Interannual Fluctuations of the Core Angular Momentum Inferred from Geomagnetic Field Models

  • Seiki Asari
  • Ingo Wardinski
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)


Recent models of Earth’s core magnetic field based on geomagnetic satellite data suggest an existence of interannual core dynamics. The related magnetic signal of the interannual core dynamics is found to be small, which makes an observational detection of interannual variations of the core flow and the associated oscillations of the core angular momentum (CAM) difficult. However, it has been shown that the phase of the interannual oscillation is robustly determined, according to numerous CAM computations from diverse core flow models that are all estimated as a result of inverting a single geomagnetic model C3FM2. Here, we show that the phase identification depends on the secular acceleration (SA) of a geomagnetic model. Estimates of the phase still vary with geomagnetic models, C3FM2, gufm1, and COV-OBS, for the pre-satellite era, whose differences are readily recognisable in their SA representations. None of them may be an optimal model for describing the SA. Compared with the SA of a satellite model GRIMM3, C3FM2 is overdamped in time, but it may be improved for resolving the interannual CAM oscillations by properly modifying its temporal smoothness in reference to the SA of satellite models.


  1. Asari, S., Lesur, V.: Radial vorticity constraint in core flow modeling. J. Geophys. Res. 116 (2011). doi:10.1029/2011JB008267CrossRefGoogle Scholar
  2. Asari, S., Wardinski, I.: On magnetic estimation of Earth’s core angular momentum variation. J. Geophys. Res. 120 (2015). doi:10.1002/2014JB011458CrossRefADSGoogle Scholar
  3. Bloxham, J.: Dynamics of angular momentum in the Earth’s core. Ann. Rev. Earth Planet. Sci. 26, 501–517 (1998)ADSCrossRefGoogle Scholar
  4. Chulliat, A., Maus, S.: Geomagnetic secular acceleration, jerks, and a localized standing wave at the core surface from 2000 to 2010. J. Geophys. Res. 119 (2014). doi:10.1002/2013JB010604CrossRefADSGoogle Scholar
  5. Chulliat, A., Hulot, G., Newitt, L.R.: Magnetic flux expulsion from the core as a possible cause of the unusually large acceleration of the north magnetic pole during the 1990s. J. Geophys. Res. 115 (2010). doi:10.1029/2009JB007143Google Scholar
  6. Finlay, C.C., Olsen, N., Kotsiaros, S., Gillet, N., Tøffner-Clausen, L.: Recent geomagnetic secular variation from Swarm and ground observatories as estimated in the CHAOS-6 geomagnetic field model. Earth Planets Space 68(1), 112 (2016). doi:10.1186/s40623-016-0486-1. Scholar
  7. Friis-Christensen, E., Lühr, H., Hulot, G.: Swarm: a constellation to study the earth’s magnetic field. Earth Planets Space 58, 351–358 (2006). doi:10.1186/BF03351933ADSCrossRefGoogle Scholar
  8. Gillet, N., Jault, D., Canet, E., Fournier, A.: Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465, 74–77 (2010)ADSCrossRefGoogle Scholar
  9. Gillet, N., Jault, D., Finlay, C., Olsen, N.: Stochastic modelling of the Earth’s magnetic field: inversion for covariances over the observatory era. Geochem. Geophys. Geosyst. 14, 766–786 (2013). doi:10.1002/ggge.20041ADSCrossRefGoogle Scholar
  10. Gillet, N., Jault, D., Finlay, C.C.: Planetary gyre, time-dependent eddies, torsional waves, and equatorial jets at the Earth’s core surface. J. Geophys. Res. 120 (2015). doi:10.1002/2014JB011786CrossRefADSGoogle Scholar
  11. Holme, R.: Large scale flow in the core. In: Schubert, G. (ed.) Treatise in Geophysics, Core Dynamics, Elsevier, vol. 8, pp. 91–113 (2015)Google Scholar
  12. Holme, R., de Viron, O.: Characterization and implications of intradecadal variations in length of day. Nature 499, 202–204 (2013)ADSCrossRefGoogle Scholar
  13. Hulot, G., Le Mouël, J.L., Wahr, J.: Taking into account truncation problems and geomagnetic model accuracy in assessing computed flows at the core-mantle boundary. Geophys. J. Int. 108, 224–246 (1992)ADSCrossRefGoogle Scholar
  14. Jackson, A.: Time-dependency of tangentially geostrophic core surface motions. Phys. Earth Planet. Inter. 103, 293–311 (1997)ADSCrossRefGoogle Scholar
  15. Jackson, A., Jonker, A.R.T., Walker, M.R.: Four centuries of geomagnetic secular variation from historical records. Philos. Trans. R. Soc. Lond. A 358, 957–990 (2000)ADSCrossRefGoogle Scholar
  16. Jault, D., Gire, C., Le Mouël, J.L.: Westward drift, core motion and exchanges of angular momentum between core and mantle. Nature 333, 353–356 (1988)ADSCrossRefGoogle Scholar
  17. Le Mouël, J.L.: Outer-core geostrophic flow and secular variation of Earth’s geomagnetic field. Nature 311, 734–735 (1984)ADSCrossRefGoogle Scholar
  18. Lesur, V., Wardinski, I., Asari, S., Minchev, B., Mandea, M.: Modelling the Earth’s core magnetic field under flow constraint. Earth Planets Space 62, 503–516 (2010)ADSCrossRefGoogle Scholar
  19. Neubert, T., Mandea, M., Hulot, G., von Frese, R., Primdahl, F., Jørgensen, J.L., Friis-Christensen, E., Stauning, P., Olsen, N., Risbo, T.: Ørsted satellite captures high-precision geomagnetic field data. Eos, Transactions American Geophysical Union, vol.  82(7), pp. 81–88 (2001). doi:10.1029/01EO00043. Scholar
  20. Pais, M.A., Jault, D.: Quasi-geostrophic flows responsible for the secular variation of the Earth’s magnetic field. Geophys. J. Int. 173, 421–443 (2008)ADSCrossRefGoogle Scholar
  21. Reigber, C., Lühr, H., Schwintzer, P.: CHAMP mission status. Adv. Space Res. 30, 129–134 (2002). doi:10.1016/S0273-1177(02)00276-4ADSCrossRefGoogle Scholar
  22. Silva, L., Jackson, L., Mound, J.: Assessing the importance and expression of the 6 year geomagnetic oscillation. J. Geophys. Res. 117 (2012). doi:10.1029/2012JB009405Google Scholar
  23. Torta, J.M., Pavón-Carrasco, F.J., Marsal, S., Finlay, C.C.: Evidence for a new geomagnetic jerk in 2014. Geophys. Res. Lett. 42(19), 7933–7940 (2015). doi:10.1002/2015GL065501, 2015GL065501CrossRefADSGoogle Scholar
  24. Wardinski, I., Lesur, V.: An extended version of the C3FM geomagnetic field model: application of a continuous frozen-flux constraint. Geophys. J. Int. 189, 1409–1429 (2012)ADSCrossRefGoogle Scholar
  25. Wardinski, I., Holme, R., Asari, S., Mandea, M.: The 2003 geomagnetic jerk and its relation to the core surface flows. Earth Planet. Sci. Lett. 267, 468–481 (2008)ADSCrossRefGoogle Scholar
  26. Zatman, S., Bloxham, J.: Torsional oscillations and the magnetic field within the Earth’s core. Nature 388, 760–763 (1997)ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Institute for MathematicsUniversity of PotsdamPotsdam GolmGermany
  2. 2.Laboratory of Planetology and GeodynamicsUniversity of NantesNantesFrance

Personalised recommendations