Advertisement

Laboratory Experiments and Numerical Simulations on Magnetic Instabilities

  • Frank Stefani
  • Marcus Gellert
  • Christoph Kasprzyk
  • Alejandro Paredes
  • Günther Rüdiger
  • Martin Seilmayer
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)

Abstract

Magnetic fields of planets, stars, and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can play an active role in cosmic structure formation by destabilizing rotational flows that would be otherwise hydrodynamically stable. For a long time, both hydromagnetic dynamo action and magnetically triggered flow instabilities had been the subject of purely theoretical research. Meanwhile, however, the dynamo effect has been observed in large-scale liquid sodium experiments in Riga, Karlsruhe, and Cadarache. In this chapter, we summarize the results of some smaller liquid metal experiments devoted to various magnetic instabilities, such as the helical and the azimuthal magnetorotational instability, the Tayler instability, and the different instabilities that appear in a magnetized spherical Couette flow. We conclude with an outlook on a large scale Tayler-Couette experiment using liquid sodium, and on the prospects to observe magnetically triggered instabilities of flows with positive shear.

Notes

Acknowledgements

This work was supported by Deutsche Forschungsgemeinschaft in the frame of the focus programme 1488 (PlanetMag). Intense collaboration with Rainer Hollerbach on the theory and numerics of the different instabilities is gratefully acknowledged. We thank Thomas Gundrum for his contributions in setting up and running the experiments, and Elliot Kaplan for his numerical and experimental work on the HEDGEHOG experiment. We are grateful to Johannes Wicht for the introduction into the MagIC code. F.S. likes to thank Oleg Kirillov for his efforts to establish a comprehensive WKB theory of the magnetically triggered instabilities, and George Mamatsashvili for his work on non-modal aspects of MRI.

References

  1. Adams, M.M., Stone, D.R., Zimmerman, D.S., Lathrop, D.P.: Liquid sodium models of the Earth’s core. Prog. Earth Planet. Sci. 29, 1–18 (2015).Google Scholar
  2. Balbus, S.A.: Enhanced angular momentum transport in accretion disks. Ann. Rev. Astron. Astrophys. 41, 555–597 (2003)ADSCrossRefGoogle Scholar
  3. Benzi, R., Pinton, J.-F.: Magnetic reversals in a simple model of magnetohydrodynamics. Phys. Rev. Lett. 105, 024501 (2010)ADSCrossRefGoogle Scholar
  4. Bergerson, W.F., Hannum, D.A., Hegna, C.C., Kendrick, R.D., Sarff, J.S., Forest, C.B.: Onset and saturation of the kink instability in a current-carrying line-tied plasma. Phys. Rev. Lett. 96, 015004 (2006)ADSCrossRefGoogle Scholar
  5. Berhanu, M., et al.: Dynamo regimes and transitions in the VKS experiment. Eur. Phys. J. B 77, 459–468 (2010)ADSCrossRefGoogle Scholar
  6. Chandrasekhar, S.: On the stability of the simplest solution of the equations of hydromagnetics. Proc. Natl. Acad. Sci. U. S. A. 42, 273–276 (1956)ADSMathSciNetCrossRefGoogle Scholar
  7. Charbonneau, P.: Dynamo models of the solar cycle. Liv. Rev. Sol. Phys. 7, 3 (2010)Google Scholar
  8. Cooper, C.M., et al.: The Madison plasma dynamo experiment: a facility for studying laboratory plasma astrophysics. Phys. Plasmas 21, 013505 (2014)ADSCrossRefGoogle Scholar
  9. Dormy, E.: Strong-field spherical dynamos. J. Fluid Mech. 789, 500–513 (2016)ADSMathSciNetCrossRefGoogle Scholar
  10. Gailitis, A., Lielausis, O., Dement’ev, S., Platacis, E., Cifersons, A., Gerbeth, G., Gundrum, T., Stefani, F., Christen, M., Hänel, H., Will, G.: Detection of a flow induced magnetic field eigenmode in the Riga dynamo facility. Phys. Rev. Lett. 84, 4365–4369 (2000)ADSCrossRefGoogle Scholar
  11. Gailitis, A., Lielausis, O., Platacis, E., Gerbeth, G., Stefani, F.: Laboratory experiments on hydromagnetic dynamos, Rev. Mod. Phys. 74, 973–990 (2002)ADSCrossRefGoogle Scholar
  12. Gellert, M., Rüdiger, G., Fournier, A.: Energy distribution in nonaxisymmetric magnetic Taylor-Couette flow. Astron. Nachr. 328, 1162–1165 (2007)ADSCrossRefGoogle Scholar
  13. Gellert, M., Rüdiger, G., Elstner, D.: Helicity generation and alpha-effect by Tayler instability with z-dependent differential rotation. Astron. Astrophys. 479, L33–L36 (2008)ADSCrossRefGoogle Scholar
  14. Giesecke, A., Stefani, F., Gerbeth, G.: Role of soft-iron impellers on the mode selection in the von-Karman-sodium dynamo experiment. Phys. Rev. Lett. 104, 044503 (2010)ADSCrossRefGoogle Scholar
  15. Giesecke, A., Nore, C., Stefani, F., Gerbeth, G., Léorat, J., Herreman, W., F., Guermond, J.-L.: Influence of high-permeability discs in an axisymmetric model of the Cadarache dynamo experiment. New J. Phys. 14, 053005 (2012)ADSCrossRefGoogle Scholar
  16. Gissinger, C., Ji, H., Goodman, J.: Instabilities in magnetized spherical Couette flow. Phys. Rev. E 84, 026308 (2011)ADSCrossRefGoogle Scholar
  17. Gough, D.: An introduction to the solar tachocline. In: Hughes, D.W., Rosner, R., Weiss, N.O. (eds.) The Solar Tachocline, pp. 3–30. Cambridge University Press, Cambridge (2007)CrossRefGoogle Scholar
  18. Hollerbach, R.: A spectral solution of the magneto-convection equations in spherical geometry. Int. J. Num. Meth. Fluids 32, 773–797 (2000)MathSciNetCrossRefGoogle Scholar
  19. Hollerbach, R.: Non-axisymmetric instabilities in basic state spherical Couette flow. Fluid. Dyn. Res. 38, 257–273 (2006)ADSMathSciNetCrossRefGoogle Scholar
  20. Hollerbach, R.: Non-axisymmetric instabilities in magnetic spherical Couette flow. Proc. R. Soc. A 465, 2003–2013 (2009)ADSMathSciNetCrossRefGoogle Scholar
  21. Hollerbach, R., Rüdiger, G.: New type of magnetorotational instability in cylindrical Taylor-Couette flow. Phys. Rev. Lett. 95, 124501 (2005)ADSCrossRefGoogle Scholar
  22. Hollerbach, R., Teeluck, V., Rüdiger, G.: Nonaxisymmetric magnetorotational instabilities in cylindrical Taylor-Couette flow. Phys. Rev. Lett. 104, 044502 (2010)ADSCrossRefGoogle Scholar
  23. Jones, C.A.: Planetary magnetic fields and dynamos. Ann. Rev. Fluid Mech. 43, 583–614 (2011)ADSMathSciNetCrossRefGoogle Scholar
  24. Kaplan, E.: Saturation of nonaxisymmetric instabilities of magnetized spherical Couette flow. Phys. Rev. E. 89, 063016 (2014)ADSCrossRefGoogle Scholar
  25. Kim, H. et al.: Liquid metal batteries: past, present, and future. Chem. Rev. 113, 2075–2099 (2013)CrossRefGoogle Scholar
  26. Kirillov, O.N., Stefani, F.: On the relation of standard and helical magnetorotational instability. Astrophys. J. 712, 52–68 (2010)ADSCrossRefGoogle Scholar
  27. Kirillov, O.N., Stefani, F.: Paradoxes of magnetorotational instability and their geometrical resolution. Phys. Rev. E 84, 036304 (2011)ADSCrossRefGoogle Scholar
  28. Kirillov, O.N., Stefani, F.: Extending the range of the inductionless magnetorotational instability. Phys. Rev. Lett. 111, 061103 (2013)ADSCrossRefGoogle Scholar
  29. Kirillov, O.N., Stefani, F., Fukumoto, Y.: A unifying picture of helical and azimuthal magnetorotational instability, and the universal significance of the Liu limit. Astrophys. J. 756, 83 (2012)ADSCrossRefGoogle Scholar
  30. Kirillov, O.N., Stefani, F., Fukumoto, Y.: Local instabilities in magnetized rotational flows: a short-wavelength approach. J. Fluid Mech. 760, 591–633 (2014)ADSMathSciNetCrossRefGoogle Scholar
  31. Lathrop, D.P., Forest, C.B.: Magnetic dynamos in the lab. Phys. Today 64, 40–45 (2011)CrossRefGoogle Scholar
  32. Lebreton, Y., Maeder, A.: Stellar evolution with turbulent diffusion mixing. VI - The solar model, surface Li-7, and He-3 abundances, solar neutrinos and oscillations. Astron. Astrophys. 175, 99 (1987)Google Scholar
  33. Liu, W., Goodman, J., Herron, I., Ji, H.: Helical magnetorotational instability in magnetized Taylor-Couette flow. Phys. Rev. E 74, 056302 (2006)ADSMathSciNetCrossRefGoogle Scholar
  34. Liu, W., Goodman, J., Ji, H.: Traveling waves in a magnetized Taylor-Couette flow. Phys. Rev. E 76, 016310 (2007)ADSCrossRefGoogle Scholar
  35. Mamatsashvili, G., Stefani, F.: Linking dissipation-induced instabilities with nonmodal growth: the case of helical magnetorotational instability. Phys. Rev. E 76, 016310 (2016)Google Scholar
  36. Moll, R., Spruit, H.C., Obergaulinger, M.: Kink instabilities in jets from rotating magnetic fields. Astron. Astrophys. 492, 621–630 (2008)ADSCrossRefGoogle Scholar
  37. Montgomery, D.: Hartmann, Lundquist, and Reynolds: the role of dimensionless numbers in nonlinear magnetofluid behavior. Phys. Rev. E 87, 012108 (2013)ADSGoogle Scholar
  38. Mori, N. Schmitt, D., Wicht, J. Ferriz-Mas, A., Mouri, H., Nakamichi, A. Morikawa, M: Domino model for geomagnetic field reversals. Phys. Rev. E 87, 012108 (2013)ADSCrossRefGoogle Scholar
  39. Nore, C., Quiroz, D.C., Cappanera, L., Guermond, J.L.: Direct numerical simulation of the axial dipolar dynamo in the Von Kármán Sodium experiment. Europhys. Lett. 114, 65002 (2016)ADSCrossRefGoogle Scholar
  40. Nornberg, M.D., Ji, H., Schartman, E., Roach, A., Goodman, J.: Observation of magnetocoriolis waves in a liquid metal Taylor-Couette experiment. Phys. Rev. Lett. 104, 074501 (2010)ADSCrossRefGoogle Scholar
  41. Paredes, A., Gellert, M., Rüdiger, G.: Mixing of a passive scalar by the instability of a differentially rotating axial pinch. Astron. Astrophys. 588, A147 (2016)ADSCrossRefGoogle Scholar
  42. Parfrey, K.P., Menou, K.: The origin of solar activity in the tachocline: Astrophys. J. Lett. 667, L207 (2007)ADSCrossRefGoogle Scholar
  43. Petitdemange, L.: Two-dimensional non-linear simulations of the magnetostrophic magnetorotational instability. Geophys. Astrophys. Fluid Dyn. 104, 287–299 (2010)ADSCrossRefGoogle Scholar
  44. Petitdemange, L., Dormy, E., Balbus, S.A.: Magnetostrophic MRI in the Earth’s outer core. Geophys. Res. Lett. 35, L15305 (2008)ADSCrossRefGoogle Scholar
  45. Petrelis, F., Fauve, S., Dormy, E., Valet, J.-P.: Simple mechanism for reversals of Earth’s magnetic field. Phys. Rev. Lett. 102, 144503 (2009)ADSCrossRefGoogle Scholar
  46. Priede, J., Gerbeth, G.: Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow. Phys. Rev. E 79, 046310 (2009)ADSMathSciNetCrossRefGoogle Scholar
  47. Reuter, K., Jenko, F., Tilgner, A., Forest, C.B.: Wave-driven dynamo action in spherical magnetohydrodynamic systems. Phys. Rev. E 80, 056304 (2009)ADSCrossRefGoogle Scholar
  48. Roach, A.H., Spence, E.J., Gissinger, C., Edlund, E.M., Sloboda, P., Goodman, J., Ji, H.: Observation of a free-Shercliff-layer instability in cylindrical geometry. Phys. Rev. Lett. 108, 154502 (2012)ADSCrossRefGoogle Scholar
  49. Rüdiger, G., Shalybkov, D.: Linear magnetohydrodynamic Taylor-Couette instability for liquid sodium. Phys. Rev. E 67, 046312 (2003)ADSCrossRefGoogle Scholar
  50. Rüdiger, G., Hollerbach, R., Schultz, M., Shalybkov, D.: The stability of MHD Taylor-Couette flow with current-free spiral magnetic fields between conducting cylinders. Astron. Nachr. 326, 409–413 (2005)ADSCrossRefGoogle Scholar
  51. Rüdiger, G., Hollerbach, R., Schultz, M., Elstner, D.: Destabilization of hydrodynamically stable rotation laws by azimuthal magnetic fields. Mon. Not. R. Astron. Soc. 377, 1481–1487 (2007)ADSCrossRefGoogle Scholar
  52. Rüdiger, G., Gellert, M., Schultz, M.: Eddy viscosity and turbulent Schmidt number by kink-type instabilities of toroidal magnetic fields. Mon. Not. R. Astron. Soc. 399, 996–1004 (2009)ADSCrossRefGoogle Scholar
  53. Rüdiger, G., Schultz, M., Gellert, M.: The Tayler instability of toroidal magnetic fields in a columnar gallium experiment. Astron. Nachr. 332, 17–23 (2011)ADSCrossRefGoogle Scholar
  54. Rüdiger, G., Hollerbach, R., Kitchatinov, L.L.: Magnetic Processes in Astrophysics: Theory, Simulations, Experiments. Wiley-VCH, Weinheim (2013)CrossRefGoogle Scholar
  55. Rüdiger, G., Gellert, M., Schultz, M., Hollerbach, R., Stefani, F.: Astrophysical and experimental implications from the magnetorotational instability of toroidal fields. Mon. Not. R. Astron. Soc. 438, 271–277 (2014)ADSCrossRefGoogle Scholar
  56. Rüdiger, G., Schultz, M., Stefani, F., Mond. M.: Diffusive magnetohydrodynamic instabilities beyond the Chandrasekhar theorem. Astrophys. J. 811, 84 (2015)ADSCrossRefGoogle Scholar
  57. Rüdiger, G., Schultz, M., Gellert, M., Stefani, F.: Subcritical excitation of the current-driven Tayler instability by super-rotation. Phys. Fluids 28, 014105 (2016)ADSCrossRefGoogle Scholar
  58. Schatzman, E.: Turbulent transport and lithium destruction in main sequence stars. Astron. Astrophys. 56, 211 (1977)ADSGoogle Scholar
  59. Schmitt, D., Cardin, P., La Rizza, P., Nataf, H.C.: Magneto-Coriolis waves in a spherical Couette flow experiment. Eur. J. Phys. B - Fluids 37, 10–22 (2013)MathSciNetCrossRefGoogle Scholar
  60. Seilmayer, M., Stefani, F., Gundrum, T., Weier, T., Gerbeth, G.: Experimental evidence for a transient Tayler instability in a cylindrical liquid-metal column. Phys. Rev. Lett. 108, 244501 (2012)ADSCrossRefGoogle Scholar
  61. Seilmayer, M., Galindo, V., Gerbeth, G., Gundrum, T., Stefani, F., Gellert, M., Rüdiger, G., Schultz, M.: Experimental evidence for nonaxisymmetric magnetorotational instability in a rotating liquid metal exposed to an azimuthal magnetic field. Phys. Rev. Lett. 113, 024505 (2014)ADSCrossRefGoogle Scholar
  62. Seilmayer, M., Gundrum, T., Stefani, F.: Noise reduction of ultrasonic Doppler velocimetry in liquid metal experiments with high magnetic fields. Flow Meas. Instrum. 48, 74–80 (2016)CrossRefGoogle Scholar
  63. Sisan, D.R., Mujica, N., Tillotson, W.A., Huang, Y.M., Dorland, W., Hassam, A.B., Lathrop, D.P.: Experimental observation and characterization of the magnetorotational instability. Phys. Rev. Lett. 93, 114502 (2004)ADSCrossRefGoogle Scholar
  64. Sorriso-Valvo, L., Stefani, F., Carbone, V. Nigro, G., Lepreti, F., Vecchio, A. Veltri, P: A statistical analysis of polarity reversals of the geomagnetic field. Phys. Earth Planet. Inter. 164, 197–207 (2007)Google Scholar
  65. Spada, F., Gellert, M., Arlt, R., Deheuvels, S.: Angular momentum transport efficiency in post-main sequence low-mass stars. Astron. Astrophys. 589, A23 (2016)ADSCrossRefGoogle Scholar
  66. Spies, G.O.: Visco-resistive stabilization of kinks with short wavelengths along an elliptic magnetic stagnation line. Plasma Phys. Controlled Fusion 30, 1025–1037 (1988)ADSCrossRefGoogle Scholar
  67. Spruit, H.C.: Dynamo action by differential rotation in a stably stratified stellar interior. Astron. Astrophys. 381, 923–932 (2002).ADSCrossRefGoogle Scholar
  68. Sreenivasan, B., Jones, C.A.: Helicity generation and subcritical behaviour in rapidly rotating dynamos. J. Fluid Mech. 688, 5–30 (2011)ADSMathSciNetCrossRefGoogle Scholar
  69. Starace, M., Weber, N., Seilmayer, M., Kasprzyk, C., Weier, T., Stefani, F., Eckert, S.: Ultrasound Doppler flow measurement in a liquid metal columns under the influence of a strong axial electric current. Magnetohydrodynamics 51, 249–256 (2015)Google Scholar
  70. Stefani, F., Kirillov, O.N.: Destabilization of rotating flows with positive shear by azimuthal magnetic fields. Phys. Rev. E 92, 051001 (2015)ADSCrossRefGoogle Scholar
  71. Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Schultz, M., Szklarski, J., Hollerbach, R.: Experimental evidence for magnetorotational instability in a Taylor-Couette flow under the influence of a helical magnetic field. Phys. Rev. Lett. 97, 184502 (2006)ADSCrossRefGoogle Scholar
  72. Stefani, F., Gerbeth, G., Günther, U., Xu, M: Why dynamos are prone to reversals. Earth Planet. Sci. Lett. 243, 828–840 (2006)ADSCrossRefGoogle Scholar
  73. Stefani, F., Gundrum, T., Gerbeth, G., Rüdiger, G., Szklarski, J., Hollerbach, R.: Experiments on the magnetorotational instability in helical magnetic fields. New J. Phys. 9, 295 (2007)ADSCrossRefGoogle Scholar
  74. Stefani, F., Gailitis, A., Gerbeth, G.: Magnetohydrodynamic experiments on cosmic magnetic fields. Zeitschr. Angew. Math. Mech. 88, 930–954 (2008)ADSMathSciNetCrossRefGoogle Scholar
  75. Stefani, F., Giesecke, A., Gerbeth, G.: Numerical simulations of liquid metal experiments on cosmic magnetic fields. Theor. Comp. Fluid Dyn. 23, 405–429 (2009)CrossRefGoogle Scholar
  76. Stefani, F., Gerbeth, G., Gundrum, T., Hollerbach, R., Priede, J., Rüdiger, G., Szklarski, J.: Helical magnetorotational instability in a Taylor-Couette flow with strongly reduced Ekman pumping. Phys. Rev. E 80, 066303 (2009)ADSCrossRefGoogle Scholar
  77. Stefani, F., Weier, T., Gundrum, T., Gerbeth, G.: How to circumvent the size limitation of liquid metal batteries due to the Tayler instability. Energy Convers. Manage. 52, 2982–2986 (2011)CrossRefGoogle Scholar
  78. Stefani, F., Eckert, S., Gerbeth, G., Giesecke, A., Gundrum, T., Steglich, C., Wustmann, B.: DRESDYN - a new facility for MHD experiments with liquid sodium. Magnetohydrodynamics 48, 103–113 (2012)Google Scholar
  79. Stefani, F., Albrecht, T., Gerbeth, G., Giesecke, A., Gundrum, T., Herault, J., Nore, C. Steglich, C.: Towards a precession driven dynamo experiment. Magnetohydrodynamics 51, 275–284 (2015)Google Scholar
  80. Stefani, F., Galindo, V., Kasprzyk, C., Landgraf, S., Seilmayer, M., Starace, M., Weber, N., Weier, T.: Magnetohydrodynamic effects in liquid metal batteries. IOP Conf. Ser.: Mater. Sci. Eng. 143, 012024 (2016)CrossRefGoogle Scholar
  81. Stefani, F., Giesecke, A., Weber, N., Weier, T.: Synchronized helicity oscillations: a link between planetary tides and the solar cycle? Solar Phys. 291, 2197–2212 (2016)ADSCrossRefGoogle Scholar
  82. Stieglitz, R., Müller, U.: Experimental demonstration of a homogeneous two-scale dynamo. Phys. Fluids 13, 561–564 (2001)ADSCrossRefGoogle Scholar
  83. Szklarski, J.: Reduction of boundary effects in the spiral MRI experiment PROMISE. Astron. Nachr. 328, 499–506 (2007)ADSCrossRefGoogle Scholar
  84. Tayler, R.J.: Adiabatic stability of stars containing magnetic fields. I. Toroidal fields. Mon. Not. R. Astron. Soc. 161, 365–380 (1973)ADSCrossRefGoogle Scholar
  85. Tilgner, A.: Dynamo action with wave motion. Phys. Rev. Lett. 100, 128501 (2008)ADSCrossRefGoogle Scholar
  86. Travnikov, V., Eckert, K., Odenbach, S.: Influence of an axial magnetic field on the stability of spherical Couette flows with different gap widths. Acta Mech. 219, 255–268 (2011)CrossRefGoogle Scholar
  87. Tsukahara, T., Tillmark, N., Alfredsson, P.H.: Flow regimes in a plane Couette flow with system rotation. J. Fluid Mech. 648, 5–33 (2010)ADSCrossRefGoogle Scholar
  88. Weber, N., Galindo, V., Stefani, F., Weier, T.: Numerical simulation of the Tayler instability in liquid metals. 15, 043034 (2013)Google Scholar
  89. Weber, N., Galindo, V., Stefani, F., Weier, T.: Current-driven flow instabilities in large-scale liquid metal batteries, and how to tame them. J. Power Sources 265, 166–173 (2014)ADSCrossRefGoogle Scholar
  90. Weber, N., Galindo, V., Stefani, F., Weier, T.: The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations. New J. Phys. 17, 113013 (2015)ADSCrossRefGoogle Scholar
  91. Wicht J.: Flow instabilities in the wide-gap spherical Couette system. J. Fluid Mech. 738, 184–221 (2014)ADSMathSciNetCrossRefGoogle Scholar
  92. Wicht J., Tilgner, A.: Theory and modeling of planetary dynamos. Space Sci. Rev. 152, 501–542 (2010)ADSCrossRefGoogle Scholar
  93. Zahn, J.P.: In: Goupil, M.-J., Zahn, J.-P. (eds.) Rotation and Mixing in Stellar Interiors. Lecture Notes of Physics, vol. 336, p. 141. Springer, New York (1990)Google Scholar
  94. Zimmermann, D.S., Triana, S.A., Nataf, H.-C., Lathrop, D.P.: A turbulent, high magnetic Reynolds number experimental model of Earth’s core. J. Geophys. Res. - Sol. Earth 119, 4538–4557 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Frank Stefani
    • 1
  • Marcus Gellert
    • 2
  • Christoph Kasprzyk
    • 1
  • Alejandro Paredes
    • 2
  • Günther Rüdiger
    • 2
  • Martin Seilmayer
    • 1
  1. 1.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  2. 2.Leibniz-Institut für Astrophysik PotsdamPotsdamGermany

Personalised recommendations