Mars’ Crustal Magnetic Field

  • Achim Morschhauser
  • Foteini Vervelidou
  • Paul Thomas
  • Matthias Grott
  • Vincent Lesur
  • Stuart A. Gilder
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)


Fossil magnetic fields within the Martian crust record the history of the planet’s ancient dynamo and hence retain valuable information on the thermal and chemical evolution of Mars. In order to decode this information, we have derived a spherical harmonic model of the crustal magnetic field. This model was derived from satellite vector magnetometer data, and allows to study the crustal magnetic field at high resolution down to surface altitudes. Based on this model, we calculate the required magnetization of the Martian crust, and discuss how the resulting strong magnetization might be explained. Further, we study the magnetization of impact craters and volcanoes, and conclude that the Martian core dynamo shut down most probably in the Noachian, at about 4.1 Gyr ago. Finally, we address the derivation of magnetic paleopole positions. In a first step, we use synthetic tests in order to outline under which constraints paleopole positions can be determined from satellite measurements. In a second step, we use these insights to present a scheme to estimate paleopole positions including an assessment of their underlying uncertainties.



This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the priority program “Planetary Magnetism” (SPP 1488) under grants LE2477/3-1, LE2477/3-2 (F.V. and V.L.), GR3751/1-1 (A.M. and M.G.), GR3751/1-2 (A.M., M.G., and P.T.), and GI712/6-1 (S.G.).


  1. Acuña, M.H., Connerney, J.E.P., Ness, N.F., Lin, R.P., Mitchell, D., Carlson, C.W., McFadden, J., Anderson, K.A., Reme, H., Mazelle, C., Vignes, D., Wasilewski, P., Cloutier, P.: Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284(5415), 790–793 (1999). doi:10.1126/science.284.5415.790ADSCrossRefGoogle Scholar
  2. Albee, A.L., Palluconi, F.D., Arvidson, R.E.: Mars global surveyor mission: overview and status. Science 279(5357), 1671–1672 (1998). doi:10.1126/science.279.5357.1671. Scholar
  3. Albee, A.L., Arvidson, R.E., Palluconi, F., Thorpe, T.: Overview of the Mars Global Surveyor mission. J. Geophys. Res. 106, 23291–23316 (2001). doi:10.1029/2000JE001306ADSCrossRefGoogle Scholar
  4. Arkani-Hamed, J.: A coherent model of the crustal magnetic field of Mars. J. Geophys. Res. 109, E09005 (2004). doi:10.1029/2004JE002265. Scholar
  5. Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Elsevier—Academic, New York (2013). ISBN:978-0-12-385048-5CrossRefGoogle Scholar
  6. Blakely, R.J.: Potential Theory in Gravity & Magnetic Applications. Cambridge University Press, Cambridge (1995). ISBN:0-521-57547-8CrossRefGoogle Scholar
  7. Boutin, D., Arkani-Hamed, J.: Pole wandering of Mars: evidence from paleomagnetic poles. Icarus 181(1), 13–25 (2006). doi:10.1016/j.icarus.2005.10.025. Scholar
  8. Butler, R.F.: Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, Hoboken (1992). ISBN:978-0865420700Google Scholar
  9. Chassefière, E., Leblanc, F.: Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci. 52(11), 1039–1058 (2004). doi:10.1016/j.pss.2004.07.002. Scholar
  10. Christensen, U.R., Holzwarth, V., Reiners, A.: Energy flux determines magnetic field strength of planets and stars. Nature 457(7226), 167–169 (2009). doi:10.1038/nature07626. Scholar
  11. Connerney, J.E.P., Acuna, M.H., Wasilewski, P.J., Ness, N.F., Reme, H., Mazelle, C., Vignes, D., Lin, R.P., Mitchell, D.L., Cloutier, P.A.: Magnetic lineations in the ancient crust of Mars. Science 284, 794–798 (1999). doi:10.1126/science.284.5415.794ADSCrossRefGoogle Scholar
  12. Connerney, J.E.P., Acuña, M.H., Wasilewski, P.J., Kletetschka, G., Ness, N.F., Rème, H., Lin, R.P., Mitchell, D.L.A.: The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28, 4015–4018 (2001). doi:10.1029/2001GL013619ADSCrossRefGoogle Scholar
  13. Dolginov, S.S.: On the magnetic field of Mars - Mars 5 evidence. Geophys. Res. Lett. 5, 93–95 (1978). doi:10.1029/GL005i001p00093ADSCrossRefGoogle Scholar
  14. Dunlop, D.J.: Stepwise and continuous low-temperature demagnetization. Geophys. Res. Lett. 30(11) (2003). doi:10.1029/2003gl017268.
  15. Dunlop, D.J., Arkani-Hamed, J.: Magnetic minerals in the Martian crust. J. Geophys. Res. 110(E12), E12S04 (2005). doi:10.1029/2005JE002404.
  16. Farquharson, C.G., Oldenburg, D.W.: Non-linear inversion using general measures of data misfit and model structure. Geophys. J. Int. 134, 213–227 (1998). doi:10.1046/j.1365-246X.1998.00555.xADSCrossRefGoogle Scholar
  17. Frawley, J.J., Taylor, P.T.: Paleo-pole positions from martian magnetic anomaly data. Icarus 172(2), 316–327 (2004). doi:10.1016/j.icarus.2004.07.025. Scholar
  18. Frey, H.: Ages of very large impact basins on Mars: implications for the late heavy bombardment in the inner solar system. Geophys. Res. Lett. 35, L13203 (2008). doi:10.1029/2008GL033515ADSCrossRefGoogle Scholar
  19. Gerhards, C.: Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling. Int. J. Geomath. 1(2), 205–256 (2011). doi:10.1007/s13137-010-0011-9. Scholar
  20. Gilder, S.A., Le Goff, M.: Systematic pressure enhancement of titanomagnetite magnetization. Geophys. Res. Lett. 35(10) (2008). doi:10.1029/2008gl033325.
  21. Gubbins, D., Ivers, D., Masterton, S.M., Winch, D.E.: Analysis of lithospheric magnetization in vector spherical harmonics. Geophys. J. Int. 187, 99–117 (2011). doi:10.1111/j.1365-246X.2011.05153.xADSCrossRefGoogle Scholar
  22. Hartmann, W.K., Malin, M., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P., Veverka, J.: Evidence for recent volcanism on Mars from crater counts. Nature 397(6720), 586–589 (1999). doi:10.1038/17545. Scholar
  23. Hood, L.L., Zakharian, L.L.H.: Mapping and modeling of magnetic anomalies in the northern polar region of Mars. J. Geophys. Res. 106(E7), 14601–14619 (2001). doi:10.1029/2000JE001304ADSCrossRefGoogle Scholar
  24. Hood, L.L., Richmond, N., Harrison, K., Lillis, R.: East-west trending magnetic anomalies in the Southern Hemisphere of Mars: modeling analysis and interpretation. Icarus 191(1), 113–131 (2007). doi:10.1016/j.icarus.2007.04.025. Scholar
  25. Hood, L.L., Harrison, K.P., Langlais, B., Lillis, R.J., Poulet, F., Williams, D.A.: Magnetic anomalies near Apollinaris Patera and the Medusae Fossae formation in Lucus Planum, Mars. Icarus 208, 118–131 (2010). doi:10.1016/j.icarus.2010.01.009ADSCrossRefGoogle Scholar
  26. Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)MathSciNetCrossRefGoogle Scholar
  27. Jakosky, B.M., Phillips, R.J.: Mars’ volatile and climate history. Nature 412, 237–244 (2001)ADSCrossRefGoogle Scholar
  28. Johnson, C.L., Phillips, R.J.: Evolution of the Tharsis region of Mars: insights from magnetic field observations. Earth Planet. Sci. Lett. 230(3–4), 241–254 (2005). doi:10.1016/j.epsl.2004.10.038. Scholar
  29. Laneuville, M., Wieczorek, M.A., Breuer, D., Tosi, N.: Asymmetric thermal evolution of the moon. J. Geophys. Res.-Space 118(7), 1435–1452 (2013). doi:10.1002/jgre.20103. Scholar
  30. Langlais, B., Purucker, M.: A polar magnetic paleopole associated with Apollinaris Patera, Mars. Planet. Space Sci. 55, 270–279 (2007). doi:10.1016/j.pss.2006.03.008ADSCrossRefGoogle Scholar
  31. Langlais, B., Purucker, M.E., Mandea, M.: Crustal magnetic field of Mars. J. Geophys. Res. 109(E2), E02008 (2004). doi:10.1029/2003JE002048. Scholar
  32. Lawson, C.L., Hanson, R.J.: Solving least squares problems. In: Applied Mathematics. Society for Industrial & Applied Mathematics (SIAM), Jan 1995. ISBN:978-0-89871-356-5. doi:10.1137/1.9781611971217Google Scholar
  33. Lesur, V.: Introducing localized constraints in global geomagnetic field modelling. Earth Plan. Space 58(4), 477–483 (2006). doi:10.1186/BF03351943ADSCrossRefGoogle Scholar
  34. Lesur, V., Jackson, A.: Exact solutions for internally induced magnetization in a shell. Geophys. J. Int. 140, 453–459 (2000). doi:10.1046/j.1365-246X.2000.00046.xADSCrossRefGoogle Scholar
  35. Lillis, R.J., Manga, M., Mitchell, D.L., Lin, R.P., Acuna, M.H.: Unusual magnetic signature of the Hadriaca Patera Volcano: implications for early Mars. Geophys. Res. Lett. 33, L03202 (2006). doi:10.1029/2005GL024905ADSCrossRefGoogle Scholar
  36. Lillis, R.J., Frey, H.V., Manga, M.: Rapid decrease in Martian crustal magnetization in the Noachian era: implications for the dynamo and climate of early Mars. Geophys. Res. Lett. 35(14), L14203 (2008). doi:10.1029/2008GL034338. Scholar
  37. Lillis, R.J., Frey, H.V., Manga, M., Mitchell, D.L., Lin, R.P., Acuña, M.H., Bougher, S.W.: An improved crustal magnetic field map of Mars from electron reflectometry: highland volcano magmatic history and the end of the martian dynamo. Icarus 194(2), 575–596 (2008). doi:10.1016/j.icarus.2007.09.032. Scholar
  38. Lillis, R.J., Dufek, J., Bleacher, J.E., Manga, M.: Demagnetization of crust by magmatic intrusion near the Arsia Mons volcano: magnetic and thermal implications for the development of the Tharsis province, Mars. J. Volcanol. Geotherm. Res. 185(1–2), 123–138 (2009). doi:10.1016/j.jvolgeores.2008.12.007ADSCrossRefGoogle Scholar
  39. Lillis, R.J., Robbins, S., Manga, M., Halekas, J.S., Frey, H.V.: Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. 118, 1488–1511 (2013a). doi:10.1002/jgre.20105CrossRefADSGoogle Scholar
  40. Lillis, R.J., Stewart, S.T., Manga, M.: Demagnetization by basin-forming impacts on early Mars: contributions from shock, heat, and excavation. J. Geophys. Res. 118, 1045–1062 (2013b). doi:10.1002/jgre.20085CrossRefADSGoogle Scholar
  41. Lillis, R.J., Dufek, J., Kiefer, W.S., Black, B.A., Manga, M., Richardson, J.A., Bleacher, J.E.: The Syrtis Major volcano, Mars: a multidisciplinary approach to interpreting its magmatic evolution and structural development. J. Geophys. Res. 1476–1496 (2015). doi:10.1002/2014je004774. Scholar
  42. Maus, S., Haak, V.: Is the long wavelength crustal magnetic field dominated by induced or by remanent magnetisation. J. Ind. Geophys. Union 6(1), 1–5 (2002)Google Scholar
  43. Mayer, C., Maier, T.: Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J. Int. 167, 1188–1203 (2006). doi:10.1111/j.1365-246X.2006.03199.xADSCrossRefGoogle Scholar
  44. Mayhew, M.A.: Inversion of satellite magnetic anomaly data. J Geophys. - Z. Geophys. 45(2), 119–128 (1979)Google Scholar
  45. McSween, H.Y., Ruff, S.W., Morris, R.V., Gellert, R., Klingelhöfer, G., Christensen, P.R., McCoy, T.J., Ghosh, A., Moersch, J.M., Cohen, B.A., Rogers, A.D., Schröder, C., Squyres, S.W., Crisp, J., Yen, A.: Mineralogy of volcanic rocks in gusev crater, Mars: reconciling mössbauer, alpha particle x-ray spectrometer, and miniature thermal emission spectrometer spectra. J. Geophys. Res. 113(E6) (2008). doi:10.1029/2007je002970.
  46. Milbury, C., Schubert, G.: Search for the global signature of the Martian dynamo. J. Geophys. Res. 115, E10010 (2010). doi:10.1029/2010JE003617ADSCrossRefGoogle Scholar
  47. Milbury, C., Schubert, G., Raymond, C.A., Smrekar, S.E., Langlais, B.: The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. J. Geophys. Res. 117, E10007 (2012). doi:10.1029/2012JE004099ADSCrossRefGoogle Scholar
  48. Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., de Souza, P.A., Fleischer, I., Wdowiak, T., Gellert, R., Bernhardt, B., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Renz, F., Squyres, S.W., Arvidson, R.E.: Mössbauer mineralogy of rock, soil, and dust at gusev crater, mars: spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia hills. J. Geophys. Res. 111(E2) (2006). doi:10.1029/2005je002584. Scholar
  49. Morschhauser, A.: A model of the crustal Magnetic Field of Mars. PhD thesis, University of Muenster (2016).
  50. Morschhauser, A., Grott, M., Breuer, D.: Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212(2), 541–558 (2011). doi:10.1016/j.icarus.2010.12.028ADSCrossRefGoogle Scholar
  51. Morschhauser, A., Lesur, V., Grott, M.: A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res. 119, 1162–1188 (2014). doi:10.1002/2013JE004555CrossRefGoogle Scholar
  52. Oliveira, J.S., Wieczorek, M.A.: Testing the axial dynamo hypothesis for the moon by modeling the direction of crustal magnetization. In: Lunar and Planetary Science Conference, vol. 47 (2016)Google Scholar
  53. Olsen, N., Glassmeier, K.-H., Jia, X.: Separation of the magnetic field into external and internal parts. Space Sci. Rev. 152, 135–157 (2010). doi:10.1007/s11214-009-9563-0ADSCrossRefGoogle Scholar
  54. Parker, R.L.: A theory of Ideal bodies for seamount magnetism. J. Geophys. Res.-space 96, 16101–16112 (1991). doi:10.1029/91JB01497ADSCrossRefGoogle Scholar
  55. Plattner, A., Simons, F.J.: High-resolution local magnetic field models for the martian south pole from Mars global surveyor data. J. Geophys. Res. 120(9), 1543–1566 (2015). doi:10.1002/2015je004869. Scholar
  56. Plescia, J.B.: Morphometric properties of Martian volcanoes. J. Geophys. Res. 109, E03003 (2004). doi:10.1029/2002JE002031ADSCrossRefGoogle Scholar
  57. Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., Acuña, M.: An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett. 27, 2449–2452 (2000). doi:10.1029/2000GL000072ADSCrossRefGoogle Scholar
  58. Robbins, S.J., Achille, G.D., Hynek, B.M.: The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes. Icarus 211, 1179–1203 (2011). doi:10.1016/j.icarus.2010.11.012ADSCrossRefGoogle Scholar
  59. Robbins, S.J., Hynek, B.M., Lillis, R.J., Bottke, W.F.: Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225, 173–184 (2013). doi:10.1016/j.icarus.2013.03.019ADSCrossRefGoogle Scholar
  60. Rochette, P., Lorand, J.-P., Fillion, G., Sautter, V.: Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism. Earth Planet. Sci. Lett. 190, 1–12 (2001). doi:10.1016/S0012-821X(01)00373-9ADSCrossRefGoogle Scholar
  61. Runcorn, S.K.: On the interpretation of lunar magnetism. Phys. Earth Planet. Int. 10, 327–335 (1975). doi:10.1016/0031-9201(75)90059-XADSCrossRefGoogle Scholar
  62. Russell, C.T.: The magnetic field of Mars - Mars 5 evidence re-examined. Geophys. Res. Lett. 5, 85–88 (1978). doi:10.1029/GL005i001p00085ADSCrossRefGoogle Scholar
  63. Schubert, G., Soderlund, K.M.: Planetary magnetic fields: observations and models. Phys. Earth Planet. Int. 187(3–4), 92–108 (2011). doi:10.1016/j.pepi.2011.05.013. Scholar
  64. Schubert, G., Russell, C.T., Moore, W.B.: Geophysics: timing of the Martian dynamo. Nature 408, 666–667 (2000). doi:10.1038/35047163ADSCrossRefGoogle Scholar
  65. Schultz, P.H., Schultz, R.A., Rogers, J.: The structure and evolution of ancient impact basins on Mars. J. Geophys. Res. 87, 9803–9820 (1982). doi:10.1029/JB087iB12p09803ADSCrossRefGoogle Scholar
  66. Sleep, N.H.: Martian plate tectonics. J. Geophys. Res. 99(E3), 5639–5655 (1994). doi:10.1029/94JE00216ADSCrossRefGoogle Scholar
  67. Sprenke, K.F.: Martian magnetic paleopoles: a geostatistical approach. Geophys. Res. Lett. 32(9), L09201 (2005). doi:10.1029/2005GL022840. Scholar
  68. Sprenke, K.F., Baker, L.L., Williams, A.F.: Polar wander on Mars: evidence in the geoid. Icarus 174, 486–489 (2005). doi:10.1016/j.icarus.2004.11.009ADSCrossRefGoogle Scholar
  69. Tanaka, K.L., Skinner, J.A., Dohm, J.M., Irwin, R.P., Kolb, E.J., Fortezzo, C.M., Platz, T., Michael, G.G., Hare, T.M.: Geologic Map of Mars. Scientific Investigations Map, Jul 2014. ISSN:2329-132X. doi:10.3133/sim3292.
  70. Tarling, D.H.: Palaeomagnetism. Springer Science and Business Media, Berlin (1983). ISBN:978-94-009-5957-6. doi:10.1007/978-94-009-5955-2. Scholar
  71. Vervelidou, F., Lesur, V., Morschhauser, A., Grott, M., Thomas, P.: On the accuracy of paleopole estimations from magnetic field measurements. Geophys. J. Int. (2017a). doi:10.1093/gji/ggx400CrossRefADSGoogle Scholar
  72. Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A., Lillis, R.: Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures. J. Geophys. Res. Planets (2017b). doi:10.1002/2017JE005410CrossRefADSGoogle Scholar
  73. Vine, F.J., Matthews, D.H.: Magnetic anomalies over oceanic ridges. Nature 199, 947–949 (1963). doi:10.1038/199947a0ADSCrossRefGoogle Scholar
  74. Volk, M.W.R., Gilder, S.A.: Effect of static pressure on absolute paleointensity recording with implications for meteorites. J. Geophys. Res. 121(8), 5596–5610 (2016). doi:10.1002/2016jb013059. Scholar
  75. Volk, M.W.R., Gilder, S.A., Feinberg, J.M.: Low temperature magnetic properties of monoclinic pyrrhotite with particular relevance to the Besnus transition. Geophys. J. Int. ggw376 (2016). doi:10.1093/gji/ggw376. Scholar
  76. Werner, S.C.: The early martian evolution - constraints from basin formation ages. Icarus 195, 45–60 (2008). doi:10.1016/j.icarus.2007.12.008ADSCrossRefGoogle Scholar
  77. Werner, S.C.: The global martian volcanic evolutionary history. Icarus 201, 44–68 (2009). doi:10.1016/j.icarus.2008.12.019ADSCrossRefGoogle Scholar
  78. Whaler, K.A., Purucker, M.: A spatially continuous magnetization model for Mars. J. Geophys. Res. 110(E9) (2005). doi:10.1029/2004JE002393.

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Achim Morschhauser
    • 1
  • Foteini Vervelidou
    • 1
  • Paul Thomas
    • 2
  • Matthias Grott
    • 2
  • Vincent Lesur
    • 3
  • Stuart A. Gilder
    • 4
  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Institute of Planetary ResearchGerman Aerospace CenterBerlinGermany
  3. 3.Institut de Physique du Globe de ParisSorbonne Paris Cité, Université Paris-DiderotParisFrance
  4. 4.Department of Earth and Environmental SciencesLudwig Maximilians UniversitätMünchenGermany

Personalised recommendations