Advertisement

Magnetic Signatures of Terrestrial Meteorite Impact Craters: A Summary

  • Stuart A. Gilder
  • Jean Pohl
  • Michael Eitel
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)

Abstract

This chapter summarizes the magnetic characteristics of meteorite impact craters. Magnetic mineralogies of both impact melts and target rocks are described, as are the paleomagnetic signals they retain and the magnetic field anomalies they produce. Particular emphasis is given to five craters studied under the umbrella of the Deutsche Forschungsgemeinschaft’s Schwerpunktprogramm, Planetary Magnetism: Manicouagan (Canada), Mistastin (Canada), Ries (Germany), Rochechouart (France), and Vredefort (South Africa), with a synthesis from other craters worldwide. A special problem addressed here is whether shock waves generated during impact influence the geodynamo. We conclude that the seismic energy released during the formation of craters up to 90 km in diameter is insufficient to disturb the dynamo process in a way that would provoke observable changes in field direction or intensity at the Earth’s surface. We show that shock can permanently modify magnetic properties of the target rocks; however, it is difficult to assess the relative influence between thermal and pressure effects on their remanent magnetizations. Distinguishing between shock and thermal overprinting and then unraveling these signals from the original remanence remain important problems that bear on the interpretation of magnetic anomalies in impact craters as well as our understanding of heat production from collision. Paleomagnetic directions from impact melts and suevites are well clustered at each crater, which suggests that building of the structures was completed before the ferrimagnetic minerals cooled through their Curie temperatures.

Notes

Acknowledgements

We thank the many collaborators and friends that contributed to this work: Ian Garrick-Bethell, Jennifer Buz, Laurent Carporzen, Armand Galdeano, Joshua Gilder, Rodger, Craig and Jarred Hart, Gwenaël Hervé, Joseph Hodych, Joe Kirschvink, Stephan Koch, Thomas Kunzmann, Maxime Le Goff, Eduardo Lima, Claude Marchat, Cassandra Marion, Manfriedt Muundjua, Francois Mazeaufroid, Gordon Osinski, Nikolai Petersen, Anne Pommier, John Spray, Paul Sylvester, Lucy Thompson, Claudia Trepmann, Ben Weiss, and Marie-France Yserd. This work was made possible through funding by Deutsche Forschungsgemeinschaft’s Schwerpunktprogramm, Planetary Magnetism grant GI712/6-1. A thorough review by Nicolas Swanson-Hysell is greatly appreciated.

References

  1. Agarwal, A., Kontny, A., Greiling, R.: Relationship among magnetic fabrics, microfractures and shock pressures at an impact crater: a case study from Lockne crater, Sweden. J. Appl. Geophys. 114, 232–243 (2015)ADSGoogle Scholar
  2. Agarwal, A., Kontny, A., Srivastava, D., Greiling, R.: Shock pressure estimates in target basalts of a pristine crater: a case study in the Lonar crater, India. Geol. Soc. Am. Bull. 128, 19–28 (2016)Google Scholar
  3. Antoine, L., Nicolaysen, L., Niccol, S.: Processed and enhanced gravity and magnetic images over the Vredefort structure and their interpretation. Tectonophysics 171, 63–74 (1990)ADSGoogle Scholar
  4. Arif, M., Basavaiah, N., Misra, S., Deenadayalan, K.: Variations in magnetic properties of target basalts with the direction of asteroid impact: Example from Lonar crater, India. Meteorit. Planet. Sci. 47, 1305–1323 (2012)ADSGoogle Scholar
  5. Arkani-Hamed, J., Olson, P.: Giant impacts, core stratification, and failure of the Martian dynamo. J. Geophys. Res. 115(E7), E12021 (2010)ADSGoogle Scholar
  6. Badjukov, D., Bazhenov, M., Nazarov, M.: Paleomagnetism of impactites of the Kara impact crater: preliminary results. In: Lunar and Planetary Science Conference, vol. 20 (1989)Google Scholar
  7. Barr, A., Citron, R.: Scaling of melt production in hypervelocity impacts from high-resolution numerical simulations. Icarus 211, 913–916 (2011)ADSGoogle Scholar
  8. Bezaeva, N., Swanson-Hysell, N.L., Tikoo, S., Badyukov, D., Kars, M., Egli, R., Chareev, D., Fairchild, L., Khakhalova, E., Strauss, B., Lindquist, A.: The effects of 10 to > 160 GPa shock on the magnetic properties of basalt and diabase. Geochem. Geophys. Geosyst. 17, 1–19 (2016)Google Scholar
  9. Bogue, S., Merrill, R.: The character of the field during geomagnetic reversals. Ann. Rev. Earth Planet. Sci. 20, 181 (1992)ADSGoogle Scholar
  10. Burek, P., Wänke, H.: Impacts and glacio-eustasy, plate-tectonic episodes, geomagnetic reversals: a concept to facilitate detection of impact events. Phys. Earth Planet. Int. 50(2), 183–194 (1988)ADSGoogle Scholar
  11. Burns, C.: The Australasian microtektite layer: implications concerning its source area and its relationship to the Brunhes/Matuyama geomagnetic reversal. PhD thesis, University of Delaware (1990)Google Scholar
  12. Bylund, G.: Paleomagnetism of a probable meteoritic impact, the Dellen structure. Geologiska Föreningens i Stockholm Förhandlinger 96, 275–278 (1974)Google Scholar
  13. Carporzen, L.: Magnétisme des cratères d’impact de météorite à Vredefort (Afrique du Sud) et Rochechouart (France). Thesis, Université Paris VII - Denis Diderot (2006)Google Scholar
  14. Carporzen, L., Gilder, S.: Evidence for coeval Late Triassic terrestrial impacts from the Rochechouart (France) meteorite crater. Geophys. Res. Lett. 33, L19308, 1–6 (2006)Google Scholar
  15. Carporzen, L., Gilder, S.: Strain memory of the Verwey transition. J. Geophys. Res. 115(B05103), 17 (2010)Google Scholar
  16. Carporzen, L., Gilder, S., Hart, R.: Paleomagnetism of the Vredefort meteorite crater and implications for craters on Mars. Nature 435, 198–201 (2005)ADSGoogle Scholar
  17. Carporzen, L., Gilder, S., Hart, R.: Origin and implications of the Verwey transitions in the basement rocks of the Vredefort meteorite crater, South Africa. Earth Planet. Sci. Lett. 251, 305–317 (2006)ADSGoogle Scholar
  18. Carporzen, L., Weiss, B., Gilder, S., Pommier, A.: Lightning remagnetization of the Vredefort impact crater: no evidence for impact-generated magnetic fields. J. Geophys. Res. 117(E01007) (2012)Google Scholar
  19. Cisowski, S., Fuller, M.: The effect of shock on the magnetism of terrestrial rocks. J. Geophys. Res. 83, 3441–3458 (1978)ADSGoogle Scholar
  20. Cloete, M., Hart, R., Schmidt, H., Drury, M., Demanet, C., Sankar, K.: Characterization of magnetite particles in shocked quartz by means of electron- and magnetic force microscopy: Vredefort, South Africa. Contrib. Miner. Petrol. 137, 232–245 (1999)ADSGoogle Scholar
  21. Coles, R., Clark, J.: Lake St. Martin impact structure, Manitoba, Canada: magnetic anomalies and magnetizations. J. Geophys. Res. 87, 7087–7095 (1982)Google Scholar
  22. Corner, B., Durrheim, R., Nicolaysen, L.: Relationships between the Vredefort structure and the Witwatersrand basin within the tectonic framework of the Kaapvaal craton as interpreted from regional gravity and aeromagnetic data. Tectonophysics 171, 49–61 (1990)ADSGoogle Scholar
  23. Currie, K., Larochelle, A.: A paleomagnetic study of volcanic rocks from Mistastin Lake, Labrador. Earth Planet. Sci. Lett. 6, 309–315 (1969)ADSGoogle Scholar
  24. Day, R., Fuller, M., Schmidt, V.: Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Int. 13(4), 260–267 (1977)ADSGoogle Scholar
  25. DeMenocal, P., Ruddiman, W., Kent, D.: Depth of post-depositional remanence acquisition in deep-sea sediments: a case study of the Brunhes-Matuyama reversal and oxygen isotopic stage 19.1. Earth Planet. Sci. Lett. 99, 1–13 (1990)ADSGoogle Scholar
  26. Dulin, S., Elmore, R.: Paleomagnetism of the Weaubleau structure, southwestern Missouri. In: Evans, K., Horton, J., King, J., Morrow, D. (eds.) The Sedimentary Record of Meteorite Impacts, volume special paper 437, pp. 55–64. Geological Society of America, Boulder (2008)Google Scholar
  27. Dunlop, D.: Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 2. Application to data for rocks, sediments, and soils. J. Geophys. Res. 107(B3), EPM 5-1 - EPM 5-15 (2002)Google Scholar
  28. Dunlop, D., Ozima, M., Kinoshita, H.: Piezomagnetization of single-domain grains: a graphical approach. J. Geomagnet. Geoelectr. 21(2), 513–518 (1969)ADSGoogle Scholar
  29. Durrani, S., Khan, H.: Ivory coast microtektites: fission track age and geomagnetic reversals. Nature 232(5309), 320–323 (1971)ADSGoogle Scholar
  30. Eitel, M., Gilder, S., Kunzmann, T., Pohl, J.: Rochechouart impact crater melt breccias record no geomagnetic field reversal. Earth Planet. Sci. Lett. 387, 97–106 (2014)ADSGoogle Scholar
  31. Eitel, M., Gilder, S., Spray, J., Thompson, L., Pohl, J.: A paleomagnetic and rock magnetic study of the Manicouagan impact structure: implications for crater formation and geodynamo effects. J. Geophys. Res. 121, 1–19 (2016)Google Scholar
  32. Elbra, T., Kontny, A., Pesonen, L., Schleifer, N., Schell, C.: Petrophysical and paleomagnetic data of drill cores from the Bosumtwi impact structure, Ghana. Meteorit. Planet. Sci. 42, 829–838 (2007)ADSGoogle Scholar
  33. El Goresy, A.: Electron microprobe analysis and ore microscopic study of magnetic spherules and grains collected from the Greenland ice. Contrib. Miner. Petrol. 17(4), 331–346 (1968)ADSGoogle Scholar
  34. El Goresy, A., Fechtig, H., Ottemann, T.: The opaque minerals in impactite glasses. In: French, B., Short, N. (eds.) Shock Metamorphism of Natural Materials, pp. 531–554. Mono Book Corporation, Baltimore (1968)Google Scholar
  35. Elming, S., Bylund, G.: Paleomagnetism of the Siljan impact structure, central Sweden. Geophys. J. Int. 105, 757–770 (1991)ADSGoogle Scholar
  36. Fairchild, L., Swanson-Hysell, N., Tikoo, S.: A matter of minutes: breccia dike paleomagnetism provides evidence for rapid crater modification. Geology 44(9), 723–726 (2016)ADSGoogle Scholar
  37. Fregerslev, S., Carstens, H.: FeNi metal in impact melt rocks of Lake Lappäjarvi, Finland. Contrib. Miner. Petrol. 55(3), 255–263 (1976)ADSGoogle Scholar
  38. French, B.: Traces of Catastrophe: A Handbook of Shock-Metamorphic Effects in Terrestrial Meteorite Impact Structures, LPI Contribution, vol. 954, p. 120. Lunar and Planetary Institute, Houston, TX (1998)Google Scholar
  39. Gattacceca, J., Lamali, A., Rochette, P., Boustie, M., Berthe, L.: The effects of explosive-driven shocks on the natural remanent magnetization and the magnetic properties of rocks. Phys. Earth Planet. Int. 162(1–2), 85–98 (2007)ADSGoogle Scholar
  40. Gattacceca, J., Berthe, L., Boustie, M., Vadeboin, F., Rochette, P., De Resseguier, T.: On the efficiency of shock magnetization processes. Phys. Earth Planet. Int. 166, 1–10 (2008)ADSGoogle Scholar
  41. Gattacceca, J., Boustie, M., Lima, E., Weiss, B., Lamali, A., De Resseguier, T., Cuq-Lelandais, J.: Unraveling the simultaneous shock magnetization of rocks. Phys. Earth Planet. Int. 182, 42–49 (2010)Google Scholar
  42. Gilder, S., Le Goff, M., Chervin, J.: Static stress demagnetization of single and multidomain magnetite with implications for meteorite impacts. High Pressure Res. 26, 539–547 (2006)ADSGoogle Scholar
  43. Giroux, L., Benn, K.: Emplacement of the Whistle dike, the Whistle embayment and hosted sulfides, Sudbury impact structure, based on anisotropies of magnetic susceptibility and magnetic remanence. Econ. Geol. 100, 1207–1227 (2005)Google Scholar
  44. Glass, B., Heezen, B.: Tektites and geomagnetic reversals. Nature 214(5086), 372 (1967)ADSGoogle Scholar
  45. Glass, B., Zwart, P.: The Ivory Coast microtektite strewnfield: new data. Earth Planet. Sci. Lett. 43(2), 336–342 (1979)ADSGoogle Scholar
  46. Glass, B., Kent, D., Schneider, D., Tauxe, L.: Ivory Coast microtektite strewn field: description and relation to the Jaramillo geomagnetic event. Earth Planet. Sci. Lett. 107, 182–196 (1991)ADSGoogle Scholar
  47. Glass, B., Lee, P., Osinski, G.: Airborne geomagnetic investigations at the Haughton impact structure, Devon Island, Nunavut, Canada: New results. In: Lunar and Planetary Science Conference, vol. 33, p. 2008 (2002)ADSGoogle Scholar
  48. Glass, B., Domville, S., Lee, P.: Further geophysical studies of the Haughton impact structure. In: Lunar and Planetary Science Conference, vol. 36, p. 2398 (2005)ADSGoogle Scholar
  49. Halls, H.: The Slate Islands meteorite impact site: a study of shock remanent magnetization. Geophys. J. R. Astron. Soc. 59, 553–559 (1979)ADSGoogle Scholar
  50. Hamano, Y.: Experiments on the stress sensitivity of natural remanent magnetization. J. Geomagn. Geoelectr. 35, 155–172 (1983)ADSGoogle Scholar
  51. Hargraves, R.: Paleomagnetic evidence relevant to the origin of the Vredefort ring. J. Geol. 78, 253–263 (1970)ADSGoogle Scholar
  52. Hargraves, R., Perkins, W.: Investigations of the effect of shock on natural remanent magnetism. J. Geophys. Res. 74, 2576–2589 (1969)ADSGoogle Scholar
  53. Hart, R., Andreoli, M., Reimold, W., Tredoux, M.: Aspects of the dynamic and thermal metamorphic history of the Vredefort cryptoexplosion structure: implications for its origin. Tectonophysics 192(3–4), 313–331 (1991)ADSGoogle Scholar
  54. Hart, R., Hargraves, R., Andreoli, M., Tredoux, M., Doucoure, C.: Magnetic anomaly near the center of the Vredefort structure: implications for impact-related magnetic signatures. Geology 23, 277–280 (1995)ADSGoogle Scholar
  55. Hartl, P., Tauxe, L.: A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments. Earth Planet. Sci. Lett. 138, 121–135 (1996)ADSGoogle Scholar
  56. Hawke, P.: Geophysical Investigation of the Wolfe Creek Meteorite Crater. Geological Survey of Western Australia, Perth (2003)Google Scholar
  57. Hawke, P.: The geophysical signatures and exploration potential of Australia’s meteorite impact structures. Thesis, University of Western Australia (2004)Google Scholar
  58. Henkel, H.: Geophysical aspects of meteorite impact craters in eroded shield environment, with special emphasis on electric resistivity. Tectonophysics 216, 63–89 (1992)ADSGoogle Scholar
  59. Hervé, G., Gilder, S., Marion, C., Osinski, G., Pohl, J., Petersen, N., Sylvester, P.: Paleomagnetic and rock magnetic study of the Mistastin Lake impact structure (Labrador, Canada): implications for geomagnetic perturbations and shock effects. Earth Planet. Sci. Lett. 417, 151–163 (2015)ADSGoogle Scholar
  60. Hirt, A., Lowrie, W., Clendenen, W., Kligfield, R.: Correlation of strain and the anisotropy of magnetic susceptibility in the Onaping formation: evidence for a near-circular origin of the Sudbury Basin. Tectonophysics 225, 231–254 (1993)ADSGoogle Scholar
  61. Hood, L., Richmond, N., Pierazzo, E., Rochette, P.: Distribution of crustal magnetic fields on Mars: shock effects of basin-forming impacts. Geophys. Res. Lett. 30, 1281 (2003)ADSGoogle Scholar
  62. Jackson, G.: Paleomagnetic study and magnetic modeling of the Vredefort Dome. PhD dissertation, University of Witwatersrand (1982)Google Scholar
  63. Jackson, M., Van der Voo, R.: A paleomagnetic estimate of the age and thermal history of the Kentland, Indiana cryptoexplosion structure. J. Geol. 94, 713–723 (1986)ADSGoogle Scholar
  64. Jovane, L., Yokoyama, E., Seda, T., Burmester, R., Trindade, R., Housen, B.: Rock magnetism of hematitic “bombs” from the Araguainha impact structure, Brazil. Geochem. Geophys. Geosyst. 12, 14 p. (2011)Google Scholar
  65. Koch, S., Gilder, S., Pohl, J., Trepmann, C.: Geomagnetic field intensity recorded after impact in the Ries meteorite crater, Germany. Geophys. J. Int. 189, 383–390 (2012)ADSGoogle Scholar
  66. Kontny, A., Elbra, T., Just, J., Pesonen, L., Schleicher, A., Zolk, J.: Petrography and shock-related remagnetization of pyrrhotite in drill cores from the Bosumtwi impact crater drilling project, Ghana. Meteorit. Planet. Sci. 42, 811–827 (2007)ADSGoogle Scholar
  67. Kukkonen, I., Kivekäs, L., Paananen, M.: Physical properties of kärnäite (impact melt), suevite and impact breccia in the Lappajärvi meteorite crater, Finland. Tectonophysics 216, 111–122 (1992)ADSGoogle Scholar
  68. Larochelle, A., Currie, K.: Paleomagnetic study of igneous rocks from the Manicouagan structure, Quebec. J. Geophys. Res. 72, 4163–4169 (1967)ADSGoogle Scholar
  69. Leonhardt, R., Fabian, K.: Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: iterative Bayesian inversion and independent verification. Earth Planet. Sci. Lett. 253(1–2), 172–195 (2007)ADSGoogle Scholar
  70. Lillis, R., Robbins, S., Manga, M., Halekas, J., Frey, H.: Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. Planets 118, 1–24 (2013)Google Scholar
  71. Loper, D., McCartney, K.: On impacts as a cause of geomagnetic field reversals or flood basalts. In: Geological Society of America Special Papers, vol. 247, pp. 19–26. Geological Society of America, Boulder (1990)Google Scholar
  72. Louzada, K., Weiss, B., Maloof, A., Stewart, S., Swanson-Hysell, N., Soule, S.: Paleomagnetism of Lonar impact crater, India. Earth Planet. Sci. Lett. 275, 308–318 (2008)ADSGoogle Scholar
  73. Louzada, K., Stewart, S., Weiss, B., Gattacceca, J., Bezaeva, N.: Shock and static pressure demagnetization of pyrrhotite and implications for the Martian crust. Earth Planet. Sci. Lett. 290(1–2), 90–101 (2010)ADSGoogle Scholar
  74. Macdonald, F., Wingate, M., Mitchell, K.: Geology and age of the Glikson impact structure, Western Australia. Aust. J. Earth Sci. 52, 641–651 (2005)ADSGoogle Scholar
  75. Mang, C., Kontny, A., Harries, D., Langenhorst, F., Hecht, L.: Iron deficiency in pyrrhotite of suevites from the Chespeake Bay impact crater, USA. A consequence of shock metamorphism? Meteorit. Planet. Sci. 47, 277–295 (2012)Google Scholar
  76. Melero-Asensio, I., Martín-Hernández, F., Ormö, J.: A rock magnetic profile through the ejecta flap of the Lockne impact crater (central Sweden) and implications for the impact excavation process. J. Appl. Geophys. 112, 91–105 (2015)ADSGoogle Scholar
  77. Misra, S., Arif, M., Basavaiah, N., Srivastava, P., Dube, A.: Structural and anisotropy of magnetic susceptibility (AMS) evidence for oblique impact on terrestrial basalt flows: Lonar crater, India. Geol. Soc. Am. Bull. 122, 563–574 (2010)ADSGoogle Scholar
  78. Muller, R., Morris, D.: Geomagnetic reversals from impacts on the Earth. Geophys. Res. Lett. 13(11), 1177–1180 (1986)ADSGoogle Scholar
  79. Muundjua, M., Hart, R., Gilder, S., Carporzen, L., Galdeano, A.: Magnetic imaging of the Vredefort impact crater, South Africa. Earth Planet. Sci. Lett. 261, 456–468 (2007)ADSGoogle Scholar
  80. Nakamura, N., Iyeda, Y.: Magnetic properties and paleointensity of pseudotachylites from the Sudbury structure, Canada: petrologic control. Tectonophysics 402, 141–152 (2005)Google Scholar
  81. Nishioka, I., Funaki, M.: Irreversible changes in anisotropy of magnetic susceptibility. Study of basalts from lunar crater and experimentally impacted basaltic andesite. In: Meteoritics & Planetary Science, vol. 43, p. A116. Meteoritical Society, Chantilly (2008)Google Scholar
  82. Öhman, T., Lorenz, K., Pesonen, L., Badjukov, D., Raitala, J., Elo, S., Ojala, K., Nishioka, I., Funaki, M.: Kara impact structure, Russia: Recent developments in petrophysical and geochemical studies. In: Large Meteorite Impacts, p. 4071 (2003)Google Scholar
  83. Osinski, G., Ferriere, L.: Shatter cones: (mis)understood? Sci. Adv. 2(8), e1600616 (2016)ADSGoogle Scholar
  84. Pal, P., Creer, K.: Geomagnetic reversal spurts and episodes of extraterrestrial catastrophism. Nature 320(6058), 148–150 (1986)ADSGoogle Scholar
  85. Pesonen, L., Marcos, N., Pipping, F.: Palaeomagnetism of the Lappajärvi impact structure, western Finland. Tectonophysics 216, 123–142 (1992)ADSGoogle Scholar
  86. Pierazzo, E., Melosh, H.: Melt production in oblique impact. Icarus 145, 252–261 (2000)ADSGoogle Scholar
  87. Pierazzo, E., Vickery, A., Melosh, H.: A reevaluation of impact melt production. Icarus 127, 408–423 (1997)ADSGoogle Scholar
  88. Pilkington, M., Grieve, R.: The geophysical signature of terrestrial impact craters. Rev. Geophys. 30, 161–181 (1992)ADSGoogle Scholar
  89. Pilkington, M., Hildebrand, A.: Three-dimensional magnetic imaging of the Chicxulub crater. J. Geophys. Res. 105, 23479–23491 (2000)ADSGoogle Scholar
  90. Pilkington, M., Ames, D., Hildebrand, A.: Magnetic mineralogy of the Yaxcopoil-1 core, Chicxulub. Meteorit. Planet. Sci. 39, 831–841 (2004)ADSGoogle Scholar
  91. Plado, J.: The Bosumtwi meteorite impact structure, Ghana: a magnetic model. Meteorit. Planet. Sci. 35, 723–732 (2000)ADSGoogle Scholar
  92. Plado, J., Pesonen, L., Puura, V.: Effect of erosion on gravity and magnetic signatures of complex impact structures: geophysical modeling and applications. In: Dressler, B., Sharpton, V. (eds.) Large Meteorite Impacts and Planetary Evolution II, volume special paper 339, pp. 229–239. Geological Society of America, Boulder (1999)Google Scholar
  93. Pohl, J.: Die Magnetisierung der Suevite des Rieses. Neues Jahrb. Miner. Monatsh. 1965, 268–276 (1965)Google Scholar
  94. Pohl, J.: Paläomagnetische und gesteinsmagnetische untersuchungen an den kernen der forschungsbohrung Nördlingen 1973. Geol. Bavarica 75, 329–348 (1977)Google Scholar
  95. Pohl, J., Soffel, H.: Paleomagnetic age determination of the Rochechouart impact structure (France). Z. Geophys. 37, 857–866 (1971)Google Scholar
  96. Pohl, J., Bleil, U., Hornemann, U.: Shock magnetization and demagnetization of basalt by transient stress up to 10 kbar. J. Geophys. 41, 23–41 (1975)Google Scholar
  97. Pohl, J., Stoffler, D., Gall, H., Ernston, K.: Impact and explosion cratering. In: Roddy, D., Pepin, R., Merrill, R. (eds.) Impact and Explosion Cratering, pp. 343–404. Pergamon Press, Oxford (1977)Google Scholar
  98. Pohl, J., Eckstaller, A., Robertson, P., Hajnal, Z.: First results of a multidisciplinary analysis of the Haughton Dome impact structure, Devon Island, Canada. In: Lunar and Planetary Science Conference, vol. 16, pp. 669–670 (1985)ADSGoogle Scholar
  99. Pohl, J., Eckstaller, A., Robertson, P.: Gravity and magnetic investigations in the Haughton impact structure, Devon Island, Canada. Meteoritics 23, 235–238 (1988)ADSGoogle Scholar
  100. Quesnel, Y., Gattacceca, J., Osinski, G., Rochette, P.: Origin of the central magnetic anomaly at the Haughton impact structure, Canada. Earth Planet. Sci. Lett. 367, 116–122 (2013)ADSGoogle Scholar
  101. Quintana, S., Crawford, D., Schultz, P.: Analysis of impact melt and vapor production in CTH for planetary applications. Proc. Eng. 103, 499–506 (2015)Google Scholar
  102. Raiskila, S., Salminen, J., Elbra, T., Pesonen, L.: Rock magnetic and paleomagnetic study of the Keurusselkä impact structure, central Finland. Meteorit. Planet. Sci. 46(11), 1670–1687 (2011)ADSGoogle Scholar
  103. Rao, G., Bhalla, M.: Lonar Lake: palaeomagnetic evidence of shock origin. Geophys. J. Int. 77(3), 847–862 (1984)ADSGoogle Scholar
  104. Rebolledo-Vieyra, M., Urrutia-Fucugauchi, J.: Magnetostratigraphy of the impact breccias and post-impact carbonates from borehole Yaxcopoil-1, Chicxulub impact crater, Yucatan, Mexico. Meteorit. Planet. Sci. 39, 821–829 (2004)ADSGoogle Scholar
  105. Rebolledo-Vieyra, M., Urrutia-Fucugauchi, J., López-Loera, H.: Aeromagnetic anomalies and structural model of the Chicxulub multiring impact crater, Yucatan, Mexico. Rev. Mex. Cienc. Geol. 27, 185–195 (2010)Google Scholar
  106. Reznik, B., Kontny, A., Fritz, J., Gerhards, U.: Shock-induced deformation phenomena in magnetite and their consequences on magnetic properties. Geochem. Geophys. Geosyst. 17, 393–396 (2016)Google Scholar
  107. Rice, A., Creer, K.: Geomagnetic polarity reversals: can meteor impacts cause spall disruption into the outer core. In: Geomagnetism and Palaeomagnetism, pp. 227–230. Springer Science, Berlin (1989)Google Scholar
  108. Roberts, J., Lillis, R., Manga, M.: Giant impacts on early Mars and the cessation of the Martian dynamo. J. Geophys. Res. 114(E4), E04009 (2009)ADSGoogle Scholar
  109. Salminen, J., Pesonen, L., Reimold, W., Donadini, F., Gibson, H.: Paleomagnetic and rock magnetic study of the Vredefort impact structure and the Johanneburg Dome, Kaapvaal craton, South Africa - implications for the apparent polar wander path of the Kaapvaal craton during the Mesoproterozoic. Precambrian Res. 168, 167–184 (2009)Google Scholar
  110. Salminen, J., Pesonen, L., Lahti, K., Kannus, K.: Lightning-induced remanent magnetization - the Vredefort impact structure, South Africa. Geophys. J. Int. 195, 117–129 (2013)ADSGoogle Scholar
  111. Schneider, D., Kent, D.: Ivory Coast microtektites and geomagnetic reversals. Geophys. Res. Lett. 17, 163–166 (1990)ADSGoogle Scholar
  112. Schneider, D., Kent, D., Mello, A.: A detailed chronology of the Australasian impact event, the Brunhes-Matuyama geomagnetic polarity reversal, and global climate change. Earth Planet. Sci. Lett. 111, 395–405 (1992)ADSGoogle Scholar
  113. Schwarzschild, B.: Do asteroid impacts trigger geomagnetic reversals? Phys. Today 40(2), 17 (1987)ADSMathSciNetGoogle Scholar
  114. Scott, R., Spray, J.: Magnetic fabric constraints on friction melt flow regimes and ore emplacement direction within the South Range breccia belt, Sudbury impact structure. Tectonophysics 307, 163–189 (1999)ADSGoogle Scholar
  115. Scott, R., Pilkington, M., Tanczyk, E.: Magnetic investigations of the West Hawk, Deep Bay and Clearwater impact structures, Canada. Meteorit. Planet. Sci. 32, 293–308 (1997)ADSGoogle Scholar
  116. Shoemaker, E.: Why study impact craters? In: Roddy, D., Pepin, R., Merrill, R. (eds.) Impact and Explosion Cratering, pp. 1–10. Pergamon Press, New York, NY (1977)Google Scholar
  117. Shoemaker, E., Shoemaker, C.: Glikson, a probable impact structure, western Australia. In: Lunar and Planetary Science XXVIII, p. 1669 (1997)Google Scholar
  118. Spray, J., Thompson, L.: Constraints on central uplift structure from the Manicouagan impact crater. Meteorit. Planet. Sci. 43(12), 2049–2057 (2008)ADSGoogle Scholar
  119. Spray, J., Thompson, L., Biren, M., O’Connell-Cooper, C.: The Manicouagan impact structure as a terrestrial analogue site for lunar and Martian planetary science. Planet. Space Sci. 58(4), 538–551 (2010)ADSGoogle Scholar
  120. Steiner, M.: Implications of magneto-mineralogic characteristics of the Manson and Chicxulub impact craters. In: Ryder, G., Fastovski, D., Gartner, S. (eds.) The Cretaceous-Tertiary Event and Other Catastrophes in Earth History, volume special paper 307, pp. 89–104. Geological Society of America, Boulder (1996)Google Scholar
  121. Tikoo, S., Gattacceca, J., Swanson-Hysell, N., Weiss, B., Suavet, C., Cournède, C.: Preservation and detectability of shock-induced magnetization. J. Geophys. Res. 120(9), 1461–1475 (2015)Google Scholar
  122. Ugalde, H., Artemieva, N., Milkereit, B.: Magnetization on impact structures - constraints from numerical modelling and petrophysics. In: Kenkmann, T., Hörz, F., Deutsch, A. (eds.) Large Meteorite Impacts III, volume special paper 384, pp. 24–42. Geological Society of America, Boulder (2005)Google Scholar
  123. Urrutia-Fucugauchi, J., Marin, L., Sharpton, V.: Reverse polarity magnetized melt rocks from the Cretaceous/Tertiary Chicxulub structure, Yucatan peninsula, Mexico. Tectonophysics 237, 105–112 (1994)ADSGoogle Scholar
  124. Urrutia-Fucugauchi, J., Soler-Arechalde, A., Rebolledo-Vieyra, M., Vera-Sanchez, P.: Paleomagnetic and rock magnetic study of the Yaxcopoil-1 impact breccia sequence, Chicxulub impact crater (Mexico). Meteorit. Planet. Sci. 39, 843–856 (2004)ADSGoogle Scholar
  125. Valeev, K., Absalyamov, S.: Remanent magnetization of magnetite under high pressures and shear loads. Izv. Phys. Solid Earth 36, 241–245 (2000)Google Scholar
  126. Valet, J., Fournier, A., Courtillot, V., Herrero-Bervera, E.: Dynamical similarity of geomagnetic field reversals. Nature 490(7418), 89–93 (2012)ADSGoogle Scholar
  127. Velasco-Villareal, M., Urrutia-Fucugauchi, J., Rebolledo-Vieyra, M., Perez-Cruz, L.: Paleomagnetism of impact breccias from the Chicxulub crater: implications for ejecta emplacement and hydrothermal processes. Phys. Earth Planet. Inter. 186, 154–171 (2011)ADSGoogle Scholar
  128. Wei, Q., Gilder, S., Maier, B.: Pressure dependence on the remanent magnetization of Fe-Ni alloys and Ni metal. Phys. Rev. B 90(14), 144425-1 - 144425-8 (2014)Google Scholar
  129. Won, I., Kuo, J.: Oscillation of the Earth’s inner core and its relation to the generation of geomagnetic field. J. Geophys. Res. 78(5), 905–911 (1973)ADSGoogle Scholar
  130. Yokoyama, E., Brandt, D., Tohver, E., Trindade, R.: Palaeomagnetism of the Permo-Triassic Araguainha impact structure (central Brazil) and implications for Pangean reconstructions. Geophys. J. Int. 198, 154–163 (2014)ADSGoogle Scholar
  131. Yokoyama, E., Nédélec, A., Baratoux, D., Trindade, R., Fabre, S., Berger, G.: Hydrothermal alteration in basalts from Vargeao impact structure, south Brazil, and implications for recognition of impact-induced hydrothermalism on Mars. Icarus 252, 347–365 (2015)ADSGoogle Scholar
  132. Zylberman, W., Gattacceca, J., Quesnel, Y., Rochette, P., Osinski, G., Demory, F.: Paleomagnetism in complex impact structures: examples from the Haughton and West Clearwater impacts, Canada. LPI Contributions 1861, 1101 (2015)ADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Earth and Environmental SciencesLudwig Maximilians UniversitätMünchenGermany

Personalised recommendations