Advertisement

Global Geomagnetic Field Reconstructions from Centuries to Excursions

  • Monika Korte
  • Maxwell Brown
  • Ute Frank
  • Robin Senftleben
  • Norbert Nowaczyk
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)

Abstract

Three projects within the SPP Planetary Magnetism dealt with reconstructing past geomagnetic field morphology and variations based on paleo- and archeomagnetic data in order to better understand global field characteristics and underlying processes. Their aims were as follows: (1) Obtaining a detailed reconstruction of the field for the past ten centuries, particularly focussing on the reliable reconstruction of the dipole moment prior to the invention of direct absolute intensity observations in 1833. The combination of direct historical observations and young archeomagnetic results with very different uncertainty characteristics and global distributions is a challenge. (2) Improving Holocene geomagnetic field models and (3) developing global reconstructions of the Laschamp ( ∼ 41 ka) and Mono Lake ( ∼ 33 ka) magnetic field excursions. High-quality data and a good understanding of data and age uncertainties are the prerequisite for long-term geomagnetic field models. Upgrading the GEOMAGIA50 database for archeomagnetic and volcanic data spanning the past 50 ka years and adding a new part for sediments were important achievements in this regard. The database now offers possibilities to update age-depth models of individual records or reassess multiple core correlations. Additionally, new sediment records were obtained from African and American low latitudes and from lava flows on Fogo, Cape Verde Islands, in order to better constrain the region of the present-day South Atlantic Anomaly. The projects are presented in the context of reviewing recent international progress towards better understanding of the geomagnetic field evolution on centennial to millennial timescales.

Notes

Acknowledgements

All authors acknowledge funding from Deutsche Forschungsgemeinschaft within the priority program SPP 1488 Planetary Magnetism.

References

  1. Amit, H., Leonhardt, R., Wicht, J.: Polarity reversals from paleomagnetic observations and numerical dynamo simulations. In: Hulot, G., Balogh, A., Christensen, U.R., Constable, C., Mandea, M. (eds.) Terrestrial Magnetism, pp. 293–336. Springer, New York (2011)Google Scholar
  2. Ben-Yosef, E., Tauxe, L., Levy, T.E., Shaar, R., Ron, H., Najjar, M.: Geomagnetic intensity spike recorded in high resolution slag deposit in Southern Jordan. Earth Planet. Sci. Lett. 287(3), 529–539 (2009)ADSCrossRefGoogle Scholar
  3. Björck, S., Wohlfahrt, B.:14C chronostratigraphic techniques in paleolimnology. In: Last, W.M., Smol, J.P. (eds.) Tracking Environmental Change Using Lake Sediments, vol. 1, pp. 205–245. Springer, New York (2001)Google Scholar
  4. Blaauw, M., Christen, J.A.: Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011)MathSciNetzbMATHGoogle Scholar
  5. Bourne, M.D., Mac Niocaill, C., Thomas, A.L., Henderson, G.M.: High-resolution record of the Laschamp geomagnetic excursion at the Blake-Bahama Outer Ridge. Geophys. J. Int. 195, 1519–1533 (2013)ADSCrossRefGoogle Scholar
  6. Bourne, M.D., Feinberg, J.M., Stafford, T.W., Waters, M.R., Lundelius, E., Forman, S.L.: High-intensity geomagnetic field ‘spike’ observed at ca. 3000 cal BP in Texas, USA. Earth Planet. Sci. Lett. 442, 80–92 (2016)ADSCrossRefGoogle Scholar
  7. Bronk Ramsey, C.: Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009)CrossRefGoogle Scholar
  8. Brown, M.C., Korte, M.: A simple model for geomagnetic field excursions and inferences for palaeomagnetic observations. Phys. Earth Planet. Int. 254, 1–11 (2016)ADSCrossRefGoogle Scholar
  9. Brown, M.C., Holme, R., Bargery, A.: Exploring the influence of the non-dipole field on magnetic records for field reversals and excursions. Geophys. J. Int. 168, 541–550 (2007)ADSCrossRefGoogle Scholar
  10. Brown, M.C., Frank, U., Foerster, V.E., Gebru, T., Nowaczyk, N., Schaebitz, F., Korte, M.C.: Holocene paleomagnetic field variations recorded in lake sediments from Southern Ethiopia. Abstract GP33B-01 presented at 2012 Fall Meeting, AGU, San Francisco, CA (2012)Google Scholar
  11. Brown, M., Donadini, F., Nilsson, A., Panovska, S., Frank, U., Korhonen, K., Schuberth, M., Korte, M., Constable, C.G.: Geomagia50.v3: 2. a new paleomagnetic database for lake and marine sediments. Earth Planets Space 67, 70 (2015a). doi:10.1186/s40623-015-0233-zGoogle Scholar
  12. Brown, M.C., Donadini, F., Korte, M., Nilsson, A., Korhonen, K., Lodge, A., Lengyel, S.N., Constable, C.G.: Geomagia.v3: 1. general structure and modifications to the archeological and volcanic database. Earth Planets Space 67, 83. doi:10.1186/s40623-015-0232-0 (2015b)Google Scholar
  13. Brown, M.C., Korte, M., Wardinski, I.: The global character of excursions: insights from empirical and dynamo models. Geophys. Res. Abstr. 18, EGU2016-3080-1 (2016)Google Scholar
  14. Castro, J., Brown, L.: Shallow paleomagnetic directions from historical lava flows, Hawaii. Geophys. Res. Lett. 14, 1203–1206 (1987)ADSCrossRefGoogle Scholar
  15. Channell, J.E.T.: Late Brunhes polarity excursions (Mono Lake, Laschamp, Iceland Basin and Pringle Falls) recorded at ODP Site 911 (Irminger Basin). Earth Planet. Sci. Lett. 171, 489–502 (2006)Google Scholar
  16. Channell, J.E.T.: The Iceland Basin excursion: age, duration, and excursion field geometry. Geochem. Geophys. Geosys. 15, 4920–4935 (2014)ADSCrossRefGoogle Scholar
  17. Channell, J.E.T., Hodell, D.A., Curtis, J.H.: ODP site 1063 (Bermuda Rise) revisited: oxygen isotopes, excursions and paleointensity in the Brunhes chron. Geochem. Geophys. Geosys. 13, Q02001 (2012a). doi:10.1029/2011GC003897ADSCrossRefGoogle Scholar
  18. Channell, J.E.T., Hodell, D.A., Romero, O., Hillaire-Marcel, C., de Vernal, A., Stoner, J.S., Mazaud, A., Röhl, U.: 750-kyr detrital-layer stratigraphy for the North Atlantic (IODP sites U1302-U1303, Orphan Knoll, Labrador Sea. Earth Planet. Sci. Lett. 317–318, 218–230 (2012b)ADSCrossRefGoogle Scholar
  19. Clark, R.M.: A calibration curve for radiocarbon dates. Antiquity 49, 251–266 (1975)CrossRefGoogle Scholar
  20. Constable, C., Korte, M.: Centennial- to millennial-scale geomagnetic field variations. In: Schubert, G. (ed.) Treatise on Geophysics, vol. 5, pp. 309–341. Elsevier, Amsterdam (2015)CrossRefGoogle Scholar
  21. Constable, C., Korte, M., Panovska, S.: Persistent high paleosecular variation activity in southern hemisphere for at least 10 000 years. Earth Planet. Sci. Lett. 453, 78–86 (2016)ADSCrossRefGoogle Scholar
  22. de Groot, L.V., Béguin, A., Kosters, M.E., van Rijsingen, E.M., Struijk, E.L.M., Biggin, A.J., Hurst, E.A., Langereis, C.G., Dekkers, M.J.: High paleointensities for the Canary Islands constrain the Levant geomagnetic high. Earth Planet. Sci. Lett. 419, 154–167 (2015)ADSCrossRefGoogle Scholar
  23. Donadini, F., Korhonen, K., Riisager, P., Pesonen, L.J.: Database for Holocene geomagnetic intensity information. EOS Trans. Am. Geophys. Soc. 87(14), 92–93 (2006)Google Scholar
  24. Donadini, F., Riisager, P., Korhonen, K., Kahma, K., Pesonen, L.J., Snowball, I.: Holocene geomagnetic paleointensities: A blind test of absolute paleointensity techniques and materials. Phys. Earth Planet. Inter. 161, 19–35 (2007)ADSCrossRefGoogle Scholar
  25. Donadini, F., Korte, M., Constable, C.: Geomagnetic field for 0–3 ka: 1. new data sets for global modeling. Geochem. Geophys. Geosys. 10, Q06007 (2009). doi:10.1029/2008GC002295CrossRefGoogle Scholar
  26. Donadini, F., Serneels, V., Kapper, L., El Kateb, A.: Directional changes of the geomagnetic field in West Africa: insights from the metallurgical site of Korsimoro. Earth Planet. Sci. Lett. 430, 349–355 (2015)ADSCrossRefGoogle Scholar
  27. Dunlop, D.J.: Physical basis of the Thellier-Thellier and related paleointensity methods. Phys. Earth. Planet. Inter. 187, 118–138 (2011)ADSCrossRefGoogle Scholar
  28. Egli, R., Zhao, X.: Natural remanent magnetization acquisition in bioturbated sediment: general theory and implications for relative paleointensity reconstructions. Geochem. Geophys. Geosys. 16, 995–1016 (2015)ADSCrossRefGoogle Scholar
  29. Ertepinar, P., Langereis, C.G., Biggin, A.J., Frangipane, M., Matney, T., Ökse, T., Engin, A.: Archaeomagnetic study of five mounds from Upper Mesopotamia between 2500 and 700 BCE: further evidence for an extremely strong geomagnetic field ca. 3000 years ago. Earth Planet. Sci. Lett. 357, 84–98 (2012)ADSCrossRefGoogle Scholar
  30. Finlay, C.C.: Historical variations of the geomagnetic axial dipole. Phys. Earth Planet. Inter. 170, 1–14 (2008)ADSCrossRefGoogle Scholar
  31. Frank, U., Nowaczyk, N.R., Frederichs, T., Korte, M.: Paleo- and rock magnetic investigations on Late Quaternary sediments from low latitudes I: the record from the Tobago Basin, Southern Carribean. Geophys. J. Int. 208, 1740–1755 (2017)ADSGoogle Scholar
  32. Frank, U., Nowaczyk, N.R., Frederichs, T., Korte, M.: Paleo- and rock magnetic investigations on Late Quaternary sediments from low latitudes II: magnetic mineralogy and paleomagnetic secular variation records from the Congo deep-sea fan (in preparation)Google Scholar
  33. Goguitchaichvili, A., Morales, J., Schavelzon, D., Vásquez, C., Gogorza, C.S.G., Loponte, D., A. Rapalini, A.: Variation of the Earth’s magnetic field strength in South America during the last two millennia: new results from historical buildings of Buenos Aires and re-evaluation of regional data. Phys. Earth Planet. Int. 245, 15–25 (2015)ADSCrossRefGoogle Scholar
  34. Greve, A., Turner, G.M., Hodgson, E., Nilsson, A., Hill, M.J.: Palaeomagnetic secular variation from Holocene lava flows of the Taupo Volcanic Zone (TVZ0), New Zealand. Abstract GP53A-3759 presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15–19 December (2014)Google Scholar
  35. Gubbins, D.: Mechanism for geomagnetic polarity reversals. Nature 326, 167–169 (1987)ADSCrossRefGoogle Scholar
  36. Gubbins, D., Jones, A.L., Finlay, C.C.: Fall in Earth’s magnetic field is erratic. Science 312, 900–902 (2006)ADSCrossRefGoogle Scholar
  37. Hill, M.J., Nilsson, A., Holme, R.T., Thomas, M.L., Hurst, E., Turner, G.M., Sheppard, P.: New archeointensity data from the SW Pacific: towards better constrained global geomagnetic field models. Abstract GP51C-06 presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15–19 December (2014)Google Scholar
  38. Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer, J.G., Reimer, P.J., Reimer, R.W., Turney, C.S.M., Zimmerman, S.R.H.: SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon 55, 1–15 (2013)Google Scholar
  39. Hong, H., Yu, Y., Lee, C.H., Kim, R.H., Park, J., Doh, S.J., Kim, W., Sung, H.: Globally strong geomagnetic field intensity circa 3000 years ago. Earth Planet. Sci. Lett. 383, 142–152 (2013)ADSCrossRefGoogle Scholar
  40. Ingham, M., Turner, G.: Behaviour of the geomagnetic field during the Matuyama-Brunhes polarity transition. Phys. Earth Planet. Int. 168, 163–178 (2008)ADSCrossRefGoogle Scholar
  41. Jackson, A., Jonkers, A.R.T., Walker, M.R.: Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. Lond. A 358, 957–990 (2000)ADSCrossRefGoogle Scholar
  42. Jackson, M., Bowles, J., Lascu, I., Solheid, P.: Deconvolution of u channel magnetometer data: experimental study of accuracy, resolution and stability of different inversion methods. Geochem. Geophys. Geosys. 11, Q07Y10 (2010). doi:10.1029/2009GC002991CrossRefGoogle Scholar
  43. Jonkers, A.R.T., Jackson, A., Murray, A.: Four centuries of geomagnetic data from historical records. Rev. Geophys. 41, 957–990 (2003)CrossRefGoogle Scholar
  44. Kinger, R., Turner, G.M., McFadgen, B.: Achaeomagnetic studies of Maori hangi stones from New Zealand. Abstract GP53A-3756 presented at 2014 Fall Meeting, AGU, San Francisco, CA, 15–19 December (2014)Google Scholar
  45. Korhonen, K., Donadini, F., Riisager, P., (2008), L.P.: Geomagia50: an archeointensity database with PHP and MySQL. Geochem., Geophys., Geosys. 9, Q04029 (2008). doi:10.1029/2007GC001893CrossRefGoogle Scholar
  46. Korte, M., Constable, C.G.: Continuous global geomagnetic field models for the past 3000 years. Phys. Earth Planet. Interiors 140, 73–89 (2003)ADSCrossRefGoogle Scholar
  47. Korte, M., Constable, C.G.: Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K. Geochem. Geophys. Geosys. 6, Q02H16 (2005). doi:10.1029/2004GC000801Google Scholar
  48. Korte, M., Constable, C.: Improving geomagnetic field reconstructions for 0–3 ka. Phys. Earth Planet. Int. 188, 247–259 (2011)ADSCrossRefGoogle Scholar
  49. Korte, M., Stolze, S.: Variations in mid-latitude auroral activity during the Holocene. Archaeometry 58, 159–176 (2016)CrossRefGoogle Scholar
  50. Korte, M., Donadini, F., Constable, C.: Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochem. Geophys. Geosys. 10, Q06008 (2009). doi:10.1029/2008GC002297CrossRefGoogle Scholar
  51. Korte, M., Constable, C., Donadini, F., Holme, R.: Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett. 312, 497–505 (2011)ADSCrossRefGoogle Scholar
  52. Laj, C., Channell, J.E.T.: Geomagnetic excursions. In: Schubert, G. (ed.) Treatise on Geophysics, 2nd edn., vol. 5, pp. 343–363. Elsevier, Amsterdam (2015)CrossRefGoogle Scholar
  53. Laj, C., Kissel, C.: An impending geomagnetic transition? Hints from the past. Front. Earth Sci. 3(61) (2015). doi:10.3389/feart.2015.00061Google Scholar
  54. Laj, C., Kissel, C., Mazaud, A., Channell, J.E.T., Beer, J.: North Atlantic palaeointensity stack since 75 ka (NAPIS-75) and the duration of the Laschamp event. Phi. Trans. R. Soc. Lond. A 358, 1009–1025 (2000)ADSCrossRefGoogle Scholar
  55. Laj, C., Kissel, C., Roberts, A.P.: Geomagnetic field behaviour during the Iceland Basin and Laschamp geomagnetic excursions: a simple transitional field geometry? Geochem. Geophys. Geosys. 7, Q03004 (2006). doi:10.1029/2005GC001122ADSCrossRefGoogle Scholar
  56. Laj, C., Guillou, H., Kissel, C.: Dynamics of the Earth magnetic field in the 10–75 kyr period comprising the Laschamp and Mono Lake excursions: new results from the French Caîne des Puys in a global perspective. Earth Planet. Sci. Lett. 387, 184–197 (2013)ADSCrossRefGoogle Scholar
  57. Lanci, L., Kissel, C., Leonhardt, R., Laj, C.: Morphology of the Iceland Basin Excursion from a spherical harmonic analysis and an iterative Bayesian inversion procedure of sedimentary records. Phys. Earth Planet. Int. 169, 131–139 (2008)ADSCrossRefGoogle Scholar
  58. Lanza, R., Meloni, A., Tema, E.: Historical measurements of the Earth’s magnetic field compared with remanence directions from lava flows in Italy over the last four centuries. Phys. Earth Planet. Int. 148, 97–107 (2005)ADSCrossRefGoogle Scholar
  59. Leonhardt, R., Fabian, K.: Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama-Brunhes transition: iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253, 172–195 (2007)ADSCrossRefGoogle Scholar
  60. Leonhardt, R., Fabian, K., Winklhofer, M., Ferk, A., Laj, C., Kissel, C.: Geomagnetic field evolution during the Laschamp excursion. Earth Planet. Sci. Lett. 278, 87–95 (2009)ADSCrossRefGoogle Scholar
  61. Licht, A., Hulot, G., Gallet, Y., Thébault, E.: Ensembles of low degree archeomagnetic field models for the past three millennia. Phys. Earth Planet. Int. 224, 38–67 (2013)ADSCrossRefGoogle Scholar
  62. Livermore, P.W., Fournier, A., Gallet, Y.: Core-flow constraints on extreme archeomagnetic intensity changes. Earth Planet. Sci. Lett. 387, 145–156 (2014)ADSCrossRefGoogle Scholar
  63. Lodge, A., Holme, R.: Towards a new approach to archaeomagnetic dating in Europe using geomagnetic field modelling. Archaeometry 50(3), 309–322 (2009)CrossRefGoogle Scholar
  64. Lund, S., Platzman, E., Johnson, T.: Full-vector paleomagnetic secular variation records from latest Quaternary sediments of Lake Malawi (100S,34.3E). Quat. Sci. Rev. 144, 16–27 (2016)ADSCrossRefGoogle Scholar
  65. Mazaud, A.: An attempt at reconstructing the geomagnetic field at the core-mantle boundary during the upper Olduvai polarity transition. Phys. Earth Planet. Int. 90, 211–219 (1995)ADSCrossRefGoogle Scholar
  66. Mazaud, A., Channell, J.E.T., Stoner, J.S.: Relative paleointensity and environmental magnetism since 1.2 ma at IODP site U1305 (Eirik Drift, NW Atlantic). Earth Planet. Sci. Lett. 357–358, 137–144 (2012)ADSCrossRefGoogle Scholar
  67. Mitra, R., Tauxe, L., McIntosh, S.K.: Two thousand years of archeointensity from West Africa. Earth Planet. Sci. Lett. 364, 123–133 (2013)ADSCrossRefGoogle Scholar
  68. Nilsson, A., Muscheler, R., Snowball, I.: Millennial scale cyclicity in the geodynamo inferred from a dipole tilt reconstruction. Earth Planet. Sci. Lett. 311, 299–205 (2011)ADSCrossRefGoogle Scholar
  69. Nilsson, A., Holme, R., Korte, M., Suttie, N., Hill, M.: Reconstructing Holocene geomagnetic field variations: new methods, models and implications. Geophys. J. Int. 198, 229–248 (2014)ADSCrossRefGoogle Scholar
  70. Nowaczyk, N.R., Arz, H.W., Frank, U., Kind, J., Plessen, B.: Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments. Earth Planet. Sci. Lett. 351–352, 54–69 (2012)ADSCrossRefGoogle Scholar
  71. Nowaczyk, N.R., Frank, U., Kind, J., Arz, H.: A high-resolution paleointensity stack of the past 13 to 68 ka from Black Sea sediments. Earth Planet. Sci. Lett. 384, 1–16 (2013)ADSCrossRefGoogle Scholar
  72. Osete, M.L., Catanzariti, G., Chauvin, A., Pavón-Carrasco, F.J., Roperch, P., Fernández, V.M.: First archaeomagnetic field intensity data from Ethiopia, Africa (1615±12ad). Phys. Earth Planet. Int. 242, 24–35 (2015)ADSCrossRefGoogle Scholar
  73. Panovska, S.: Modelling Holocene geomagnetic field evolution. Ph.D. thesis, ETH Zürich (2012)Google Scholar
  74. Panovska, S., Finlay, C.C., Donadini, F., Hirt, A.M.: Spline analysis of Holocene sediment magnetic records: uncertainty estimates for field modeling. J. Geophys. Res. 117, B02101 (2012). doi:10.1029/2011JB008813ADSCrossRefGoogle Scholar
  75. Panovska, S., Korte, M., Finlay, C.C., Constable, C.G.: Limitations in paleomagnetic data and modelling techniques and their impact on Holocene geomagnetic field models. Geophys. J. Int. 202, 402–418 (2015)ADSCrossRefGoogle Scholar
  76. Parker, A.G., Goudie, A.S., Anderson, D.E., Robinson, M.A., Bonsall, C.: A review of the mid-Holocene elm decline in the British Isles. Prog. Phys. Geog. 26, 1–45 (2002)CrossRefGoogle Scholar
  77. Parnell, A., Haslett, J., Allen, J., Buck, C., Huntley, B.: A flexible approach to assessing synchroneity of past events using Bayesian reconstruction of sedimentation history. Quat. Sci. Rev. 27, 1827–1885 (2008)CrossRefGoogle Scholar
  78. Pavon-Carrasco, J.F., DeSantis, A.: The South Atlantic Anomaly: the key for a possible geomagnetic reversal. Front. Earth Sci. 4(40) (2016). doi:10.3389/feart.2016.00040Google Scholar
  79. Pavón-Carrasco, F.J., González, J.R., Osete, M.L., Torta, J.M.: A Matlab tool for archaeomagnetic dating. J. Archaeol. Sci. 38, 408–419 (2011)CrossRefGoogle Scholar
  80. Pavón-Carrasco, F.J., Osete, M.L., Torta, J.M., De Santis, A.: A geomagnetic field model for the Holocene based on archeomagnetic and lava flow data. Earth Planet. Sci. Lett. 388, 98–109 (2014a)ADSCrossRefGoogle Scholar
  81. Pavón-Carrasco, F.J., Tema, E., Osete, M.L., Lanza, R.: Statistical analysis of palaeomagnetic data form the last four centuries: evidence of systematic inclination shallowing in lava flow records. Pure Appl. Geophys. 173, 839–848 (2014b)ADSCrossRefGoogle Scholar
  82. Poletti, W., Trindade, R.I.F., Hartmann, G.A., Damiani, N., Rech, R.M.: Archeomagnetism of Jesuit missions in South Brazil (1657–1706 ad) and assessment of the South American database. Earth Planet. Sci. Lett. 445, 36–47 (2016)ADSCrossRefGoogle Scholar
  83. Reimer, P.J., Bard, E., Bayliss, A., Beck, J.W., Blackwell, P.G., Bronk Ramsey, C., Buck, C.E., Cheng, H., ad M. Friedrich, R.L.E., Grootes, P.M., Guilderson, T.P., Haflidason, H., an C. Hatté, I.H., Heaton, T.J., Hoffmann, D.L., Hogg, A.G., Hughen, K.A., Kaiser, K.F., Kromer, B., Manning, S.W., Niu, M., Reimer, R.W., Richards, D.A., Scott, E.M., Southon, J.R., Staff, R.A., Turney, C.S.M., van der Plicht, J.: IntCal13 and Marine13 radiocarbon age calibration age curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887 (2013)CrossRefGoogle Scholar
  84. Roberts, A.: Geomagnetic excursions: knowns and unknowns. Geophys. Res. Lett. 35, L17307 (2008). doi:10.1029/2008GL034719ADSCrossRefGoogle Scholar
  85. Roberts, A.P., Winklhofer, M.: Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling. Earth Planet. Sci. Lett. 227(3), 345–359 (2004)Google Scholar
  86. Roberts, A.P., Tauxe, L., Heslop, D.: Magnetic paleointensity stratigraphy and high-resolution Quaternary geochronology: successes and future challenges. Quat. Sci. Rev. 61, 1–16 (2013)ADSCrossRefGoogle Scholar
  87. Senftleben, R., Korte, M., Finlay, C.: Global magnetic field modelling with archeomagnetic and historical data. Geophys. Res. Abstr. 18, EGU2016-13059 (2016)Google Scholar
  88. Shaar, R., Ben-Yosef, E., Ron, H., Tauxe, L., Agnon, A., Kessel, R.: Geomagnetic field intensity: how high can it get? How fast can it change? Constraints from Iron age copper slag. Earth Planet. Sci. Lett. 301(1), 297–306 (2011)ADSCrossRefGoogle Scholar
  89. Shaar, R., Tauxe, L., Gogichaishvili, A., Rathert, M.C., Devidze, M., Licheli, V.: Absolute geomagnetic field intensity in Georgia during the past 6 millennia. Latinmag Lett. 3, 1–4 (2013)Google Scholar
  90. Shaar, R., Tauxe, L., Ron, H., Ebert, Y., Zuckerman, S., Finkelstein, I., Agnon, A.: Large geomagnetic field anomalies revealed in Bronze to Iron Age archeomagnetic data from Tel Megiddo and Tel Hazor, Israel. Earth Planet. Sci. Lett. 442, 173–185 (2016)ADSCrossRefGoogle Scholar
  91. Shao, J.C., Fuller, M., Tanimoto, T., Dunn, J.R., Stone, D.B.: Spherical harmonic analyses of paleomagnetic data: The time-averaged geomagnetic field for the past 5 Myr and the Brunhes/Matuyama reversal. J. Geophys. Res. 104, 5015–5030 (1999)ADSCrossRefGoogle Scholar
  92. Simon, Q., St-Onge, G., Hillaire-Marcel, C.: Late Quaternary chronstratigraphic framework of deep Baffin Bay glaciomarine sediments from high-resolution paleomagnetic data. Geochem. Geophys. Geosys. 13, Q0AO03 (2012). doi:10.1029/2012GC004272CrossRefGoogle Scholar
  93. Suttie, N., Holme, R., Hill, M.J., Shaw, J.: Consistent treatment of errors in archaeointensity implies rapid decay of the dipole. Earth Planet. Sci. Lett. 304, 13–21 (2011)ADSCrossRefGoogle Scholar
  94. Tarduno, J.A., Watkeys, M.K., Huffman, T.N., Cottrell, R.D., Blackman, E.G., Wendt, A., Scribner, C.A., Wagner, C.L.: Antiquity of the South Atlantic Anomaly and evidence for top-down control on the geodynamo. Nat. Commun. 6 (2015). doi:10.1038/ncomms8865Google Scholar
  95. Tauxe, L., Yamazaki, T.: Paleointensities. In: Kono, M. (ed.) Treatise on Geophysics, vol. 5. Elsevier, Amsterdam (2007)Google Scholar
  96. Tauxe, L., Shaar, R., Jonestrask, L., Swanson-Hysell, N.L., Minnett, R., Koppers, A.A.P., Constable, C.G., Jarboe, N., Gaastra, K., Fairchild, L.: PmagPy: Software package for paleomagnetic data analysis and a bridge to the Magnetics Information Consortium (MagIC) database. Geochem. Geophys. Geosyst. 17, 2450–2463 (2016)ADSCrossRefGoogle Scholar
  97. Turner, G.M., Lillis, D.A.: A palaeomagnetic secular variation record for New Zealand during the past 2500 years. Phys. Earth Planet. Inter. 83, 265–282 (1994)ADSCrossRefGoogle Scholar
  98. Turner, G.M., Thompson, R.: Lake sediment record of the geomagnetic secular variation in Britain during Holocene times. Geophys. J. R. Astron. Soc. 65, 703–725 (1981)ADSCrossRefGoogle Scholar
  99. Turner, G.M., Howarth, J.D., de Gelder, G.I.N.O., Fitzsimons, S.J.: A new high-resolution record of Holocene geomagnetic secular variation from New Zealand. Earth Planet. Sci. Lett. 430, 296–307 (2015)ADSCrossRefGoogle Scholar
  100. Usoskin, I., Hulot, G., Gallet, Y., Roth, R., Licht, A., Joos, F., Kovaltsov, G.A., Thébault, E., Khokhlov, A.: Evidence for distinct modes of solar activity. Astron. Astrophys. 562, L10 (2014). doi:10.1051/0004–6361/201423391ADSCrossRefGoogle Scholar
  101. Valet, J.P., Fournier, A.: Deciphering records of geomagnetic reversals. Rev. Geophys. 54 (2016). doi:10.1002/2015RG000506CrossRefADSGoogle Scholar
  102. Valet, J.P., Plenier, G.: Simulations of a time-varying non-dipole field during geomagnetic reversals and excursions. Phys. Earth Planet. Int. 169, 178–193 (2008)ADSCrossRefGoogle Scholar
  103. Valet, J.P., Meynadier, L., Simon, Q., Thouveny, N.: When and why sediments fail to record the geomagnetic field during polarity reversals. Earth Planet. Sci. Lett. 453, 96–107 (2016)ADSCrossRefGoogle Scholar
  104. Xiao, W., Frederichs, T., Gersonde, R., Kuhn, G., Esper, O., Zhang, X.: Constraining the dating of late Quaternary marine sediment records from the Scotia Sea (Southern Ocean). Quat. Geochron. 31, 97–118 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Monika Korte
    • 1
  • Maxwell Brown
    • 1
    • 2
  • Ute Frank
    • 1
  • Robin Senftleben
    • 1
  • Norbert Nowaczyk
    • 1
  1. 1.Deutsches GeoForschungsZentrum GFZ14473 PotsdamGermany
  2. 2.Institute of Earth SciencesUniversity of Iceland101 ReykjavikIceland

Personalised recommendations