Skip to main content

Laboratory Experiments and Numerical Simulations on Magnetic Instabilities

  • Chapter
Magnetic Fields in the Solar System

Abstract

Magnetic fields of planets, stars, and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can play an active role in cosmic structure formation by destabilizing rotational flows that would be otherwise hydrodynamically stable. For a long time, both hydromagnetic dynamo action and magnetically triggered flow instabilities had been the subject of purely theoretical research. Meanwhile, however, the dynamo effect has been observed in large-scale liquid sodium experiments in Riga, Karlsruhe, and Cadarache. In this chapter, we summarize the results of some smaller liquid metal experiments devoted to various magnetic instabilities, such as the helical and the azimuthal magnetorotational instability, the Tayler instability, and the different instabilities that appear in a magnetized spherical Couette flow. We conclude with an outlook on a large scale Tayler-Couette experiment using liquid sodium, and on the prospects to observe magnetically triggered instabilities of flows with positive shear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, M.M., Stone, D.R., Zimmerman, D.S., Lathrop, D.P.: Liquid sodium models of the Earth’s core. Prog. Earth Planet. Sci. 29, 1–18 (2015).

    Google Scholar 

  • Balbus, S.A.: Enhanced angular momentum transport in accretion disks. Ann. Rev. Astron. Astrophys. 41, 555–597 (2003)

    Article  ADS  Google Scholar 

  • Benzi, R., Pinton, J.-F.: Magnetic reversals in a simple model of magnetohydrodynamics. Phys. Rev. Lett. 105, 024501 (2010)

    Article  ADS  Google Scholar 

  • Bergerson, W.F., Hannum, D.A., Hegna, C.C., Kendrick, R.D., Sarff, J.S., Forest, C.B.: Onset and saturation of the kink instability in a current-carrying line-tied plasma. Phys. Rev. Lett. 96, 015004 (2006)

    Article  ADS  Google Scholar 

  • Berhanu, M., et al.: Dynamo regimes and transitions in the VKS experiment. Eur. Phys. J. B 77, 459–468 (2010)

    Article  ADS  Google Scholar 

  • Chandrasekhar, S.: On the stability of the simplest solution of the equations of hydromagnetics. Proc. Natl. Acad. Sci. U. S. A. 42, 273–276 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  • Charbonneau, P.: Dynamo models of the solar cycle. Liv. Rev. Sol. Phys. 7, 3 (2010)

    Google Scholar 

  • Cooper, C.M., et al.: The Madison plasma dynamo experiment: a facility for studying laboratory plasma astrophysics. Phys. Plasmas 21, 013505 (2014)

    Article  ADS  Google Scholar 

  • Dormy, E.: Strong-field spherical dynamos. J. Fluid Mech. 789, 500–513 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  • Gailitis, A., Lielausis, O., Dement’ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H., Will, G.: Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84, 4365–4369 (2000)

    Article  ADS  Google Scholar 

  • Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G., Stefani, F.: Laboratory experiments on hydromagnetic dynamos, Rev. Mod. Phys. 74, 973–990 (2002)

    Article  ADS  Google Scholar 

  • Gellert, M., Rüdiger, G., Fournier, A.: Energy distribution in nonaxisymmetric magnetic Taylor-Couette flow. Astron. Nachr. 328, 1162–1165 (2007)

    Article  ADS  Google Scholar 

  • Gellert, M., Rüdiger, G., Elstner, D.: Helicity generation and alpha-effect by Tayler instability with z-dependent differential rotation. Astron. Astrophys. 479, L33–L36 (2008)

    Article  ADS  Google Scholar 

  • Giesecke, A., Stefani, F., Gerbeth, G.: Role of soft-iron impellers on the mode selection in the von-Karman-sodium dynamo experiment. Phys. Rev. Lett. 104, 044503 (2010)

    Article  ADS  Google Scholar 

  • Giesecke, A., Nore, C., Stefani, F., Gerbeth, G., Léorat, J., Herreman, W., F., Guermond, J.-L.: Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment. New J. Phys. 14, 053005 (2012)

    Article  ADS  Google Scholar 

  • Gissinger, C., Ji, H., Goodman, J.: Instabilities in magnetized spherical Couette flow. Phys. Rev. E 84, 026308 (2011)

    Article  ADS  Google Scholar 

  • Gough, D.: An introduction to the solar tachocline. In: Hughes, D.W., Rosner, R., Weiss, N.O. (eds.) The Solar Tachocline, pp. 3–30. Cambridge University Press, Cambridge (2007)

    Chapter  Google Scholar 

  • Hollerbach, R.: A spectral solution of the magneto-convection equations in spherical geometry. Int. J. Num. Meth. Fluids 32, 773–797 (2000)

    Article  MathSciNet  Google Scholar 

  • Hollerbach, R.: Non-axisymmetric instabilities in basic state spherical Couette flow. Fluid. Dyn. Res. 38, 257–273 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Hollerbach, R.: Non-axisymmetric instabilities in magnetic spherical Couette flow. Proc. R. Soc. A 465, 2003–2013 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Hollerbach, R., Rüdiger, G.: New type of magnetorotational instability in cylindrical Taylor-Couette flow. Phys. Rev. Lett. 95, 124501 (2005)

    Article  ADS  Google Scholar 

  • Hollerbach, R., Teeluck, V., Rüdiger, G.: Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor-Couette flow. Phys. Rev. Lett. 104, 044502 (2010)

    Article  ADS  Google Scholar 

  • Jones, C.A.: Planetary magnetic fields and dynamos. Ann. Rev. Fluid Mech. 43, 583–614 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Kaplan, E.: Saturation of nonaxisymmetric instabilities of magnetized spherical Couette flow. Phys. Rev. E. 89, 063016 (2014)

    Article  ADS  Google Scholar 

  • Kim, H. et al.: Liquid metal batteries: past, present, and future. Chem. Rev. 113, 2075–2099 (2013)

    Article  Google Scholar 

  • Kirillov, O.N., Stefani, F.: On the relation of standard and helical magnetorotational instability. Astrophys. J. 712, 52–68 (2010)

    Article  ADS  Google Scholar 

  • Kirillov, O.N., Stefani, F.: Paradoxes of magnetorotational instability and their geometrical resolution. Phys. Rev. E 84, 036304 (2011)

    Article  ADS  Google Scholar 

  • Kirillov, O.N., Stefani, F.: Extending the range of the inductionless magnetorotational instability. Phys. Rev. Lett. 111, 061103 (2013)

    Article  ADS  Google Scholar 

  • Kirillov, O.N., Stefani, F., Fukumoto, Y.: A unifying picture of helical and azimuthal magnetorotational instability, and the universal significance of the Liu limit. Astrophys. J. 756, 83 (2012)

    Article  ADS  Google Scholar 

  • Kirillov, O.N., Stefani, F., Fukumoto, Y.: Local instabilities in magnetized rotational flows: a short-wavelength approach. J. Fluid Mech. 760, 591–633 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Lathrop, D.P., Forest, C.B.: Magnetic dynamos in the lab. Phys. Today 64, 40–45 (2011)

    Article  Google Scholar 

  • Lebreton, Y., Maeder, A.: Stellar evolution with turbulent diffusion mixing. VI - The solar model, surface Li-7, and He-3 abundances, solar neutrinos and oscillations. Astron. Astrophys. 175, 99 (1987)

    Google Scholar 

  • Liu, W., Goodman, J., Herron, I., Ji, H.: Helical magnetorotational instability in magnetized Taylor-Couette flow. Phys. Rev. E 74, 056302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  • Liu, W., Goodman, J., Ji, H.: Traveling waves in a magnetized Taylor-Couette flow. Phys. Rev. E 76, 016310 (2007)

    Article  ADS  Google Scholar 

  • Mamatsashvili, G., Stefani, F.: Linking dissipation-induced instabilities with nonmodal growth: the case of helical magnetorotational instability. Phys. Rev. E 76, 016310 (2016)

    Google Scholar 

  • Moll, R., Spruit, H.C., Obergaulinger, M.: Kink instabilities in jets from rotating magnetic fields. Astron. Astrophys. 492, 621–630 (2008)

    Article  ADS  Google Scholar 

  • Montgomery, D.: Hartmann, Lundquist, and Reynolds: the role of dimensionless numbers in nonlinear magnetofluid behavior. Phys. Rev. E 87, 012108 (2013)

    ADS  Google Scholar 

  • Mori, N. Schmitt, D., Wicht, J. Ferriz-Mas, A., Mouri, H., Nakamichi, A. Morikawa, M: Domino model for geomagnetic field reversals. Phys. Rev. E 87, 012108 (2013)

    Article  ADS  Google Scholar 

  • Nore, C., Quiroz, D.C., Cappanera, L., Guermond, J.L.: Direct numerical simulation of the axial dipolar dynamo in the Von Kármán Sodium experiment. Europhys. Lett. 114, 65002 (2016)

    Article  ADS  Google Scholar 

  • Nornberg, M.D., Ji, H., Schartman, E., Roach, A., Goodman, J.: Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment. Phys. Rev. Lett. 104, 074501 (2010)

    Article  ADS  Google Scholar 

  • Paredes, A., Gellert, M., Rüdiger, G.: Mixing of a passive scalar by the instability of a differentially rotating axial pinch. Astron. Astrophys. 588, A147 (2016)

    Article  ADS  Google Scholar 

  • Parfrey, K.P., Menou, K.: The origin of solar activity in the tachocline: Astrophys. J. Lett. 667, L207 (2007)

    Article  ADS  Google Scholar 

  • Petitdemange, L.: Two-dimensional non-linear simulations of the magnetostrophic magnetorotational instability. Geophys. Astrophys. Fluid Dyn. 104, 287–299 (2010)

    Article  ADS  Google Scholar 

  • Petitdemange, L., Dormy, E., Balbus, S.A.: Magnetostrophic MRI in the Earth’s outer core. Geophys. Res. Lett. 35, L15305 (2008)

    Article  ADS  Google Scholar 

  • Petrelis, F., Fauve, S., Dormy, E., Valet, J.-P.: Simple mechanism for reversals of Earth’s magnetic field. Phys. Rev. Lett. 102, 144503 (2009)

    Article  ADS  Google Scholar 

  • Priede, J., Gerbeth, G.: Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow. Phys. Rev. E 79, 046310 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Reuter, K., Jenko, F., Tilgner, A., Forest, C.B.: Wave-driven dynamo action in spherical magnetohydrodynamic systems. Phys. Rev. E 80, 056304 (2009)

    Article  ADS  Google Scholar 

  • Roach, A.H., Spence, E.J., Gissinger, C., Edlund, E.M., Sloboda, P., Goodman, J., Ji, H.: Observation of a free-Shercliff-layer instability in cylindrical geometry. Phys. Rev. Lett. 108, 154502 (2012)

    Article  ADS  Google Scholar 

  • Rüdiger, G., Shalybkov, D.: Linear magnetohydrodynamic Taylor-Couette instability for liquid sodium. Phys. Rev. E 67, 046312 (2003)

    Article  ADS  Google Scholar 

  • Rüdiger, G., Hollerbach, R., Schultz, M., Shalybkov, D.: The stability of MHD Taylor-Couette flow with current-free spiral magnetic fields between conducting cylinders. Astron. Nachr. 326, 409–413 (2005)

    Article  ADS  Google Scholar 

  • Rüdiger, G., Hollerbach, R., Schultz, M., Elstner, D.: Destabilization of hydrodynamically stable rotation laws by azimuthal magnetic fields. Mon. Not. R. Astron. Soc. 377, 1481–1487 (2007)

    Article  ADS  Google Scholar 

  • Rüdiger, G., Gellert, M., Schultz, M.: Eddy viscosity and turbulent Schmidt number by kink-type instabilities of toroidal magnetic fields. Mon. Not. R. Astron. Soc. 399, 996–1004 (2009)

    Article  ADS  Google Scholar 

  • Rüdiger, G., Schultz, M., Gellert, M.: The Tayler instability of toroidal magnetic fields in a columnar gallium experiment. Astron. Nachr. 332, 17–23 (2011)

    Article  ADS  Google Scholar 

  • Rüdiger, G., Hollerbach, R., Kitchatinov, L.L.: Magnetic Processes in Astrophysics: Theory, Simulations, Experiments. Wiley-VCH, Weinheim (2013)

    Book  Google Scholar 

  • Rüdiger, G., Gellert, M., Schultz, M., Hollerbach, R., Stefani, F.: Astrophysical and experimental implications from the magnetorotational instability of toroidal fields. Mon. Not. R. Astron. Soc. 438, 271–277 (2014)

    Article  ADS  Google Scholar 

  • Rüdiger, G., Schultz, M., Stefani, F., Mond. M.: Diffusive magnetohydrodynamic instabilities beyond the Chandrasekhar theorem. Astrophys. J. 811, 84 (2015)

    Article  ADS  Google Scholar 

  • Rüdiger, G., Schultz, M., Gellert, M., Stefani, F.: Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28, 014105 (2016)

    Article  ADS  Google Scholar 

  • Schatzman, E.: Turbulent transport and lithium destruction in main sequence stars. Astron. Astrophys. 56, 211 (1977)

    ADS  Google Scholar 

  • Schmitt, D., Cardin, P., La Rizza, P., Nataf, H.C.: Magneto-Coriolis waves in a spherical Couette flow experiment. Eur. J. Phys. B - Fluids 37, 10–22 (2013)

    Article  MathSciNet  Google Scholar 

  • Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G.: Experimental evidence for a transient Tayler instability in a cylindrical liquid-metal column. Phys. Rev. Lett. 108, 244501 (2012)

    Article  ADS  Google Scholar 

  • Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M.: Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505 (2014)

    Article  ADS  Google Scholar 

  • Seilmayer, M., Gundrum, T., Stefani, F.: Noise reduction of ultrasonic Doppler velocimetry in liquid metal experiments with high magnetic fields. Flow Meas. Instrum. 48, 74–80 (2016)

    Article  Google Scholar 

  • Sisan, D.R., Mujica, N., Tillotson, W.A., Huang, Y.M., Dorland, W., Hassam, A.B., Lathrop, D.P.: Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93, 114502 (2004)

    Article  ADS  Google Scholar 

  • Sorriso-Valvo, L., Stefani, F., Carbone, V. Nigro, G., Lepreti, F., Vecchio, A. Veltri, P: A statistical analysis of polarity reversals of the geomagnetic field. Phys. Earth Planet. Inter. 164, 197–207 (2007)

    Google Scholar 

  • Spada, F., Gellert, M., Arlt, R., Deheuvels, S.: Angular momentum transport efficiency in post-main sequence low-mass stars. Astron. Astrophys. 589, A23 (2016)

    Article  ADS  Google Scholar 

  • Spies, G.O.: Visco-resistive stabilization of kinks with short wavelengths along an elliptic magnetic stagnation line. Plasma Phys. Controlled Fusion 30, 1025–1037 (1988)

    Article  ADS  Google Scholar 

  • Spruit, H.C.: Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002).

    Article  ADS  Google Scholar 

  • Sreenivasan, B., Jones, C.A.: Helicity generation and subcritical behaviour in rapidly rotating dynamos. J. Fluid Mech. 688, 5–30 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  • Starace, M., Weber, N., Seilmayer, M., Kasprzyk, C., Weier, T., Stefani, F., Eckert, S.: Ultrasound Doppler flow measurement in a liquid metal columns under the influence of a strong axial electric current. Magnetohydrodynamics 51, 249–256 (2015)

    Google Scholar 

  • Stefani, F., Kirillov, O.N.: Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001 (2015)

    Article  ADS  Google Scholar 

  • Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Schultz, M., Szklarski, J., Hollerbach, R.: Experimental evidence for magnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502 (2006)

    Article  ADS  Google Scholar 

  • Stefani, F., Gerbeth, G., Günther, U., Xu, M: Why dynamos are prone to reversals. Earth Planet. Sci. Lett. 243, 828–840 (2006)

    Article  ADS  Google Scholar 

  • Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Szklarski, J., Hollerbach, R.: Experiments on the magnetorotational instability in helical magnetic fields. New J. Phys. 9, 295 (2007)

    Article  ADS  Google Scholar 

  • Stefani, F., Gailitis, A., Gerbeth, G.: Magnetohydrodynamic experiments on cosmic magnetic fields. Zeitschr. Angew. Math. Mech. 88, 930–954 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  • Stefani, F., Giesecke, A., Gerbeth, G.: Numerical simulations of liquid metal experiments on cosmic magnetic fields. Theor. Comp. Fluid Dyn. 23, 405–429 (2009)

    Article  Google Scholar 

  • Stefani, F., Gerbeth, G., Gundrum, T., Hollerbach, R., Priede, J., Rüdiger, G., Szklarski, J.: Helical magnetorotational instability in a Taylor-Couette flow with strongly reduced Ekman pumping. Phys. Rev. E 80, 066303 (2009)

    Article  ADS  Google Scholar 

  • Stefani, F., Weier, T., Gundrum, T., Gerbeth, G.: How to circumvent the size limitation of liquid metal batteries due to the Tayler instability. Energy Convers. Manage. 52, 2982–2986 (2011)

    Article  Google Scholar 

  • Stefani, F., Eckert, S., Gerbeth, G., Giesecke, A., Gundrum, T., Steglich, C., Wustmann, B.: DRESDYN - a new facility for MHD experiments with liquid sodium. Magnetohydrodynamics 48, 103–113 (2012)

    Google Scholar 

  • Stefani, F., Albrecht, T., Gerbeth, G., Giesecke, A., Gundrum, T., Herault, J., Nore, C. Steglich, C.: Towards a precession driven dynamo experiment. Magnetohydrodynamics 51, 275–284 (2015)

    Google Scholar 

  • Stefani, F., Galindo, V., Kasprzyk, C., Landgraf, S., Seilmayer, M., Starace, M., Weber, N., Weier, T.: Magnetohydrodynamic effects in liquid metal batteries. IOP Conf. Ser.: Mater. Sci. Eng. 143, 012024 (2016)

    Article  Google Scholar 

  • Stefani, F., Giesecke, A., Weber, N., Weier, T.: Synchronized helicity oscillations: a link between planetary tides and the solar cycle? Solar Phys. 291, 2197–2212 (2016)

    Article  ADS  Google Scholar 

  • Stieglitz, R., Müller, U.: Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids 13, 561–564 (2001)

    Article  ADS  Google Scholar 

  • Szklarski, J.: Reduction of boundary effects in the spiral MRI experiment PROMISE. Astron. Nachr. 328, 499–506 (2007)

    Article  ADS  Google Scholar 

  • Tayler, R.J.: Adiabatic stability of stars containing magnetic fields. I. Toroidal fields. Mon. Not. R. Astron. Soc. 161, 365–380 (1973)

    Article  ADS  Google Scholar 

  • Tilgner, A.: Dynamo action with wave motion. Phys. Rev. Lett. 100, 128501 (2008)

    Article  ADS  Google Scholar 

  • Travnikov, V., Eckert, K., Odenbach, S.: Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths. Acta Mech. 219, 255–268 (2011)

    Article  Google Scholar 

  • Tsukahara, T., Tillmark, N., Alfredsson, P.H.: Flow regimes in a plane Couette flow with system rotation. J. Fluid Mech. 648, 5–33 (2010)

    Article  ADS  Google Scholar 

  • Weber, N., Galindo, V., Stefani, F., Weier, T.: Numerical simulation of the Tayler instability in liquid metals. 15, 043034 (2013)

    Google Scholar 

  • Weber, N., Galindo, V., Stefani, F., Weier, T.: Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them. J. Power Sources 265, 166–173 (2014)

    Article  ADS  Google Scholar 

  • Weber, N., Galindo, V., Stefani, F., Weier, T.: The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations. New J. Phys. 17, 113013 (2015)

    Article  ADS  Google Scholar 

  • Wicht J.: Flow instabilities in the wide-gap spherical Couette system. J. Fluid Mech. 738, 184–221 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • Wicht J., Tilgner, A.: Theory and modeling of planetary dynamos. Space Sci. Rev. 152, 501–542 (2010)

    Article  ADS  Google Scholar 

  • Zahn, J.P.: In: Goupil, M.-J., Zahn, J.-P. (eds.) Rotation and Mixing in Stellar Interiors. Lecture Notes of Physics, vol. 336, p. 141. Springer, New York (1990)

    Google Scholar 

  • Zimmermann, D.S., Triana, S.A., Nataf, H.-C., Lathrop, D.P.: A turbulent, high magnetic Reynolds number experimental model of Earth’s core. J. Geophys. Res. - Sol. Earth 119, 4538–4557 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft in the frame of the focus programme 1488 (PlanetMag). Intense collaboration with Rainer Hollerbach on the theory and numerics of the different instabilities is gratefully acknowledged. We thank Thomas Gundrum for his contributions in setting up and running the experiments, and Elliot Kaplan for his numerical and experimental work on the HEDGEHOG experiment. We are grateful to Johannes Wicht for the introduction into the MagIC code. F.S. likes to thank Oleg Kirillov for his efforts to establish a comprehensive WKB theory of the magnetically triggered instabilities, and George Mamatsashvili for his work on non-modal aspects of MRI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Stefani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Stefani, F., Gellert, M., Kasprzyk, C., Paredes, A., Rüdiger, G., Seilmayer, M. (2018). Laboratory Experiments and Numerical Simulations on Magnetic Instabilities. In: Lühr, H., Wicht, J., Gilder, S.A., Holschneider, M. (eds) Magnetic Fields in the Solar System. Astrophysics and Space Science Library, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-319-64292-5_5

Download citation

Publish with us

Policies and ethics