Modeling the Interior Dynamics of Gas Planets

  • Johannes Wicht
  • Martin French
  • Stephan Stellmach
  • Nadine Nettelmann
  • Thomas Gastine
  • Lucia Duarte
  • Ronald Redmer
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)


With NASA’s Juno mission having arrived at its target and ESA’s JUICE mission in planning, the interest in state-of-the-art models for the interior structure and dynamics of Jupiter is increasing. This chapter reports on the related attempts within the Special Priority Program PlanetMag of the German Science Foundation and provides an up-to-date review of the topic. Refined interior models are discussed that are based on new ab initio calculations for the equations of state for hydrogen and helium. For the first time, the depth-dependent transport properties have also been calculated, most notably an electrical conductivity profile that captures the transition from the molecular outer to the metallic inner hydrogen-rich envelopes. Anelastic simulations of convection show that the strong density stratification causes flow amplitudes to increase with radius while the flow scale decreases. Zonal jet systems very similar to those observed on Jupiter or Saturn are found in simulations of the molecular hydrogen envelope. Dynamo simulations that include the whole gaseous envelope show strikingly Jupiter-like magnetic field configurations when the strong density stratification is combined with an electrical conductivity profile that includes the significant drop in the molecular layer. While the dipole-dominated large-scale field is produced at depth, the equatorial jet can give rise to a secondary dynamo process where it reaches down to regions of sizable electrical conductivity. The magnetic surface signatures of this secondary dynamo are banded but also have more localized wave number m = 1 and m = 2 concentrations at lower latitudes. By detecting these features, the Juno mission should be able to constrain the deep dynamics of the equatorial jet.



The work presented here was extensively supported by the German Science Foundation within the Special Priority Program 1488 “PlanetMag.” Most of the numerical dynamo and flow simulations have been performed at the “Gesellschaft für Wissenschaftliche Datenverarbeitung” in Göttingen and the “Max Planck Computing and Data Facility” in Garching.


  1. Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Oxford University Press, Oxford (1989)MATHGoogle Scholar
  2. Aubert, J., Aurnou, J., Wicht, J.: The magnetic structure of convection-driven numerical dynamos. Geophys. J. Int. 172, 945 (2008)ADSCrossRefGoogle Scholar
  3. Aurnou, J., Heimpel, M., Wicht, J.: The effects of vigorous mixing in a convective model of zonal flow on the ice giants. Icarus 190, 110 (2007)ADSCrossRefGoogle Scholar
  4. Ballot, J., Brun, A.S., Turck-Chièze, S.: Simulations of turbulent convection in rotating young solarlike stars: differential rotation and meridional circulation. Astrophys. J. 669, 1190 (2007)ADSCrossRefGoogle Scholar
  5. Bassom, A.P., Kuzanyan, K.M., Sokoloff, D., Soward, A.M.: Non-axisymmetric α 2 Ω-dynamo waves in thin stellar shells. Geophys. Astrophys. Fluid Dyn. 99, 309 (2005)ADSMathSciNetMATHCrossRefGoogle Scholar
  6. Becker, A., Lorenzen, W., Fortney, J.J., Nettelmann, N., Schöttler, M., Redmer, R.: Ab initio equations of state for hydrogen (H-REOS.3) and helium (HE-REOS.3) and their implications for the interior of brown dwarfs. Astrophys. J. Suppl. Ser. 215, 14 (2014)Google Scholar
  7. Bessolaz, N., Brun, A.S.: Hunting for giant cells in deep stellar convective zones using wavelet analysis. Astrophys. J. 728, 115 (2011)ADSCrossRefGoogle Scholar
  8. Braginsky, S.I., Roberts, P.H.: Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79, 1 (1995)ADSCrossRefGoogle Scholar
  9. Brown, B.P.: Convection and dynamo action in rapidly rotating suns. Ph.D. thesis, University of Colorado (2009)Google Scholar
  10. Browning, M.K.: Simulations of dynamo action in fully convective stars. Astrophys. J. 676, 1262 (2008)ADSCrossRefGoogle Scholar
  11. Brun, A.S., Palacios, A.: Numerical simulations of a rotating red giant star. I. Three-dimensional models of turbulent convection and associated mean flows. Astrophys. J. 702, 1078 (2009)Google Scholar
  12. Busse, F.H.: Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44, 441 (1970)ADSMATHCrossRefGoogle Scholar
  13. Busse, F.H.: Convective flows in rapidly rotating spheres and their dynamo action. Phys. Fluids 14, 1301 (2002)ADSMathSciNetMATHCrossRefGoogle Scholar
  14. Busse, F.H., Simitev, R.D.: Parameter dependences of convection-driven dynamos in rotating spherical fluid shells. Geophys. Astrophys. Fluid Dyn. 100, 341 (2006)ADSMathSciNetMATHCrossRefGoogle Scholar
  15. Busse, F.H., Simitev, R.D.: Quasi-geostrophic approximation of anelastic convection. J. Fluid Mech. 751, 216 (2014)ADSMathSciNetMATHCrossRefGoogle Scholar
  16. Caillabet, L., Mazevet, S., Loubeyre, P.: Multiphase equation of state of hydrogen from ab initio calculations in the range 0.2 to 5 g/cc up to 10 eV. Phys. Rev. B 83, 094101 (2011)Google Scholar
  17. Cao, H., Russell, C.T., Wicht, J., Christensen, U.R., Dougherty, M.K.: Saturn’s high-degree magnetic moments: evidence for a unique planetary dynamo. Icarus 221, 388 (2012)ADSCrossRefGoogle Scholar
  18. Chabrier, G., Saumon, D., Hubbard, W.B., Lunine, J.I.: The molecular-metallic transition of hydrogen and the structure of Jupiter and Saturn. Astrophys. J. 391, 817 (1992)ADSCrossRefGoogle Scholar
  19. Chekhlov, A., Orszag, S.A., Sukoriansky, S., Galperin, B., Staroselsky, I.: The effect of small-scale forcing on large-scale structures in two-dimensional flows. Physica D 98, 321 (1996)ADSMATHCrossRefGoogle Scholar
  20. Christensen, U.R.: Zonal flow driven by deep convection in the major planets. Geophys. Res. Lett. 28, 2553 (2001)ADSCrossRefGoogle Scholar
  21. Christensen, U.R.: Zonal flow driven by strongly supercritical convection in rotating spherical shells. J. Fluid Mech. 470, 115 (2002)ADSMathSciNetMATHCrossRefGoogle Scholar
  22. Christensen, U., Aubert, J.: Scaling properties of convection-driven dynamos in rotating spherical shells and applications to planetary magnetic fields. Geophys. J. Int. 116, 97 (2006)ADSCrossRefGoogle Scholar
  23. Christensen, U.R., Wicht, J.: Models of magnetic field generation in partly stable planetary cores: applications to Mercury and Saturn. Icarus 196, 16 (2008)ADSCrossRefGoogle Scholar
  24. Christensen, U., Wicht, J.: Numerical dynamo simulations. In: Olson, P. (ed.) Core Dynamics. Treatise on Geophysics, vol. 8, p. 245. Elsevier, Amsterdam (2015)Google Scholar
  25. Connaughton, C., Nazarenko, S., Quinn, B.: Rossby and drift wave turbulence and zonal flows: the Charney-Hasegawa-Mima model and its extensions. Phys. Rep. 604, 1 (2015)ADSMathSciNetMATHCrossRefGoogle Scholar
  26. Connerney, J.E.P., Acuña, M.H., Ness, N.F., Satoh, T.: New models of Jupiter’s magnetic field constrained by the Io flux tube footprint. J. Geophys. Res. 103, 11929 (1998)ADSCrossRefGoogle Scholar
  27. Danilov, S., Gryanik, V.M.: Barotropic beta-plane turbulence in a regime with strong zonal jets revisited. J. Atmos. Sci. 61, 2283 (2004)ADSCrossRefGoogle Scholar
  28. Desjarlais, M.P.: Density-functional calculations of the liquid deuterium Hugoniot, reshock, and reverberation timing. Phys. Rev. B 68, 064204 (2003)ADSCrossRefGoogle Scholar
  29. Desjarlais, M.P.: First-principles calculation of entropy for liquid metals. Phys. Rev. E 88, 062145 (2013)ADSCrossRefGoogle Scholar
  30. Dias, R.P., Silvera, I.F.: Observation of the Wigner-Huntington transition to metallic hydrogen. Science (2017). ISSN:0036-8075Google Scholar
  31. Dietrich, W., Gastine, T., Wicht, J.: Reversal and amplification of zonal flows by boundary enforced thermal wind. Icarus 282, 380 (2017)ADSCrossRefGoogle Scholar
  32. Dormy, E., Soward, A.M., Jones, C.A., Jault, D., Cardin, P.: The onset of thermal convection in rotating spherical shells. J. Fluid Mech. 501, 43 (2004)ADSMathSciNetMATHCrossRefGoogle Scholar
  33. Dreizler, R.M., Gross, E.K.U.: Density Functional Theory. Springer, Berlin (1990)MATHCrossRefGoogle Scholar
  34. Drew, S.J., Jones, C.A., Zhang, K.: Onset of convection in a rapidly rotating compressible fluid spherical shell. Geophys. Astrophys. Fluid Dyn. 80, 241 (1995)ADSCrossRefGoogle Scholar
  35. Dritschel, D.G., McIntyre, M.E.: Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855 (2008)ADSCrossRefGoogle Scholar
  36. Duarte, L.D.V., Gastine, T., Wicht, J.: Anelastic dynamo models with variable electrical conductivity: an application to gas giants. Phys. Earth Planet. Inter. 222, 22 (2013)ADSCrossRefGoogle Scholar
  37. Duarte, L.D.V., Wicht, J., Gastine, T.: Physical properties for Jupiter-like dynamo models. Icarus 229, 206–221 (2018)ADSCrossRefGoogle Scholar
  38. Dubrovinsky, L., Dubrovinskaia, L.N., Prakapenka, V.B., Abakumov, A.M.: Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar. Nat. Commun. 3, 1163 (2012)ADSCrossRefGoogle Scholar
  39. Evonuk, M.: The role of density stratification in generating zonal flow structures in a rotating fluid. Astrophys. J. 673, 1154 (2008)ADSCrossRefGoogle Scholar
  40. Evonuk, M., Glatzmaier, G.A.: A 2D study of the effects of the size of a solid core on the equatorial flow in giant planets. Icarus 181, 458 (2006)ADSCrossRefGoogle Scholar
  41. Evonuk, M., Samuel, H.: Simulating rotating fluid bodies: when is vorticity generation via density-stratification important? Earth Planet. Sci. Lett. 317, 1 (2012)ADSCrossRefGoogle Scholar
  42. Feynman, R.P.: Forces in molecules. Phys. Rev. 56, 340 (1939)ADSMATHCrossRefGoogle Scholar
  43. Fortney, J.J., Hubbard, W.B.: Phase separation in giant planets: inhomogeneous evolution of Saturn. Icarus 164, 228 (2003)ADSCrossRefGoogle Scholar
  44. Fortney, J.J., Nettelmann, N.: The interior structure, composition, and evolution of giant planets. Space Sci. Rev. 152, 423 (2010)ADSCrossRefGoogle Scholar
  45. Fortov, V.E., Ilkaev, R.I., Arinin, V.A., Burtzev, V.V., Golubev, V.A., Iosilevskiy, I.L., Khrustalev, V.V., Mikhailov, A.L., Mochalov, M.A., Ternovoi, V.Y., Zhernokletov, M.V.: Phase transition in a strongly nonideal deuterium plasma generated by quasi-isentropical compression at megabar pressures. Phys. Rev. Lett. 99, 185001 (2007)ADSCrossRefGoogle Scholar
  46. French, M., Becker, A., Lorenzen, W., Nettelmann, N., Bethkenhagen, M., Wicht, J., Redmer, R.: Ab initio simulations for material properties along the Jupiter adiabat. Astrophys. J. Suppl. Ser. 202, 5 (2012)ADSCrossRefGoogle Scholar
  47. Galanti, E., Kaspi, Y.: Decoupling Jupiter’s deep and atmospheric flows using the upcoming Juno gravity measurements and a dynamical inverse model. Icarus 286, 46 (2017)ADSCrossRefGoogle Scholar
  48. Gastine, T., Wicht, J.: Effects of compressibility on driving zonal flow in gas giants. Icarus 219, 428 (2012)ADSCrossRefGoogle Scholar
  49. Gastine, T., Duarte, L., Wicht, J.: Dipolar versus multipolar dynamos: the influence of the background density stratification. Astron. Astrophys. 546, A19 (2012)ADSCrossRefGoogle Scholar
  50. Gastine, T., Wicht, J., Aurnou, J.M.: Zonal flow regimes in rotating anelastic spherical shells: an application to giant planets. Icarus 225, 156 (2013)ADSCrossRefGoogle Scholar
  51. Gastine, T., Heimpel, M., Wicht, J.: Zonal flow scaling in rapidly-rotating compressible convection. Phys. Earth Planet. Inter. 232, 36 (2014a)ADSCrossRefGoogle Scholar
  52. Gastine, T., Wicht, J., Duarte, L.D.V., Heimpel, M., Becker, A.: Explaining Jupiter’s magnetic field and equatorial jet dynamics. Geophys. Res. Lett. 41, 5410 (2014b)ADSCrossRefGoogle Scholar
  53. Gastine, T., Yadav, R.K., Morin, J., Reiners, A., Wicht, J.: From solar-like to antisolar differential rotation in cool stars. Mon. Not. R. Astron. Soc. 438, L76 (2014c)ADSCrossRefGoogle Scholar
  54. Gilman, P.A.: Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell. I. Geophys. Astrophys. Fluid Dyn. 8, 93 (1977)ADSMATHCrossRefGoogle Scholar
  55. Gilman, P.A.: Model calculations concerning rotation at high solar latitudes and the depth of the solar convection zone. Astrophys. J. 231, 284 (1979)ADSCrossRefGoogle Scholar
  56. Gilman, P.A., Foukal, P.V.: Angular velocity gradients in the solar convection zone. Astrophys. J. 229, 1179 (1979)ADSCrossRefGoogle Scholar
  57. Glatzmaier, G.: Numerical simulation of stellar convective dynamos. I. The model and methods. J. Comput. Phys. 55, 461 (1984)Google Scholar
  58. Glatzmaier, G.A., Gilman, P.A.: Compressible convection in a rotating spherical shell. II. A linear anelastic model. Astrophys. J. Suppl. Ser. 45, 351 (1981)Google Scholar
  59. Glatzmaier, G.A., Evonuk, M., Rogers, T.M.: Differential rotation in giant planets maintained by density-stratified turbulent convection. Geophys. Astrophys. Fluid Dyn. 103, 31 (2009)ADSMathSciNetCrossRefGoogle Scholar
  60. Gómez-Pérez, N., Heimpel, M., Wicht, J.: Effects of a radially varying electrical conductivity on 3D numerical dynamos. Phys. Earth Planet. Inter. 181, 42 (2010)ADSCrossRefGoogle Scholar
  61. Greenwood, D.A.: The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. 71, 585 (1958)ADSMathSciNetMATHCrossRefGoogle Scholar
  62. Grodent, D., Bonfond, B., GéRard, J.-C., Radioti, A., Gustin, J., Clarke, J.T., Nichols, J., Connerney, J.E.P.: Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere. J. Geophys. Res. 113, A09201 (2008)ADSGoogle Scholar
  63. Grote, E., Busse, F.: Hemispherical dynamos generated by convection in rotating spherical shells. Phys. Rev. E 62, 4457 (2000)ADSCrossRefGoogle Scholar
  64. Guillot, T.: The interior of giant planets: models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493 (2005)ADSCrossRefGoogle Scholar
  65. Guillot, T., Gautier, D.: Giant planets. In: Spohn, T., Schubert, G. (eds.) Treatise on Geophysics, vol. 10, 2nd edn., p. 529. Elsevier, Amsterdam (2015)Google Scholar
  66. Haas, P., Tran, F., Blaha, P.: Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B 79, 085104 (2009)ADSCrossRefGoogle Scholar
  67. Heimpel, M., Aurnou, J.: Turbulent convection in rapidly rotating spherical shells: a model for equatorial and high latitude jets on Jupiter and Saturn. Icarus 187, 540 (2007)ADSCrossRefGoogle Scholar
  68. Heimpel, M., Gómez Pérez, N.: On the relationship between zonal jets and dynamo action in giant planets. Geophys. Res. Lett. 381, L14201 (2011)ADSGoogle Scholar
  69. Heimpel, M., Aurnou, J., Wicht, J.: Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model. Nature 438, 193 (2005)ADSCrossRefGoogle Scholar
  70. Helled, R., Stevenson, D.: The fuzziness of giant planets’ cores. Astrophys. J. Lett. L840, L4 (2017)ADSCrossRefGoogle Scholar
  71. Hess, S.L.G., Bonfond, B., Zarka, P., Grodent, D.: Model of the Jovian magnetic field topology constrained by the Io auroral emissions. J. Geophys. Res. 116, A05217 (2011)ADSCrossRefGoogle Scholar
  72. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964)ADSMathSciNetCrossRefGoogle Scholar
  73. Holst, B., French, M., Redmer, R.: Electronic transport coefficients from ab initio simulations and application to dense liquid hydrogen. Phys. Rev. B 83, 235120 (2011)ADSCrossRefGoogle Scholar
  74. Holst, B., Redmer, R., Gryaznov, V.K., Fortov, V.E., Iosilevskiy, I.L.: Hydrogen and deuterium in shock wave experiments, ab initio simulations and chemical picture modeling. Eur. Phys. J. D 66, 104 (2012)ADSCrossRefGoogle Scholar
  75. Ingersoll, A.P., Pollard, D.: Motion in the interiors and atmospheres of Jupiter and Saturn: scale analysis, anelastic equations, barotropic stability criterion. Icarus 52, 62 (1982)ADSCrossRefGoogle Scholar
  76. Jiang, J., Wang, J.: A non-axisymmetric spherical α 2-dynamo. Chin. J. Astron. Astrophys. 6, 227 (2006)ADSCrossRefGoogle Scholar
  77. Jones, C.A.: A dynamo model of Jupiter’s magnetic field. Icarus 241, 148 (2014)ADSCrossRefGoogle Scholar
  78. Jones, C.A.: Thermal and compositional convection in the outer core. In: Olson, P. (ed.) Treatise on Geophysics, 2nd edn., p. 115. Elsevier, Oxford (2015)Google Scholar
  79. Jones, C.A., Kuzanyan, K.M.: Compressible convection in the deep atmospheres of giant planets. Icarus 204, 227 (2009)ADSCrossRefGoogle Scholar
  80. Jones, C.A., Soward, A.M., Mussa, A.I.: The onset of thermal convection in a rapidly rotating sphere. J. Fluid Mech. 405, 157 (2000)ADSMathSciNetMATHCrossRefGoogle Scholar
  81. Jones, C.A., Rotvig, J., Abdulrahman, A.: Multiple jets and zonal flow on Jupiter. Geophys. Res. Lett. 30, 1731 (2003)ADSGoogle Scholar
  82. Jones, C.A., Kuzanyan, K.M., Mitchell, R.H.: Linear theory of compressible convection in rapidly rotating spherical shells, using the anelastic approximation. J. Fluid Mech. 634, 291 (2009)ADSMathSciNetMATHCrossRefGoogle Scholar
  83. Jones, C.A., Boronski, P., Brun, A.S., Glatzmaier, G.A., Gastine, T., Miesch, M.S., Wicht, J.: Anelastic convection-driven dynamo benchmarks. Icarus 216, 120 (2011)ADSCrossRefGoogle Scholar
  84. Juranek, H., Redmer, R., Rosenfeld, Y.: Fluid variational theory for pressure dissociation in dense hydrogen: multicomponent reference system and nonadditivity effects. J. Chem. Phys. 117, 1768 (2002)ADSCrossRefGoogle Scholar
  85. Käpylä, P.J., Mantere, M.J., Guerrero, G., Brandenburg, A., Chatterjee, P.: Reynolds stress and heat flux in spherical shell convection. Astron. Astrophy. 531, A162 (2011)CrossRefGoogle Scholar
  86. Kaspi, Y.: Inferring the depth of the zonal jets on Jupiter and Saturn from odd gravity harmonics. Geophys. Res. Lett. 40, 676 (2013)ADSCrossRefGoogle Scholar
  87. Kaspi, Y., Flierl, G.R., Showman, A.P.: The deep wind structure of the giant planets: results from an anelastic general circulation model. Icarus 202, 525 (2009)ADSCrossRefGoogle Scholar
  88. Kaspi, Y., Hubbard, W.B., Showman, A.P., Flierl, G.R.: Gravitational signature of Jupiter’s internal dynamics. Geophys. Res. Lett. 37, L01204 (2010)ADSCrossRefGoogle Scholar
  89. Kaspi, Y., Davighi, J.E., Galanti, E., Hubbard, W.B.: The gravitational signature of internal flows in giant planets: comparing the thermal wind approach with barotropic potential-surface methods. Icarus 276, 170 (2016)ADSCrossRefGoogle Scholar
  90. Kerley, G.I., Christian-Frear, T.L.: Sandia Report No. SAND93–1206. Technical report, Sandia National Laboratories (1993)Google Scholar
  91. King, E.M., Stellmach, S., Aurnou, J.M.: Heat transfer by rapidly rotating Rayleigh-Bénard convection. J. Fluid Mech. 691, 568 (2012)ADSMATHCrossRefGoogle Scholar
  92. Knudson, M.D., Desjarlais, M.P., Becker, A., Lemke, R.W., Cochrane, K.R., Savage, M.E., Bliss, D.E., Mattsson, T.R., Redmer, R.: Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science 348, 1455 (2015)ADSCrossRefGoogle Scholar
  93. Kohanoff, J.: Electronic Structure Calculations for Solids and Molecules. Cambridge University Press, Cambridge (2006)MATHCrossRefGoogle Scholar
  94. Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)ADSMathSciNetCrossRefGoogle Scholar
  95. Kong, D., Zhang, K., Schubert, G.: On the variation of zonal gravity coefficients of a giant planet caused by its deep zonal flows. Astrophys. J. 748, 143 (2012)ADSCrossRefGoogle Scholar
  96. Kong, D., Liao, X., Zhang, K., Schubert, G.: Gravitational signature of rotationally distorted Jupiter caused by deep zonal winds. Icarus 226, 1425 (2013)ADSCrossRefGoogle Scholar
  97. Kong, D., Liao, X., Zhang, K., Schubert, G.: Equatorial zonal jets and Jupiter’s gravity. Astrophys. J. Lett. 791, L24 (2014)ADSCrossRefGoogle Scholar
  98. Kong, D., Zhang, K., Schubert, G.: Odd gravitational harmonics of Jupiter: effects of spherical versus nonspherical geometry and mathematical smoothing of the equatorially antisymmetric zonal winds across the equatorial plane. Icarus 277, 416 (2016)ADSCrossRefGoogle Scholar
  99. Kong, D., Zhang, K., Schubert, G.: On the gravitational signature of zonal flows in Jupiter-like planets: an analytical solution and its numerical validation. Phys. Earth Planet. Inter. 263, 1 (2017)ADSCrossRefGoogle Scholar
  100. Kubo, R.: Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570 (1957)Google Scholar
  101. Lantz, S.R., Fan, Y.: Anelastic magnetohydrodynamic equations for modeling solar and stellar convection zones. Astrophys. J. Suppl. Ser. 121, 247 (1999)ADSCrossRefGoogle Scholar
  102. Lesur, V., Wardinski, I., Rother, M., Mandea, M.: GRIMM: the GFZ Reference Internal Magnetic Model based on vector satellite and observatory data. Geophys. J. Int. 173, 382 (2008)ADSCrossRefGoogle Scholar
  103. Lian, Y., Showman, A.P.: Generation of equatorial jets by large-scale latent heating on the giant planets. Icarus 207, 373 (2010)ADSCrossRefGoogle Scholar
  104. Liu, J., Goldreich, P.M., Stevenson, D.J.: Constraints on deep-seated zonal winds inside Jupiter and Saturn. Icarus 196, 653 (2008)ADSCrossRefGoogle Scholar
  105. Lorenzen, W., Holst, B., Redmer, R.: Demixing of hydrogen and helium at megabar pressures. Phys. Rev. Lett. 102, 115701 (2009)ADSCrossRefGoogle Scholar
  106. Lorenzen, W., Holst, B., Redmer, R.: First-order liquid-liquid phase transition in dense hydrogen. Phys. Rev. B 82, 195107 (2010)ADSCrossRefGoogle Scholar
  107. Lorenzen, W., Holst, B., Redmer, R.: Metallization in hydrogen-helium mixtures. Phys. Rev. B 84, 235109 (2011)ADSCrossRefGoogle Scholar
  108. Lyon, S.P., Johnson, J.D.: Los Alamos Report No. LA-UR-92–3407. Technical report, Los Alamos National Lab (1992)Google Scholar
  109. Marx, D., Hutter, J.: Ab Initio Molecular Dynamics. Cambridge University Press, Cambridge (2009)CrossRefGoogle Scholar
  110. Matt, S.P., Do Cao, O., Brown, B.P., Brun, A.S.: Convection and differential rotation properties of G and K stars computed with the ASH code. Astron. Nachr. 332, 897 (2011)ADSCrossRefGoogle Scholar
  111. McMahon, J.M., Morales, M.A., Pierleoni, C., Ceperley, D.M.: The properties of hydrogen and helium under extreme conditions. Rev. Mod. Phys. 84, 1607 (2012)ADSCrossRefGoogle Scholar
  112. Mermin, N.D.: Thermal properties of the inhomogeneous electron gas. Phys. Rev. 137, A1441 (1965)ADSMathSciNetCrossRefGoogle Scholar
  113. Miguel, Y., Guillot, T., Fayon, L.: Jupiter internal structure: the effect of different equations of state. Astron. Astrophys. 596, A114 (2016)ADSCrossRefGoogle Scholar
  114. Militzer, B., Hubbard, W.B.: Ab initio equation of state for hydrogen–helium mixtures with recalibration of the giant-planet mass–radius relation. Astrophys. J. 774, 148 (2013)ADSCrossRefGoogle Scholar
  115. Militzer, B., Hubbard, W.B., Vorberger, J., Tamblyn, I., Bonev, S.A.: A massive core in Jupiter predicted from first-principles simulations. Astrophys. J. 688, L45 (2008)ADSCrossRefGoogle Scholar
  116. Morales, M.A., Schwegler, E., Ceperley, D., Pierleoni, C., Hamel, S., Caspersen, K.: Phase separation in hydrogen–helium mixtures at Mbar pressures. Proc. Natl. Acad. Sci. USA 106, 1324 (2009)ADSCrossRefGoogle Scholar
  117. Morales, M.A., Pierleoni, C., Schwegler, E., Ceperley, D.M.: Evidence for a first-order liquid-liquid transition in high-pressure hydrogen from ab initio simulations. Proc. Natl. Acad. Sci. USA 107, 12799 (2010)ADSCrossRefGoogle Scholar
  118. Morales, M.A., Hamel, S., Caspersen, K., Schwegler, E.: Hydrogen-helium demixing from first principles: from diamond anvil cells to planetary interiors. Phys. Rev. B 87, 174105 (2013)ADSCrossRefGoogle Scholar
  119. Moses, E.: The National Ignition Facility: an experimental platform for studying behavior of matter under extreme conditions. Astrophys. Space Sci. 336, 3 (2011)ADSCrossRefGoogle Scholar
  120. Nettelmann, N., Becker, A., Holst, B., Redmer, R.: Jupiter models with improved hydrogen EOS (H-REOS.2). Astrophys. J. 750, 52 (2012)Google Scholar
  121. Nettelmann, N., Püstow, R., Redmer, R.: Saturn structure and homogeneous evolution models with different EOS. Icarus 225, 548 (2013)ADSCrossRefGoogle Scholar
  122. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  123. Pierleoni, C., Morales, M.A., Rillo, G., Holzmann, M., Ceperley, D.M.: Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations. Proc. Natl. Acad. Sci. USA 113, 4953 (2016)ADSCrossRefGoogle Scholar
  124. Porco, C.C., West, R.A., McEwen, A., Del Genio, A.D., Ingersoll, A.P., Thomas, P., Squyres, S., Dones, L., Murray, C.D., Johnson, T.V., Burns, J.A., Brahic, A., Neukum, G., Veverka, J., Barbara, J.M., Denk, T., Evans, M.L., Ferrier, J.J., Geissler, P., Helfenstein, P., Roatsch, T., Throop, H., Tiscareno, M., Vasavada, A.R.: Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science 299, 1541 (2003)ADSCrossRefGoogle Scholar
  125. Püstow, R., Nettelmann, W., Lorenzen, N., Redmer, R.: H/He demixing and the cooling behavior of Saturn. Icarus 267, 323 (2016)ADSCrossRefGoogle Scholar
  126. Raynaud, R., Petitdemange, L., Dormy, E.: Dipolar dynamos in stratified systems. Mon. Not. R. Astron. Soc. 448, 2055 (2015)ADSCrossRefGoogle Scholar
  127. Read, P.L., Dowling, T.E., Schubert, G.: Saturn’s rotation period from its atmospheric planetary-wave configuration. Nature 460, 608 (2009)ADSCrossRefGoogle Scholar
  128. Rhines, P.B.: Waves and turbulence on a beta-plane. J. Fluid Mech. 69, 417 (1975)ADSMATHCrossRefGoogle Scholar
  129. Ridley, V.A., Holme, R.: Modeling the Jovian magnetic field and its secular variation using all available magnetic field observations. J. Geophys. Res. 121, 309 (2016)CrossRefGoogle Scholar
  130. Rotvig, J., Jones, C.: Multiple jets and bursting in the rapidly rotating convecting two-dimensional annulus model with nearly plane-parallel boundaries. J. Fluid Mech. 567, 117 (2006)ADSMathSciNetMATHCrossRefGoogle Scholar
  131. Rüdiger, G., Elstner, D., Ossendrijver, M.: Do spherical α 2-dynamos oscillate? Astron. Astrophys. 406, 15 (2003)ADSMATHCrossRefGoogle Scholar
  132. Sasaki, Y., Takehiro, S.-I., Kuramoto, K., Hayashi, Y.-Y.: Weak-field dynamo emerging in a rotating spherical shell with stress-free top and no-slip bottom boundaries. Phys. Earth Planet. Inter. 188, 203 (2011)ADSCrossRefGoogle Scholar
  133. Saumon, D., Guillot, T.: Shock compression of deuterium and the interiors of Jupiter and Saturn. Astrophys. J. 609, 1170 (2004)ADSCrossRefGoogle Scholar
  134. Saumon, D., Chabrier, G., van Horn, H.M.: An equation of state for low-mass stars and giant planets. Astrophys. J. Suppl. Ser. 99, 713 (1995)ADSCrossRefGoogle Scholar
  135. Schrinner, M., Petitdemange, L., Dormy, E.: Dipole collapse and dynamo waves in global direct numerical simulations. Astrophys. J. 752, 121 (2012)ADSCrossRefGoogle Scholar
  136. Schrinner, M., Petitdemange, L., Raynaud, R., Dormy, E.: Topology and field strength in spherical, anelastic dynamo simulations. Astron. Astrophys. 564, A78 (2014)ADSCrossRefGoogle Scholar
  137. Scott, R.K., Polvani, L.M.: Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett. 35, L24202 (2008)ADSCrossRefGoogle Scholar
  138. Showman, A.P., Kaspi, Y., Flierl, G.R.: Scaling laws for convection and jet speeds in the giant planets. Icarus 211, 1258 (2011)ADSCrossRefGoogle Scholar
  139. Simitev, R., Busse, F.: Patterns of convection in rotating spherical shells. New J. Phys. 5, 97 (2003)ADSMATHCrossRefGoogle Scholar
  140. Simitev, R., Busse, F.: Prandtl-number dependence of convection-driven dynamos in rotating spherical fluid shells. J. Fluid Mech. 532, 365 (2005)ADSMathSciNetMATHCrossRefGoogle Scholar
  141. Simitev, R.D., Busse, F.H.: Bistability and hysteresis of dipolar dynamos generated by turbulent convection in rotating spherical shells. Europhys. Lett. 85, 19001 (2009)ADSCrossRefGoogle Scholar
  142. Soderlund, K.M., Heimpel, M.H., King, E.M., Aurnou, J.M.: Turbulent models of ice giant internal dynamics: dynamos, heat transfer, and zonal flows. Icarus 224, 97 (2013)ADSCrossRefGoogle Scholar
  143. Stanley, S., Bloxham, J.: Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 428, 151 (2004)ADSCrossRefGoogle Scholar
  144. Stanley, S., Zuber, M.T., Bloxham, J.: Using reversed magnetic flux spots to determine a planet’s inner core size. Geophys. Res. Lett. 34, 19205 (2007)ADSCrossRefGoogle Scholar
  145. Stevenson, D.J.: Reducing the non-axisymmetry of a planetary dynamo and an application to Saturn. Geophys. Astrophys. Fluid Dyn. 21, 113 (1982)ADSCrossRefGoogle Scholar
  146. Stevenson, D., Salpeter, E.: The phase diagram and transport properties for hydrogen-helium fluid planets. Astrophys. J. Suppl. S. 35, 221 (1977a)ADSCrossRefGoogle Scholar
  147. Stevenson, D., Salpeter, E.: The dynamics and helium distribution in hydrogen-helium fluid plantes. Astrophys. J. Suppl. S. 35, 221 (1977b)ADSCrossRefGoogle Scholar
  148. Sukoriansky, S., Dikovskaya, N., Galperin, B.: On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64, 3312 (2007)ADSCrossRefGoogle Scholar
  149. Tamblyn, I., Bonev, S.A.: Structure and phase boundaries of compressed liquid hydrogen. Phys. Rev. Lett. 104, 065702 (2010)ADSCrossRefGoogle Scholar
  150. Teed, R.J., Jones, C.A., Hollerbach, R.: On the necessary conditions for bursts of convection within the rapidly rotating cylindrical annulus. Phys. Fluids 24, 066604 (2012)ADSMATHCrossRefGoogle Scholar
  151. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation. Cambridge University Press, Cambridge (2006)MATHCrossRefGoogle Scholar
  152. Vallis, G.K., Maltrud, M.E.: Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 1346 (1993)ADSCrossRefGoogle Scholar
  153. Vasavada, A.R., Showman, A.P.: Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Prog. Phys. 68, 1935 (2005)ADSMathSciNetCrossRefGoogle Scholar
  154. Verhoeven, J., Stellmach, S.: The compressional β-effect: a source of zonal winds in planets? Icarus 237, 143 (2014)ADSCrossRefGoogle Scholar
  155. Weir, S.T., Mitchell, A.C., Nellis, W.J.: Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett. 76, 1860 (1996)Google Scholar
  156. Wicht, J.: Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132, 281 (2002)ADSCrossRefGoogle Scholar
  157. Wicht, J., Christensen, U.R.: Torsional oscillations in dynamo simulations. Geophys. J. Int. 181, 1367 (2010)ADSGoogle Scholar
  158. Williams, G.P.: Planetary circulations: I. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 1399 (1978)Google Scholar
  159. Wilson, H.F., Militzer, B.: Sequestration of noble gases in giant planet interiors. Phys. Rev. Lett. 104, 121101 (2010)ADSCrossRefGoogle Scholar
  160. Yadav, R.K., Gastine, T., Christensen, U.R., Duarte, L.D.V.: Consistent scaling laws in anelastic spherical shell dynamos. Astrophys. J. 774, 6 (2013)ADSCrossRefGoogle Scholar
  161. Zhang, K.: Spiralling columnar convection in rapidly rotating spherical fluid shells. J. Fluid Mech. 236, 535 (1992)ADSMathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Johannes Wicht
    • 1
  • Martin French
    • 2
  • Stephan Stellmach
    • 3
  • Nadine Nettelmann
    • 2
  • Thomas Gastine
    • 4
  • Lucia Duarte
    • 5
  • Ronald Redmer
    • 2
  1. 1.Max Planck Institute for Solar System ResearchGöttingenGermany
  2. 2.Institut für PhysikUniversität RostockRostockGermany
  3. 3.Institut für GeophysikWestfählische Wilhelms-Universität MünsterMünsterGermany
  4. 4.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris-Diderot, UMR 7154 CNRSParisFrance
  5. 5.University of ExeterExeterUK

Personalised recommendations