Climatology of Air Upwelling and Vertical Plasma Flow in the Terrestrial Cusp Region: Seasonal and IMF-Dependent Processes

  • Guram N. Kervalishvili
  • Hermann Lühr
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)


At polar regions a continuous outflow occurs of terrestrial atmosphere into space. Thermodynamic forces are not strong enough to allow air parcels escaping the Earth’s gravity field. But due to the partial ionization of the upper atmosphere by the sun’s short-wavelength radiation electrodynamic forces can move the charged particles upward along open field lines. Already in the early space age it was recognized that considerable amounts of ionospheric ions populate the magnetosphere. In this chapter, the acceleration mechanisms of the upwelling ions at altitudes of source regions are investigated. For the first time the role of the neutral particles in the thermosphere is also included in the considerations. In our studies we make use of data from the satellites CHAMP (400 km), GRACE (500 km), and DMSP (830 km). Detailed studies are performed to analyze the conditions accompanying the upwelling of neutral and ionized particles. Here we consider average properties of field-aligned currents, thermospheric wind, and electron temperature. Also, the dependences on environmental conditions are tested. Hardly any dependence on seasons emerges either for air upwelling or for ion upflow. An important driver for the processes seems to be magnetic field reconnection between the terrestrial and interplanetary magnetic field (IMF) and with that the orientation of the IMF. Intense flows of precipitating electrons, which are caused by the merging process, play a central role for both kinds of upflow. But further drivers, different for the two species, are needed to facilitate the observed ion and neutral upwelling.



The CHAMP and GRACE missions were sponsored by the Space Agency of the German Aerospace Center (DLR) through funds of the Federal Ministry of Economics and Technology. The Center for Space Sciences at the University of Texas at Dallas and the US Air Force are gratefully acknowledged for making available the DMSP thermal plasma data. The authors gratefully acknowledge the use of NASA/GSFC’s Space Physics Data Facility’s OMNIWeb service and OMNI IMF and Solar wind data. The Deutsche Forschungsgemeinschaft (DFG) supported G. N. Kervalishvili through the Priority Programme “Planetary Magnetism” SPP 1488.


  1. André, M., Cully, C.M.: Low-energy ions: a previously hidden solar system particle population. Geophys. Res. Lett. 39, L03101 (2012). doi:10.1029/2011GL050242ADSCrossRefGoogle Scholar
  2. André, M., Li, K., Eriksson, A.I.: Outflow of low-energy ions and the solar cycle. J. Geophys. Res. Space Phys. 120, 1072–1085 (2015). doi: 10.1002/2014JA020714ADSCrossRefGoogle Scholar
  3. Axford, W.I.: The polar wind and the terrestrial helium budget. J. Geophys. Res. 73, 6855–6859 (1968). doi:10.1029/JA073i021p06855ADSCrossRefGoogle Scholar
  4. Banks, P.M., Holzer, T.E.: The polar wind. J. Geophys. Res. 73, 6846–6854 (1968). doi:10.1029/JA073i021p06846ADSCrossRefGoogle Scholar
  5. Carlson, H.C., Moen, J., Oksavik, K., Nielsen, C.P., McCrea, I.W., Pedersen, T.R., Gallop, P.: Direct observations of injection events of subauroral plasma into the polar cap. Geophys. Res. Lett. 33, L05103 (2006). doi:10.1029/2005GL025230ADSCrossRefGoogle Scholar
  6. Carlson, H.C., Spain, T., Aruliah, A., Skjaeveland, A., Moen, J.: First-principles physics of cusp/polar cap thermospheric disturbances. Geophys. Res. Lett. 39, L19103 (2012). doi:10.1029/2012GL053034ADSCrossRefGoogle Scholar
  7. Clemmons, J.H., Hecht, J.H., Salem, D.R., Strickland, D.J.: Thermospheric density in the Earth’s magnetic cusp as observed by the Streak mission. Geophys. Res. Lett. 35, L24103 (2008). doi:10.1029/2008GL035972ADSCrossRefGoogle Scholar
  8. Coley, W.R., Heelis, R.A., Hairston, M.R.: Characteristics of high-latitude vertical plasma flow from the defense meteorological satellite program. J. Geophys. Res. 111, A11314 (2006). doi:10.1029/2005JA011553ADSCrossRefGoogle Scholar
  9. Cowley, S.W.H.: Magnetosphere-ionosphere interactions: a tutorial review. In: Ohtani, S.-I., Fujii, R., Hesse, M., Lysak, R.L. (eds.) Magnetospheric current systems, pp. 91–106. American Geophysical Union, Washington, DC (2000). doi:10.1029/GM118p0091CrossRefGoogle Scholar
  10. Crowley, G., Knipp, D.J., Drake, K.A., Lei, J., Sutton, E., Lühr, H.: Thermospheric density enhancements in the dayside cusp region during strong by conditions. Geophys. Res. Lett. 37, L07110 (2010). doi:10.1029/2009GL042143ADSCrossRefGoogle Scholar
  11. Demars, H.G., Schunk, R.W.: Thermospheric response to ion heating in the dayside cusp. J. Atmos. Sol. Terr. Phys. 69, 649–660 (2007). doi:10.1016/j.jastp.2006.11.002ADSCrossRefGoogle Scholar
  12. Deng, Y., Fuller-Rowell, T.J., Akmaev, R.A., Ridley, A.J.: Impact of the altitudinal Joule heating distribution on the thermosphere. J. Geophys. Res. 116, A05313 (2011). doi:10.1029/2010JA016019ADSCrossRefGoogle Scholar
  13. Doornbos, E., van den IJssel, J., Lühr, H., Förster, M., Koppenwallner, G.: Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J. Spacecr. Rocket. 47, 580–589 (2010). doi:10.2514/1.48114CrossRefADSGoogle Scholar
  14. Emmert, J.T., Richmond, A.D., Drob, D.P.: A computationally compact representation of magnetic-apex and quasi-dipole coordinates with smooth base vectors. J. Geophys. Res. 115, A08322 (2010). doi:10.1029/2010JA015326ADSCrossRefGoogle Scholar
  15. Engwall, E., Eriksson, A.I., Cully, C.M., André, M., Torbert, R., Vaith, H.: Earth’s ionospheric outflow dominated by hidden cold plasma. Nat. Geosci. 2, 24–27 (2009). doi:10.1038/ngeo387ADSCrossRefGoogle Scholar
  16. Förster, M., Rentz, S., Köhler, W., Liu, H., Haaland, S.E.: IMF dependence of high-latitude thermospheric wind pattern derived from CHAMP cross-track measurements. Ann. Geophys. 26, 1581–1595 (2008). doi:10.5194/angeo-26-1581-2008ADSCrossRefGoogle Scholar
  17. Hartman, W.A., Heelis, R.A.: Longitudinal variations in the equatorial vertical drift in the topside ionosphere. J. Geophys. Res. 112, A03305 (2007). doi:10.1029/2006JA011773ADSCrossRefGoogle Scholar
  18. He, M., Vogt, J., Lühr, H., Sorbalo, E., Blagau, A., Le, G., Lu, G.: A high-resolution model of field-aligned currents through empirical orthogonal functions analysis (MFACE). Geophys. Res. Lett. 39, L18105 (2012). doi:10.1029/2012GL053168ADSCrossRefGoogle Scholar
  19. Kervalishvili, G.N., Lühr, H.: The relationship of thermospheric density anomaly with electron temperature, small-scale FAC, and ion up-flow in the cusp region, as observed by CHAMP and DMSP satellites. Ann. Geophys. 31, 541–554 (2013). doi:10.5194/angeo-31-541-2013ADSCrossRefGoogle Scholar
  20. Kervalishvili, G.N., Lühr, H.: Climatology of zonal wind and large-scale FAC with respect to the density anomaly in the cusp region: seasonal, solar cycle, and IMF By dependence. Ann. Geophys. 32, 249–261 (2014). doi:10.5194/angeo-32-249-2014ADSCrossRefGoogle Scholar
  21. King, J.H., Papitashvili, N.E.: Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data. J. Geophys. Res. 110, A02104 (2005). doi:10.1029/2004JA010649ADSCrossRefGoogle Scholar
  22. Lemaire, J., Peterson, W.K., Chang, T., Schunk, R.W., Barakat, A.R., Demars, H.G., Khazanov, G.V.: History of kinetic polar wind models and early observations. J. Atmos. Sol. Terr. Phys. 69, 1901–1935 (2007). doi:10.1016/j.jastp.2007.08.011ADSCrossRefGoogle Scholar
  23. Li, W., Knipp, D., Lei, J., Raeder, J.: The relation between dayside local Poynting flux enhancement and cusp reconnection. J. Geophys. Res. 116, A08301 (2011). doi:10.1029/2011JA016566ADSCrossRefGoogle Scholar
  24. Liu, H., Lühr, H., Henize, V., Köhler, W.: Global distribution of the thermospheric total mass density derived from CHAMP. J. Geophys. Res. 110, A04301 (2005). doi:10.1029/2004JA010741ADSCrossRefGoogle Scholar
  25. Liu, H., Lühr, H., Watanabe, S., Köhler, W., Henize, V., Visser, P.: Zonal winds in the equatorial upper thermosphere: Decomposing the solar flux, geomagnetic activity, and seasonal dependencies. J. Geophys. Res. 111, A07307 (2006). doi:10.1029/2005JA011415ADSCrossRefGoogle Scholar
  26. Liu, R., Lühr, H., Ma, S.-Y.: Storm-time related mass density anomalies in the polar cap as observed by CHAMP. Ann. Geophys. 28, 165–180 (2010). doi:10.5194/angeo-28-165-2010ADSCrossRefGoogle Scholar
  27. Lühr, H., Marker, S.: High-latitude thermospheric density and wind dependence on solar and magnetic activity. In: Lübken, F.-J. (ed.) Climate And Weather of the Sun-Earth System (CAWSES): Highlights from a Priority Program, pp. 189–206. Springer, Dordrecht (2013). doi:10.1007/978-94-007-4348-9CrossRefGoogle Scholar
  28. Lühr, H., Warnecke, J., Rother, M.K.A.: An algorithm for estimating field-aligned currents from single spacecraft magnetic field measurements: a diagnostic tool applied to Freja satellite data. Geosci. Remote Sens. 34, 1369–1376 (1996). doi:10.1109/36.544560ADSCrossRefGoogle Scholar
  29. Lühr, H., Rother, M., Köhler, W., Ritter, P., Grunwaldt, L.: Thermospheric up-welling in the cusp region: evidence from CHAMP observations. Geophys. Res. Lett. 31, L06805 (2004). doi:10.1029/2003GL019314ADSCrossRefGoogle Scholar
  30. Lühr, H., Rentz, S., Ritter, P., Liu, H., Häusler, K.: Average thermospheric wind patterns over the polar regions, as observed by CHAMP. Ann. Geophys. 25, 1093–1101 (2007). doi:10.5194/angeo-25-1093-2007ADSCrossRefGoogle Scholar
  31. Miyake, W., Mukai, T., Kaya, N.: On the evolution of ion conics along the field line from EXOS-D. J. Geophys. Res. 98, 11127–11134 (1993). doi:10.1029/92JA00716ADSCrossRefGoogle Scholar
  32. Pollock, C.J., Chandler, M.O., Moore, T.E., Waite Jr., J.H., Chappell, C.R., Gurnett, D.A.: A survey of upwelling ion event characteristics. J. Geophys. Res. 95, 18969–18980 (1990). doi:10.1029/JA095iA11p18969ADSCrossRefGoogle Scholar
  33. Prölss, G.W.: Physics of the Earth’s Space Environment: An Introduction (translated by: Bird, M. K.). Springer, Berlin (2004). doi:10.1007/978-3-642-97123-5.CrossRefzbMATHGoogle Scholar
  34. Prölss, G.W.: Electron temperature enhancement beneath the magnetospheric cusp. J. Geophys. Res. 111, A07304 (2006). doi:10.1029/2006JA011618ADSCrossRefGoogle Scholar
  35. Reigber, Ch., Lühr, H., Schwintzer, P.: CHAMP mission status. Adv. Space Res. 30, 129–134 (2002). doi:10.1016/S0273-1177(02)00276-4ADSCrossRefGoogle Scholar
  36. Rentz, S., Lühr, H.: Climatology of the cusp-related thermospheric mass density anomaly, as derived from CHAMP observations. Ann. Geophys. 26, 2807–2823 (2008). doi:10.5194/angeo-26-2807-2008ADSCrossRefGoogle Scholar
  37. Rich, F.J., Hairston, M.: Large-scale convection patterns observed by DMSP. J. Geophys. Res. 99, 3827–3844 (1994). doi:10.1029/93JA03296ADSCrossRefGoogle Scholar
  38. Ritter, P., Lühr, H., Doornbos, E.: Substorm-related thermospheric density and wind disturbances derived from CHAMP observations. Ann. Geophys. 28, 1207–1220 (2010). doi:10.5194/angeo-28-1207-2010ADSCrossRefGoogle Scholar
  39. Rother, M., Schlegel, K., Lühr, H.: CHAMP observation of intense kilometer-scale field-aligned currents, evidence for an ionospheric Alfvén resonator, Ann. Geophys. 25, 1603–1615 (2007). doi:10.5194/angeo-25-1603-2007ADSCrossRefGoogle Scholar
  40. Rother, M., Schlegel, K., Lühr, H., Cooke, D.: Validation of CHAMP electron temperature measurements by incoherent scatter radar data. Radio Sci. 45, RS6020 (2010). doi:10.1029/2010RS004445ADSCrossRefGoogle Scholar
  41. Sadler, F.B., Lessard, M., Lund, E., Otto, A., Lühr, H.: Auroral precipitation/ion upwelling as a driver of neutral density enhancement in the cusp. J. Atmos. Sol. Terr. Phys., 87–88, 82–90 (2012). doi:10.1016/j.jastp.2012.03.003ADSCrossRefGoogle Scholar
  42. Tapley, B.D., Bettadpur, S., Watkins, M., Reigber, C.: The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004). doi:10.1029/2004GL019920ADSCrossRefGoogle Scholar
  43. Thayer, J.P., Semeter, J.: The convergence of magnetospheric energy flux in the polar atmosphere. J. Atmos. Sol. Terr. Phys. 66, 807–824 (2004). doi:10.1016/j.jastp.2004.01.035ADSCrossRefGoogle Scholar
  44. Thayer, J.P., Killeen, T.L., McCormac, F.G., Tschan, C.R., Ponthieu, J.-J., Spencer, N.W.: Thermospheric neutral wind signatures dependent on the east-west component of the interplanetary magnetic field for northern and southern hemispheres, as measured from dynamics explorer-2. Ann Geophys. 5A, 363–368 (1987)ADSGoogle Scholar
  45. Wahlund, J.E., Opgenoorth, H.J., Haggstrom, I., Winser, K.J., Jones, G.O.L.: EISCAT observations of topside ionospheric ion outflows during auroral activity: revisited. J. Geophys. Res. 97, 3019–3037 (1992). doi:10.1029/91JA02438ADSCrossRefGoogle Scholar
  46. Wang, H., Lühr, H., Ma, S.Y.: Solar zenith angle and merging electric field control of field-aligned currents: a statistical study of the southern hemisphere. J. Geophys. Res. 110, A03306 (2005). doi:10.1029/2004JA010530ADSCrossRefGoogle Scholar
  47. Watermann, J., Stauning, P., Lühr, H., Newell, P.T., Christiansen, F., Schlegel, K.: Are small-scale field-aligned currents and magnetosheath-like particle precipitation signatures of the same low-altitude cusp? Adv. Space Res. 43, 41–46 (2009). doi:10.1016/j.asr.2008.03.031ADSCrossRefGoogle Scholar
  48. Yau, A.W., Peterson, W.K., Shelley, E.G.: Quantitative parameterization of energetic ionospheric ion outflow. In: Modeling Magnetospheric Plasma, Geophysical Monograph, vol. 44, p. 211. American Geophysical Union, Washington, DC (1988)CrossRefGoogle Scholar
  49. Yau, A.W., Abe, T., Peterson, W.K.: The polar wind: recent observations. J. Atmos. Sol. Terr. Phys. 69, 1936–1983 (2007). doi:10.1016/j.jastp.2007.08.010ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.GFZ German Research Centre for GeosciencesPotsdamGermany
  2. 2.Deutsches GeoForschungsZentrum GFZPotsdamGermany

Personalised recommendations