales. At the locations of Jupiter’s moons time-periodic magnetic fields induce secondary magnetic fields in electrically conductive layers such as subsurface oceans. In the case of Ganymede, these secondary magnetic fields influence the oscillation of the location of its auroral ovals. Based on dedicated Hubble Space Telescope observations, an analysis of the amplitudes of the auroral oscillations provides evidence that Ganymede harbors a subsurface ocean. Callisto in contrast does not possess a mini-magnetosphere, but still shows a perturbed magnetic field environment generated by induction within an electrically conductive layer and due to the plasma interactions with its atmosphere. Callisto’s ionosphere and atmospheric UV emission is different compared to the other Galilean satellites as it has primarily been generated by solar photons compared to magnetospheric electrons. At Callisto a fluid-kinetic model of the ionospheric electron distribution provides constraints on Callisto’s oxygen atmosphere.


  1. Bagenal, F.: The magnetosphere of Jupiter: coupling the equator to the poles. J. Atmos. Sol. Terr. Phys. 69, 387–402 (2007). doi:  10.1016/j.jastp.2006.08.012ADSCrossRefGoogle Scholar
  2. Bagenal, F., Delamere, P.A.: Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res. Space Phys. 116, A05209 (2011). doi:  10.1029/2010JA016294ADSCrossRefGoogle Scholar
  3. Baumjohann, W., Treumann, R.A.: Basic Space Plasma Physics. Imperial College Press, London (1996)CrossRefGoogle Scholar
  4. Broadfoot, A.L., et al.: Extreme ultraviolet observations from Voyager 1 encounter with Jupiter. Science 204, 979–982 (1979)ADSCrossRefGoogle Scholar
  5. Carlson, R.: A tenuous carbon dioxide atmosphere on Jupiter’s moon Callisto. Science 283, 820–821 (1999)ADSCrossRefGoogle Scholar
  6. Chané, E., Saur, J., Neubauer, F.M., Raeder, J., Poedts, S.: Observational evidence of Alfvén wings at the Earth. J. Geophys. Res. Space Phys. 117(A16), A09217 (2012). doi:  10.1029/2012JA017628ADSCrossRefGoogle Scholar
  7. Chané, E., Saur, J., Poedts, S.: Modeling Jupiter’s magnetosphere: influence of the internal sources. J. Geophys. Res. Space Phys. 118, 2157–2172 (2013). doi:  10.1002/jgra.50258ADSCrossRefGoogle Scholar
  8. Chané, E., Raeder, J., Saur, J., Neubauer, F.M., Maynard, K.M., Poedts, S.: Simulations of the Earth’s magnetosphere embedded in sub-Alfvénic solar wind on 24 and 25 May 2002. J. Geophys. Res. Space Phys. 120, 8517–8528 (2015). doi:  10.1002/2015JA021515ADSCrossRefGoogle Scholar
  9. Chané, E., Saur, J., Poedts, S., Keppens, R.: How is the Jovian main auroral emission affected by the solar wind? J. Geophys. Res. Space Phys. 122, 1960–1978 (2017). doi:  10.1002/2016JA023318ADSCrossRefGoogle Scholar
  10. Christensen, U.R., Holzwarth, V., Reiners, A.: Energy flux determines magnetic field strength of planets and stars. Nature 457, 167–169 (2009). doi:  10.1038/nature07626ADSCrossRefGoogle Scholar
  11. Clarke, J.T., Gérard, J.C., Grodent, D., Wannawichian, S., Gustin, J., Connerney, J., Crary, F., Dougherty, M., Kurth, W., Cowley, S., Bunce, E., Hill, T., Kim, J.: Morphological differences between Saturn’s ultraviolet aurorae and those of Earth and Jupiter. Nature 433, 717–719 (2005)ADSCrossRefGoogle Scholar
  12. Cowley, S.W.H., Bunce, E.J.: Origin of the main auroral oval in Jupiter’s coupled magnetosphere-ionosphere system. Planet. Space Sci. 49, 1067–1088 (2001)ADSCrossRefGoogle Scholar
  13. Cowley, S.W.H., Bunce, E.J.: Modulation of Jupiter’s main auroral oval emissions by solar wind induced expansions and compressions of the magnetosphere. Plant. Space Sci. 51, 57–79 (2003). doi:  10.1016/S0032-0633(02)00118-6ADSCrossRefGoogle Scholar
  14. Cunningham, N.J., Spencer, J.R., Feldman, P.D., Strobel, D.F., France, K., Osterman, S.N.: Detection of Callisto’s oxygen atmosphere with the Hubble Space Telescope. Icarus 254, 178–189 (2015). doi:  10.1016/j.icarus.2015.03.021ADSCrossRefGoogle Scholar
  15. Duling, S., Saur, J., Wicht, J.: Consistent boundary conditions at nonconducting surfaces of planetary bodies: applications in a new Ganymede MHD model. J. Geophys. Res. Space Phys. 119, 4412–4440 (2014). doi:  10.1002/2013JA019554ADSCrossRefGoogle Scholar
  16. Feldman, P.D., Most, H.W., Retherford, K., Strobel, D.F., Wolven, B.C., McGrath, M.A., Roesler, F.L., Woodward, R.C., Oliversen, R.J., Ballester, G.E.: Lyman-alpha imaging of the SO2 distribution on Io. Geophys. Res. Lett. 27, 1787–1790 (2000)ADSCrossRefGoogle Scholar
  17. Frank, L.A., Paterson, W.R., Khurana, K.K.: Observations of thermal plasmas in Jupiter’s magnetotail. J. Geophys. Res. 107(A1), 101029 (2002)CrossRefGoogle Scholar
  18. Goertz, C.K.: Io’s interaction with the plasma torus. J. Geophys. Res. 85(A6), 2949–2956 (1980)ADSCrossRefGoogle Scholar
  19. Hall, D.T., Feldman, P.D., McGrath, M.A., Strobel, D.F.: The far-ultraviolet oxygen airglow of Europa and Ganymede. Astrophys. J. 499(5), 475 (1998)ADSCrossRefGoogle Scholar
  20. Hartkorn, O., Saur, J., Strobel, D.F.: Structure and density of Callisto’s atmosphere from a fluid-kinetic model of its ionosphere: comparison with Hubble Space Telescope and Galileo observations. J. Geophys. Res. Planets 282, 237–259 (2017). doi:  10.1016/j.icarus.2016.09.020CrossRefGoogle Scholar
  21. Hill, T.W.: Inertial limit on corotation. J. Geophys. Res. 84(A11), 6554–6558 (1979)ADSCrossRefGoogle Scholar
  22. Hill, T.W.: The Jovian auroral oval. J. Geophys. Res. 106(A5), 8101–8107 (2001)ADSCrossRefGoogle Scholar
  23. Hussmann, H., Sohl, F., Spohn, T.: Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185, 258–273 (2006)ADSCrossRefGoogle Scholar
  24. Ip, W., Kopp, A.: Resistive MHD simulations of Ganymede’s magnetosphere: 2. Birkeland currents and particle energetics. J. Geophys. Res. 107, CiteID 1491 (2002)Google Scholar
  25. Jia, X., Walker, R., Kivelson, M., Khurana, K., Linker, J.: Three-dimensional MHD simulations of Ganymede’s magnetosphere. J. Geophys. Res. 113, A06212 (2008)ADSGoogle Scholar
  26. Jia, X., Walker, R., Kivelson, M., Khurana, K., Linker, J.: Properties of Ganymede’s magnetosphere inferred from improved three-dimensional MHD simulations. J. Geophys. Res. 114, A09209 (2009). doi:10.1029/2009JA014375ADSCrossRefGoogle Scholar
  27. Jia, X., Walker, R.J., Kivelson, M.G., Khurana, K.K., Linker, J.A.: Dynamics of Ganymede’s magnetopause: intermittent reconnection under steady external conditions. J. Geophys. Res. Space Phys. 115, A12202 (2010). doi:  10.1029/2010JA015771ADSCrossRefGoogle Scholar
  28. Joy, S.P., Kivelson, M.G., Walker, R.J., Khurana, K.K., Russell, C.T., Ogino, T.: Probabilistic models of the Jovian magnetopause and bow shock locations. J. Geophys. Res. Space Phys. 107, 1309 (2002). doi:  10.1029/2001JA009146ADSCrossRefGoogle Scholar
  29. Khurana, K.K., Kivelson, M.G., Stevenson, D.J., Schubert, G., Russell, C.T., Walker, R.J., Polanskey, C.: Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998)ADSCrossRefGoogle Scholar
  30. Khurana, K.K., et al.: The configuration of Jupiter’s magnetosphere. In: Bagenal, F. (ed.) Jupiter, chap. 24, pp. 593–616. Cambridge University Press, Cambridge (2004)Google Scholar
  31. Khurana, K.K., Jia, X., Kivelson, M.G., Nimmo, F., Schubert, G., Russell, C.T.: Evidence of a global magma ocean in Io’s interior. Science 332, 1186 (2011). doi:  10.1126/science.1201425ADSCrossRefGoogle Scholar
  32. Kivelson, M.G., Khurana, K.K., Russell, C.T., Walker, R.J., Warnecke, J., Coroniti, F.V., Polanskey, C., Southwood, D.J., Schubert, G.: Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384, 537–541 (1996)ADSCrossRefGoogle Scholar
  33. Kivelson, M.G., Khurana, K.K., Joy, S., Russell, C.T., Southwood, D.J., Walker, R.J., Polanskey, C.: Europa’s magnetic signature: report from Galileo’s first pass on 19 December 1996. Science 276, 1239–1241 (1997)ADSCrossRefGoogle Scholar
  34. Kivelson, M.G., Warnecke, J., Bennett, L., Joy, S., Khurana, K.K., Linker, J.A., Russell, C.T., Walker, R.J., Polanskey, C.: Ganymede’s magnetosphere: magnetometer overview. J. Geophys. Res. 103, 19963–19972 (1998). doi:  10.1029/98JE00227ADSCrossRefGoogle Scholar
  35. Kivelson, M.G., Khurana, K.K., Russell, C.T., Volwerk, M., Walker, J., Zimmer, C.: Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289(5483), 1340–1343 (2000)ADSCrossRefGoogle Scholar
  36. Kivelson, M.G., Khurana, K.K., Volwerk, M.: The permanent and inductive magnetic moments of Ganymede. Icarus 157, 507–522 (2002)ADSCrossRefGoogle Scholar
  37. Kivelson, M.G., Bagenal, F., Neubauer, F.M., Kurth, W., Paranicas, C., Saur, J.: Magnetospheric interactions with satellites. In: Bagenal, F., (ed.) Jupiter, chap. 21, pp. 513–536. Cambridge University Press, Cambridge (2004)Google Scholar
  38. Kliore, A.J., Anabtawi, A., Herrea, R., Asmar, S., Nagy, A., Hinson, D.P., Flasar, F.M.: The ionosphere of Callisto from Galileo radio occultation observations. J. Geophys. Res. 107, 1407 (2002). doi:10.1029/2002JA009365CrossRefGoogle Scholar
  39. Knight, S.: Parallel electric fields. Planet. Space Sci. 21, 741 (1973)ADSCrossRefGoogle Scholar
  40. Kopp, A., Ip, W.: Resistive MHD simulations of Ganymede’s magnetosphere: 1. Time variabilities of the magnetic field topology. J. Geophys. Res. 107, SMP 41.1, CiteID 1490 (2002)CrossRefGoogle Scholar
  41. Krupp, N., et al.: Dynamics of the Jovian Magnetosphere. In: Bagenal, F. (ed.) Jupiter, chap. 25, pp. 617–638. Cambridge University Press, Cambridge (2004)Google Scholar
  42. Lanza, A.F.: Hot Jupiters and stellar magnetic activity. Astron. Astrophys. 487, 1163–1170 (2008). doi:  10.1051/0004-6361:200809753, 0805.3010CrossRefADSGoogle Scholar
  43. Liuzzo, L., Feyerabend, M., Simon, S., Motschmann, U.: The impact of Callisto’s atmosphere on its plasma interaction with the Jovian magnetosphere. J. Geophys. Res. Space Phys. 120, 9401–9427 (2015). doi:  10.1002/2015JA021792ADSCrossRefGoogle Scholar
  44. Liuzzo, L., Simon, S., Feyerabend, M., Motschmann, U.: Disentangling plasma interaction and induction signatures at Callisto: the Galileo C10 flyby. J. Geophys. Res. Space Phys. 121, 8677–8694 (2016). doi:  10.1002/2016JA023236ADSCrossRefGoogle Scholar
  45. Mauk, B., Mitchell, D., Krimigis, S., Roelof, E., Paranicas, C.: Energetic neutral atoms from a trans-Europa gas torus at Jupiter. Nature 412(6926), 920–922 (2003)ADSCrossRefGoogle Scholar
  46. McGrath, M.A., Jia, X., Retherford, K.D., Feldman, P.D., Strobel, D.F., Saur, J.: Aurora on Ganymede. J. Geophys. Res. 118, 2043–2054 (2013). doi:10.1002/jgra.50122ADSCrossRefGoogle Scholar
  47. McNutt, R., Belcher, J., Bridge, H.: Positive ion observations in the middle magnetosphere of Jupiter. J. Geophys. Res. 86, 8319–8342 (1981)ADSCrossRefGoogle Scholar
  48. Moriguchi, T., Nakamizo, A., Tanaka, T., Obara, T., Shimazu, H.: Current systems in the Jovian magnetosphere. J. Geophys. Res. Space Phys. 113, A05204 (2008). doi:  10.1029/2007JA012751ADSCrossRefGoogle Scholar
  49. Neubauer, F.M.: Nonlinear standing Alfvén wave current system at Io: theory. J. Geophys. Res. 85(A3), 1171–1178 (1980)ADSCrossRefGoogle Scholar
  50. Neubauer, F.M.: The sub-Alfvénic interaction of the Galilean satellites with the Jovian magnetosphere. J. Geophys. Res. 103(E9), 19843–19866 (1998)ADSCrossRefGoogle Scholar
  51. Ogino, T., Walker, R.J., Kivelson, M.G.: A global magnetohydrodynamic simulation of the Jovian magnetosphere. J. Geophys. Res. 103, 225 (1998). doi:  10.1029/97JA02247ADSCrossRefGoogle Scholar
  52. Parker, E.N.: Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664 (1958). doi:  10.1086/146579ADSCrossRefGoogle Scholar
  53. Paty, C., Winglee, R.: Multi-fluid simulations of Ganymede’s magnetosphere. Geophys. Res. Lett. 31, L24806 (2004)ADSCrossRefGoogle Scholar
  54. Paty, C., Winglee, R.: The role of ion cyclotron motion at Ganymde: magnetic morphology and magnetospheric dynamics. Geophys. Res. Lett. 33, L10106 (2006)ADSCrossRefGoogle Scholar
  55. Paty, C., Paterson, W., Winglee, R.: Ion energization in Ganymede’s magnetosphere: using multifluid simulations to interpret ion energy spectrograms. J. Geophys. Res. 113, A06211 (2008). doi:10.1029/2007JA012848ADSCrossRefGoogle Scholar
  56. Preusse, S., Kopp, A., Büchner, J., Motschmann, U.: A magnetic communication scenario for hot Jupiters. Astron. Astrophys. 460, 317–322 (2006). doi:  10.1051/0004-6361:20065353ADSCrossRefGoogle Scholar
  57. Radioti, A., GéRard, J.C., Grodent, D., Bonfond, B., Krupp, N., Woch, J.: Discontinuity in Jupiter’s main auroral oval. J. Geophys. Res. Space Phys. 113, A01215 (2008). doi:  10.1029/2007JA012610ADSCrossRefGoogle Scholar
  58. Rambaux, N., van Hoolst, T., Karatekin, Ö.: Librational response of Europa, Ganymede, and Callisto with an ocean for a non-Keplerian orbit. Astron. Astrophys. 527, A118 (2011). doi:  10.1051/0004-6361/201015304CrossRefGoogle Scholar
  59. Ray, L.C., Ergun, R.E., Delamere, P.A., Bagenal, F.: Magnetosphere-ionosphere coupling at Jupiter: effect of field-aligned potentials on angular momentum transport. J. Geophys. Res. Space Phys. 115, A09211 (2010). doi:  10.1029/2010JA015423ADSCrossRefGoogle Scholar
  60. Saur, J., Strobel, D.F., Neubauer, F.M.: Interaction of the Jovian magnetosphere with Europa: constraints on the neutral atmosphere. J. Geophys. Res. 103(E9), 19947–19962 (1998)ADSCrossRefGoogle Scholar
  61. Saur, J., Politano, H., Pouquet, A., Matthaeus, W.: Evidence for weak MHD turbulence in the middle magnetosphere of Jupiter. Astron. Astrophys. 386(2), 699 (2002)ADSCrossRefGoogle Scholar
  62. Saur, J., Strobel, D., Neubauer, F., Summers, M.: The ion mass loading rate at Io. Icarus 163, 456–468 (2003)ADSCrossRefGoogle Scholar
  63. Saur, J., Grambusch, T., Duling, S., Neubauer, F.M., Simon, S.: Magnetic energy fluxes in sub-Alfvénic planet star and moon planet interactions. Astron. Astrophys. 552, A119 (2013). doi:  10.1051/0004-6361/201118179ADSCrossRefGoogle Scholar
  64. Saur, J., Duling, S., Roth, L., Jia, X., Strobel, D.F., Feldman, P.D., Christensen, U.R., Retherford, K.D., McGrath, M.A., Musacchio, F., Wennmacher, A., Neubauer, F.M., Simon, S., Hartkorn, O.: The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. Space Phys. 120, 1715–1737 (2015). doi:  10.1002/2014JA020778ADSCrossRefGoogle Scholar
  65. Seufert, M.: Callisto: induction signals, atmosphere and plasma interaction. Dissertation, Institut für Geophysik und Meteorologie der Universität zu Köln (2012)Google Scholar
  66. Seufert, M., Saur, J., Neubauer, F.M.: Multi-frequency electromagnetic sounding of the Galilean moons. Icarus 214, 477–494 (2011). doi:  10.1016/j.icarus.2011.03.017ADSCrossRefGoogle Scholar
  67. Showman, A.P., Malhotra, R.: The Galilean satellites. Science 296, 77–84 (1999)ADSCrossRefGoogle Scholar
  68. Sohl, F., Spohn, T., Breuer, D., Nagel, K.: Implications from Galileo observations on the interior structure and chemistry of the Galilean satellites. Icarus 157, 104–119 (2002)ADSCrossRefGoogle Scholar
  69. Southwood, D.J., Kivelson, M.G.: A new perspective concerning the influence of the solar wind on the Jovian magnetosphere. J. Geophys. Res. 106, 6123–6130 (2001). doi:  10.1029/2000JA000236ADSCrossRefGoogle Scholar
  70. Southwood, D.J., Kivelson, M.G., Walker, R.J., Slavin, J.A.: Io and its plasma environment. J. Geophys. Res. 85(A11), 5959–5968 (1980)ADSCrossRefGoogle Scholar
  71. Strobel, D.F., Saur, J., Feldman, P.D., McGrath, M.A.: Hubble Space Telecope Space Telescope Imaging Spectrograph search for an atmosphere on Callisto: a Jovian unipolar inductor. Astrophys. J. Lett. 581, L51–L54 (2002)ADSCrossRefGoogle Scholar
  72. Vance, S., Bouffard, M., Choukroun, M., Sotin, C.: Ganymede’s internal structure including thermodynamics of magnesium sulfate oceans in contact with ice. Planet. Space Sci. 96, 62–70 (2014). doi:  10.1016/j.pss.2014.03.011ADSCrossRefGoogle Scholar
  73. Vasyliūnas, V.M.: Plasma distribution and flow. In: Dessler, A.J. (ed.) Physics of the Jovian Magnetosphere, chap. 11, pp. 395–453. Cambridge University Press, Cambridge (1983)CrossRefGoogle Scholar
  74. Vogt, M.F., Jackman, C.M., Slavin, J.A., Bunce, E.J., Cowley, S.W.H., Kivelson, M.G., Khurana, K.K.: Structure and statistical properties of plasmoids in Jupiter’s magnetotail. J. Geophys. Res. Space Phys. 119, 821–843 (2014). doi:  10.1002/2013JA019393ADSCrossRefGoogle Scholar
  75. Walker, R.J., Ogino, T.: A simulation study of currents in the Jovian magnetosphere. Planet. Space Sci. 51, 295–307 (2003). doi:  10.1016/S0032-0633(03)00018-7ADSCrossRefGoogle Scholar
  76. Zimmer, C., Khurana, K., Kivelson, M.: Subsurface oceans on Europa and Callisto: constraints from Galileo magnetometer observations. Icarus 147, 329–347 (2000)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Joachim Saur
    • 1
  • Emmanuel Chané
    • 2
  • Oliver Hartkorn
    • 1
  1. 1.Institute of Geophysics and MeteorologyUniversity of CologneCologneGermany
  2. 2.Centre for Mathematical Plasma AstrophysicsKU LeuvenLeuvenBelgium

Personalised recommendations