Skip to main content

Mars’ Crustal Magnetic Field

  • Chapter

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 448))

Abstract

Fossil magnetic fields within the Martian crust record the history of the planet’s ancient dynamo and hence retain valuable information on the thermal and chemical evolution of Mars. In order to decode this information, we have derived a spherical harmonic model of the crustal magnetic field. This model was derived from satellite vector magnetometer data, and allows to study the crustal magnetic field at high resolution down to surface altitudes. Based on this model, we calculate the required magnetization of the Martian crust, and discuss how the resulting strong magnetization might be explained. Further, we study the magnetization of impact craters and volcanoes, and conclude that the Martian core dynamo shut down most probably in the Noachian, at about 4.1 Gyr ago. Finally, we address the derivation of magnetic paleopole positions. In a first step, we use synthetic tests in order to outline under which constraints paleopole positions can be determined from satellite measurements. In a second step, we use these insights to present a scheme to estimate paleopole positions including an assessment of their underlying uncertainties.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acuña, M.H., Connerney, J.E.P., Ness, N.F., Lin, R.P., Mitchell, D., Carlson, C.W., McFadden, J., Anderson, K.A., Reme, H., Mazelle, C., Vignes, D., Wasilewski, P., Cloutier, P.: Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284(5415), 790–793 (1999). doi:10.1126/science.284.5415.790

    Article  ADS  Google Scholar 

  • Albee, A.L., Palluconi, F.D., Arvidson, R.E.: Mars global surveyor mission: overview and status. Science 279(5357), 1671–1672 (1998). doi:10.1126/science.279.5357.1671. http://dx.doi.org/10.1126/science.279.5357.1671

    Article  ADS  Google Scholar 

  • Albee, A.L., Arvidson, R.E., Palluconi, F., Thorpe, T.: Overview of the Mars Global Surveyor mission. J. Geophys. Res. 106, 23291–23316 (2001). doi:10.1029/2000JE001306

    Article  ADS  Google Scholar 

  • Arkani-Hamed, J.: A coherent model of the crustal magnetic field of Mars. J. Geophys. Res. 109, E09005 (2004). doi:10.1029/2004JE002265. http://dx.doi.org/10.1029/2004JE002265

    Article  ADS  Google Scholar 

  • Aster, R.C., Borchers, B., Thurber, C.H.: Parameter Estimation and Inverse Problems, 2nd edn. Elsevier—Academic, New York (2013). ISBN:978-0-12-385048-5

    Chapter  Google Scholar 

  • Blakely, R.J.: Potential Theory in Gravity & Magnetic Applications. Cambridge University Press, Cambridge (1995). ISBN:0-521-57547-8

    Book  Google Scholar 

  • Boutin, D., Arkani-Hamed, J.: Pole wandering of Mars: evidence from paleomagnetic poles. Icarus 181(1), 13–25 (2006). doi:10.1016/j.icarus.2005.10.025. http://dx.doi.org/10.1016/j.icarus.2005.10.025

    Article  ADS  Google Scholar 

  • Butler, R.F.: Paleomagnetism: Magnetic Domains to Geologic Terranes. Blackwell Scientific Publications, Hoboken (1992). ISBN:978-0865420700

    Google Scholar 

  • Chassefière, E., Leblanc, F.: Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci. 52(11), 1039–1058 (2004). doi:10.1016/j.pss.2004.07.002. http://dx.doi.org/10.1016/j.pss.2004.07.002

    Article  ADS  Google Scholar 

  • Christensen, U.R., Holzwarth, V., Reiners, A.: Energy flux determines magnetic field strength of planets and stars. Nature 457(7226), 167–169 (2009). doi:10.1038/nature07626. http://dx.doi.org/10.1038/nature07626

    Article  ADS  Google Scholar 

  • Connerney, J.E.P., Acuna, M.H., Wasilewski, P.J., Ness, N.F., Reme, H., Mazelle, C., Vignes, D., Lin, R.P., Mitchell, D.L., Cloutier, P.A.: Magnetic lineations in the ancient crust of Mars. Science 284, 794–798 (1999). doi:10.1126/science.284.5415.794

    Article  ADS  Google Scholar 

  • Connerney, J.E.P., Acuña, M.H., Wasilewski, P.J., Kletetschka, G., Ness, N.F., Rème, H., Lin, R.P., Mitchell, D.L.A.: The global magnetic field of Mars and implications for crustal evolution. Geophys. Res. Lett. 28, 4015–4018 (2001). doi:10.1029/2001GL013619

    Article  ADS  Google Scholar 

  • Dolginov, S.S.: On the magnetic field of Mars - Mars 5 evidence. Geophys. Res. Lett. 5, 93–95 (1978). doi:10.1029/GL005i001p00093

    Article  ADS  Google Scholar 

  • Dunlop, D.J.: Stepwise and continuous low-temperature demagnetization. Geophys. Res. Lett. 30(11) (2003). doi:10.1029/2003gl017268. http://dx.doi.org/10.1029/2003GL017268

  • Dunlop, D.J., Arkani-Hamed, J.: Magnetic minerals in the Martian crust. J. Geophys. Res. 110(E12), E12S04 (2005). doi:10.1029/2005JE002404. http://dx.doi.org/10.1029/2005JE002404

  • Farquharson, C.G., Oldenburg, D.W.: Non-linear inversion using general measures of data misfit and model structure. Geophys. J. Int. 134, 213–227 (1998). doi:10.1046/j.1365-246X.1998.00555.x

    Article  ADS  Google Scholar 

  • Frawley, J.J., Taylor, P.T.: Paleo-pole positions from martian magnetic anomaly data. Icarus 172(2), 316–327 (2004). doi:10.1016/j.icarus.2004.07.025. http://dx.doi.org/10.1016/j.icarus.2004.07.025

    Article  ADS  Google Scholar 

  • Frey, H.: Ages of very large impact basins on Mars: implications for the late heavy bombardment in the inner solar system. Geophys. Res. Lett. 35, L13203 (2008). doi:10.1029/2008GL033515

    Article  ADS  Google Scholar 

  • Gerhards, C.: Spherical decompositions in a global and local framework: theory and an application to geomagnetic modeling. Int. J. Geomath. 1(2), 205–256 (2011). doi:10.1007/s13137-010-0011-9. http://dx.doi.org/10.1007/s13137-010-0011-9

    Article  MathSciNet  MATH  Google Scholar 

  • Gilder, S.A., Le Goff, M.: Systematic pressure enhancement of titanomagnetite magnetization. Geophys. Res. Lett. 35(10) (2008). doi:10.1029/2008gl033325. http://dx.doi.org/10.1029/2008GL033325

  • Gubbins, D., Ivers, D., Masterton, S.M., Winch, D.E.: Analysis of lithospheric magnetization in vector spherical harmonics. Geophys. J. Int. 187, 99–117 (2011). doi:10.1111/j.1365-246X.2011.05153.x

    Article  ADS  Google Scholar 

  • Hartmann, W.K., Malin, M., McEwen, A., Carr, M., Soderblom, L., Thomas, P., Danielson, E., James, P., Veverka, J.: Evidence for recent volcanism on Mars from crater counts. Nature 397(6720), 586–589 (1999). doi:10.1038/17545. http://dx.doi.org/10.1038/17545

    Article  ADS  Google Scholar 

  • Hood, L.L., Zakharian, L.L.H.: Mapping and modeling of magnetic anomalies in the northern polar region of Mars. J. Geophys. Res. 106(E7), 14601–14619 (2001). doi:10.1029/2000JE001304

    Article  ADS  Google Scholar 

  • Hood, L.L., Richmond, N., Harrison, K., Lillis, R.: East-west trending magnetic anomalies in the Southern Hemisphere of Mars: modeling analysis and interpretation. Icarus 191(1), 113–131 (2007). doi:10.1016/j.icarus.2007.04.025. http://dx.doi.org/10.1016/j.icarus.2007.04.025

    Article  ADS  Google Scholar 

  • Hood, L.L., Harrison, K.P., Langlais, B., Lillis, R.J., Poulet, F., Williams, D.A.: Magnetic anomalies near Apollinaris Patera and the Medusae Fossae formation in Lucus Planum, Mars. Icarus 208, 118–131 (2010). doi:10.1016/j.icarus.2010.01.009

    Article  ADS  Google Scholar 

  • Huber, P.J.: Robust estimation of a location parameter. Ann. Math. Stat. 35(1), 73–101 (1964)

    Article  MathSciNet  Google Scholar 

  • Jakosky, B.M., Phillips, R.J.: Mars’ volatile and climate history. Nature 412, 237–244 (2001)

    Article  ADS  Google Scholar 

  • Johnson, C.L., Phillips, R.J.: Evolution of the Tharsis region of Mars: insights from magnetic field observations. Earth Planet. Sci. Lett. 230(3–4), 241–254 (2005). doi:10.1016/j.epsl.2004.10.038. http://dx.doi.org/10.1016/j.epsl.2004.10.038

    Article  ADS  Google Scholar 

  • Laneuville, M., Wieczorek, M.A., Breuer, D., Tosi, N.: Asymmetric thermal evolution of the moon. J. Geophys. Res.-Space 118(7), 1435–1452 (2013). doi:10.1002/jgre.20103. http://dx.doi.org/10.1002/jgre.20103

    Article  ADS  Google Scholar 

  • Langlais, B., Purucker, M.: A polar magnetic paleopole associated with Apollinaris Patera, Mars. Planet. Space Sci. 55, 270–279 (2007). doi:10.1016/j.pss.2006.03.008

    Article  ADS  Google Scholar 

  • Langlais, B., Purucker, M.E., Mandea, M.: Crustal magnetic field of Mars. J. Geophys. Res. 109(E2), E02008 (2004). doi:10.1029/2003JE002048. http://dx.doi.org/10.1029/2003JE002048

    Article  ADS  Google Scholar 

  • Lawson, C.L., Hanson, R.J.: Solving least squares problems. In: Applied Mathematics. Society for Industrial & Applied Mathematics (SIAM), Jan 1995. ISBN:978-0-89871-356-5. doi:10.1137/1.9781611971217

    Google Scholar 

  • Lesur, V.: Introducing localized constraints in global geomagnetic field modelling. Earth Plan. Space 58(4), 477–483 (2006). doi:10.1186/BF03351943

    Article  ADS  Google Scholar 

  • Lesur, V., Jackson, A.: Exact solutions for internally induced magnetization in a shell. Geophys. J. Int. 140, 453–459 (2000). doi:10.1046/j.1365-246X.2000.00046.x

    Article  ADS  Google Scholar 

  • Lillis, R.J., Manga, M., Mitchell, D.L., Lin, R.P., Acuna, M.H.: Unusual magnetic signature of the Hadriaca Patera Volcano: implications for early Mars. Geophys. Res. Lett. 33, L03202 (2006). doi:10.1029/2005GL024905

    Article  ADS  Google Scholar 

  • Lillis, R.J., Frey, H.V., Manga, M.: Rapid decrease in Martian crustal magnetization in the Noachian era: implications for the dynamo and climate of early Mars. Geophys. Res. Lett. 35(14), L14203 (2008). doi:10.1029/2008GL034338. http://dx.doi.org/10.1029/2008GL034338

    Article  ADS  Google Scholar 

  • Lillis, R.J., Frey, H.V., Manga, M., Mitchell, D.L., Lin, R.P., Acuña, M.H., Bougher, S.W.: An improved crustal magnetic field map of Mars from electron reflectometry: highland volcano magmatic history and the end of the martian dynamo. Icarus 194(2), 575–596 (2008). doi:10.1016/j.icarus.2007.09.032. http://dx.doi.org/10.1016/j.icarus.2007.09.032

    Article  ADS  Google Scholar 

  • Lillis, R.J., Dufek, J., Bleacher, J.E., Manga, M.: Demagnetization of crust by magmatic intrusion near the Arsia Mons volcano: magnetic and thermal implications for the development of the Tharsis province, Mars. J. Volcanol. Geotherm. Res. 185(1–2), 123–138 (2009). doi:10.1016/j.jvolgeores.2008.12.007

    Article  ADS  Google Scholar 

  • Lillis, R.J., Robbins, S., Manga, M., Halekas, J.S., Frey, H.V.: Time history of the Martian dynamo from crater magnetic field analysis. J. Geophys. Res. 118, 1488–1511 (2013a). doi:10.1002/jgre.20105

    Article  ADS  Google Scholar 

  • Lillis, R.J., Stewart, S.T., Manga, M.: Demagnetization by basin-forming impacts on early Mars: contributions from shock, heat, and excavation. J. Geophys. Res. 118, 1045–1062 (2013b). doi:10.1002/jgre.20085

    Article  ADS  Google Scholar 

  • Lillis, R.J., Dufek, J., Kiefer, W.S., Black, B.A., Manga, M., Richardson, J.A., Bleacher, J.E.: The Syrtis Major volcano, Mars: a multidisciplinary approach to interpreting its magmatic evolution and structural development. J. Geophys. Res. 1476–1496 (2015). doi:10.1002/2014je004774. http://dx.doi.org/10.1002/2014JE004774

    Article  ADS  Google Scholar 

  • Maus, S., Haak, V.: Is the long wavelength crustal magnetic field dominated by induced or by remanent magnetisation. J. Ind. Geophys. Union 6(1), 1–5 (2002)

    Google Scholar 

  • Mayer, C., Maier, T.: Separating inner and outer Earth’s magnetic field from CHAMP satellite measurements by means of vector scaling functions and wavelets. Geophys. J. Int. 167, 1188–1203 (2006). doi:10.1111/j.1365-246X.2006.03199.x

    Article  ADS  Google Scholar 

  • Mayhew, M.A.: Inversion of satellite magnetic anomaly data. J Geophys. - Z. Geophys. 45(2), 119–128 (1979)

    Google Scholar 

  • McSween, H.Y., Ruff, S.W., Morris, R.V., Gellert, R., Klingelhöfer, G., Christensen, P.R., McCoy, T.J., Ghosh, A., Moersch, J.M., Cohen, B.A., Rogers, A.D., Schröder, C., Squyres, S.W., Crisp, J., Yen, A.: Mineralogy of volcanic rocks in gusev crater, Mars: reconciling mössbauer, alpha particle x-ray spectrometer, and miniature thermal emission spectrometer spectra. J. Geophys. Res. 113(E6) (2008). doi:10.1029/2007je002970. http://dx.doi.org/10.1029/2007JE002970

  • Milbury, C., Schubert, G.: Search for the global signature of the Martian dynamo. J. Geophys. Res. 115, E10010 (2010). doi:10.1029/2010JE003617

    Article  ADS  Google Scholar 

  • Milbury, C., Schubert, G., Raymond, C.A., Smrekar, S.E., Langlais, B.: The history of Mars’ dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. J. Geophys. Res. 117, E10007 (2012). doi:10.1029/2012JE004099

    Article  ADS  Google Scholar 

  • Morris, R.V., Klingelhöfer, G., Schröder, C., Rodionov, D.S., Yen, A., Ming, D.W., de Souza, P.A., Fleischer, I., Wdowiak, T., Gellert, R., Bernhardt, B., Evlanov, E.N., Zubkov, B., Foh, J., Bonnes, U., Kankeleit, E., Gütlich, P., Renz, F., Squyres, S.W., Arvidson, R.E.: Mössbauer mineralogy of rock, soil, and dust at gusev crater, mars: spirit’s journey through weakly altered olivine basalt on the plains and pervasively altered basalt in the Columbia hills. J. Geophys. Res. 111(E2) (2006). doi:10.1029/2005je002584. http://dx.doi.org/10.1029/2005JE002584

    Article  Google Scholar 

  • Morschhauser, A.: A model of the crustal Magnetic Field of Mars. PhD thesis, University of Muenster (2016). http://nbn-resolving.de/urn:nbn:de:hbz:6-62269665189

  • Morschhauser, A., Grott, M., Breuer, D.: Crustal recycling, mantle dehydration, and the thermal evolution of Mars. Icarus 212(2), 541–558 (2011). doi:10.1016/j.icarus.2010.12.028

    Article  ADS  Google Scholar 

  • Morschhauser, A., Lesur, V., Grott, M.: A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res. 119, 1162–1188 (2014). doi:10.1002/2013JE004555

    Article  Google Scholar 

  • Oliveira, J.S., Wieczorek, M.A.: Testing the axial dynamo hypothesis for the moon by modeling the direction of crustal magnetization. In: Lunar and Planetary Science Conference, vol. 47 (2016)

    Google Scholar 

  • Olsen, N., Glassmeier, K.-H., Jia, X.: Separation of the magnetic field into external and internal parts. Space Sci. Rev. 152, 135–157 (2010). doi:10.1007/s11214-009-9563-0

    Article  ADS  Google Scholar 

  • Parker, R.L.: A theory of Ideal bodies for seamount magnetism. J. Geophys. Res.-space 96, 16101–16112 (1991). doi:10.1029/91JB01497

    Article  ADS  Google Scholar 

  • Plattner, A., Simons, F.J.: High-resolution local magnetic field models for the martian south pole from Mars global surveyor data. J. Geophys. Res. 120(9), 1543–1566 (2015). doi:10.1002/2015je004869. http://dx.doi.org/10.1002/2015JE004869

    Article  Google Scholar 

  • Plescia, J.B.: Morphometric properties of Martian volcanoes. J. Geophys. Res. 109, E03003 (2004). doi:10.1029/2002JE002031

    Article  ADS  Google Scholar 

  • Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., Acuña, M.: An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett. 27, 2449–2452 (2000). doi:10.1029/2000GL000072

    Article  ADS  Google Scholar 

  • Robbins, S.J., Achille, G.D., Hynek, B.M.: The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes. Icarus 211, 1179–1203 (2011). doi:10.1016/j.icarus.2010.11.012

    Article  ADS  Google Scholar 

  • Robbins, S.J., Hynek, B.M., Lillis, R.J., Bottke, W.F.: Large impact crater histories of Mars: the effect of different model crater age techniques. Icarus 225, 173–184 (2013). doi:10.1016/j.icarus.2013.03.019

    Article  ADS  Google Scholar 

  • Rochette, P., Lorand, J.-P., Fillion, G., Sautter, V.: Pyrrhotite and the remanent magnetization of SNC meteorites: a changing perspective on Martian magnetism. Earth Planet. Sci. Lett. 190, 1–12 (2001). doi:10.1016/S0012-821X(01)00373-9

    Article  ADS  Google Scholar 

  • Runcorn, S.K.: On the interpretation of lunar magnetism. Phys. Earth Planet. Int. 10, 327–335 (1975). doi:10.1016/0031-9201(75)90059-X

    Article  ADS  Google Scholar 

  • Russell, C.T.: The magnetic field of Mars - Mars 5 evidence re-examined. Geophys. Res. Lett. 5, 85–88 (1978). doi:10.1029/GL005i001p00085

    Article  ADS  Google Scholar 

  • Schubert, G., Soderlund, K.M.: Planetary magnetic fields: observations and models. Phys. Earth Planet. Int. 187(3–4), 92–108 (2011). doi:10.1016/j.pepi.2011.05.013. http://dx.doi.org/10.1016/j.pepi.2011.05.013

    Article  ADS  Google Scholar 

  • Schubert, G., Russell, C.T., Moore, W.B.: Geophysics: timing of the Martian dynamo. Nature 408, 666–667 (2000). doi:10.1038/35047163

    Article  ADS  Google Scholar 

  • Schultz, P.H., Schultz, R.A., Rogers, J.: The structure and evolution of ancient impact basins on Mars. J. Geophys. Res. 87, 9803–9820 (1982). doi:10.1029/JB087iB12p09803

    Article  ADS  Google Scholar 

  • Sleep, N.H.: Martian plate tectonics. J. Geophys. Res. 99(E3), 5639–5655 (1994). doi:10.1029/94JE00216

    Article  ADS  Google Scholar 

  • Sprenke, K.F.: Martian magnetic paleopoles: a geostatistical approach. Geophys. Res. Lett. 32(9), L09201 (2005). doi:10.1029/2005GL022840. http://dx.doi.org/10.1029/2005GL022840

    Article  ADS  Google Scholar 

  • Sprenke, K.F., Baker, L.L., Williams, A.F.: Polar wander on Mars: evidence in the geoid. Icarus 174, 486–489 (2005). doi:10.1016/j.icarus.2004.11.009

    Article  ADS  Google Scholar 

  • Tanaka, K.L., Skinner, J.A., Dohm, J.M., Irwin, R.P., Kolb, E.J., Fortezzo, C.M., Platz, T., Michael, G.G., Hare, T.M.: Geologic Map of Mars. Scientific Investigations Map, Jul 2014. ISSN:2329-132X. doi:10.3133/sim3292. http://dx.doi.org/10.3133/sim3292

  • Tarling, D.H.: Palaeomagnetism. Springer Science and Business Media, Berlin (1983). ISBN:978-94-009-5957-6. doi:10.1007/978-94-009-5955-2. http://dx.doi.org/10.1007/978-94-009-5955-2

    Book  Google Scholar 

  • Vervelidou, F., Lesur, V., Morschhauser, A., Grott, M., Thomas, P.: On the accuracy of paleopole estimations from magnetic field measurements. Geophys. J. Int. (2017a). doi:10.1093/gji/ggx400

    Article  ADS  Google Scholar 

  • Vervelidou, F., Lesur, V., Grott, M., Morschhauser, A., Lillis, R.: Constraining the date of the Martian dynamo shutdown by means of crater magnetization signatures. J. Geophys. Res. Planets (2017b). doi:10.1002/2017JE005410

    Article  ADS  Google Scholar 

  • Vine, F.J., Matthews, D.H.: Magnetic anomalies over oceanic ridges. Nature 199, 947–949 (1963). doi:10.1038/199947a0

    Article  ADS  Google Scholar 

  • Volk, M.W.R., Gilder, S.A.: Effect of static pressure on absolute paleointensity recording with implications for meteorites. J. Geophys. Res. 121(8), 5596–5610 (2016). doi:10.1002/2016jb013059. http://dx.doi.org/10.1002/2016JB013059

    Article  ADS  Google Scholar 

  • Volk, M.W.R., Gilder, S.A., Feinberg, J.M.: Low temperature magnetic properties of monoclinic pyrrhotite with particular relevance to the Besnus transition. Geophys. J. Int. ggw376 (2016). doi:10.1093/gji/ggw376. http://dx.doi.org/10.1093/gji/ggw376

    Article  ADS  Google Scholar 

  • Werner, S.C.: The early martian evolution - constraints from basin formation ages. Icarus 195, 45–60 (2008). doi:10.1016/j.icarus.2007.12.008

    Article  ADS  Google Scholar 

  • Werner, S.C.: The global martian volcanic evolutionary history. Icarus 201, 44–68 (2009). doi:10.1016/j.icarus.2008.12.019

    Article  ADS  Google Scholar 

  • Whaler, K.A., Purucker, M.: A spatially continuous magnetization model for Mars. J. Geophys. Res. 110(E9) (2005). doi:10.1029/2004JE002393. http://dx.doi.org/10.1029/2004JE002393

Download references

Acknowledgements

This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the priority program “Planetary Magnetism” (SPP 1488) under grants LE2477/3-1, LE2477/3-2 (F.V. and V.L.), GR3751/1-1 (A.M. and M.G.), GR3751/1-2 (A.M., M.G., and P.T.), and GI712/6-1 (S.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achim Morschhauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Morschhauser, A., Vervelidou, F., Thomas, P., Grott, M., Lesur, V., Gilder, S.A. (2018). Mars’ Crustal Magnetic Field. In: Lühr, H., Wicht, J., Gilder, S.A., Holschneider, M. (eds) Magnetic Fields in the Solar System. Astrophysics and Space Science Library, vol 448. Springer, Cham. https://doi.org/10.1007/978-3-319-64292-5_12

Download citation

Publish with us

Policies and ethics