Modeling of the Ionospheric Current System and Calculating Its Contribution to the Earth’s Magnetic Field

  • Boris E. Prokhorov
  • Matthias Förster
  • Vincent Lesur
  • Alexander A. Namgaladze
  • Matthias Holschneider
  • Claudia Stolle
Part of the Astrophysics and Space Science Library book series (ASSL, volume 448)


The additional magnetic field produced by the ionospheric current system is a part of the Earth’s magnetic field. This current system is a highly variable part of a global electric circuit. The solar wind and interplanetary magnetic field (IMF) interaction with the Earth’s magnetosphere is the external driver for the global electric circuit in the ionosphere. The energy is transferred via the field-aligned currents (FACs) to the Earth’s ionosphere. The interactions between the neutral and charged particles in the ionosphere lead to the so-called thermospheric neutral wind dynamo which represents the second important driver for the global current system. Both processes are components of the magnetosphere–ionosphere–thermosphere (MIT) system, which depends on solar and geomagnetic conditions, and have significant seasonal and UT variations.

The modeling of the global dynamic Earth’s ionospheric current system is the first aim of this investigation. For our study, we use the Potsdam version of the Upper Atmosphere Model (UAM-P). The UAM is a first-principle, time-dependent, and fully self-consistent numerical global model. The model includes the thermosphere, ionosphere, plasmasphere, and inner magnetosphere as well as the electrodynamics of the coupled MIT system for the altitudinal range from 80 (60) km up to the 15 Earth radii. The UAM-P differs from the UAM by a new electric field block. For this study, the lower latitudinal and equatorial electrodynamics of the UAM-P model was improved.

The calculation of the ionospheric current system’s contribution to the Earth’s magnetic field is the second aim of this study. We present the method, which allows computing the additional magnetic field inside and outside the current layer as generated by the space current density distribution using the Biot-Savart law. Additionally, we perform a comparison of the additional magnetic field calculation using 2D (equivalent currents) and 3D current distribution.



This work was partially supported by Deutsche Forschungsgemeinschaft (DFG).


  1. Bilitza, D.: International reference ionosphere 2000. Radio Sci. 36(2), 261–275 (2001)ADSCrossRefGoogle Scholar
  2. Brunelli, B.E., Namgaladze, A.A.: Fizika Ionosfery. Nauka, Moscow (1988). ISBN: 5-02-000716-1 (in Russian)Google Scholar
  3. Förster, M., Namgaladze, A.A., Yurik, R.Y.: Thermospheric composition changes deduced from geomagnetic storm modeling. Geophys. Res. Lett. 26, 2625–2628 (1999)ADSCrossRefGoogle Scholar
  4. Förster, M., Prokhorov, B.E., Namgaladze, A.A., Holschneider, M.: Numerical modeling of solar wind influences on the dynamics of the high-latitude upper atmosphere. Adv. Radio Sci. 10, 299–312 (2012)ADSCrossRefGoogle Scholar
  5. Fukushima, N.: Generalized theorem for no ground magnetic effect of vertical currents connected with Pedersen currents in the uniform-conductivity ionosphere. Rep. Ionosph. Space Res. Jap. 30(1/2), 35–40 (1976)ADSGoogle Scholar
  6. He, M., Vogt, J., Lühr, H., Sorbalo, E., Blagau, A., Le, G., Lu, G.: A high-resolution model of field-aligned currents through empirical orthogonal functions analysis (MFACE). Geophys. Res. Lett. 39, L18105 (2012)ADSCrossRefGoogle Scholar
  7. Hedin, A.E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere. J. Geophys. Res. 96, 1159–1172 (1991)ADSCrossRefGoogle Scholar
  8. Hedin, A.E., Biondi, M.A., Burnside, R.G., Hernandez, G., Johnson, R.M., Killeen, T.L., Mazaudier, C., Meriwether, J.W., Salah, J.E., Sica, R.J., Smith, R.W., Spencer, N.W., Wickwar, V.B., Virdi, T.S.: Revised global model of thermosphere winds using satellite and ground-based observations. J. Geophys. Res. 96, 7657–7688 (1991)ADSCrossRefGoogle Scholar
  9. Iijima,T., Potemra, T.A.: The amplitude distribution of the field–aligned currents at northern high latitudes observed by TRIAD. J. Geophys. Res. 81, 2165–2174 (1976)ADSCrossRefGoogle Scholar
  10. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V.: Numerical simulation of the electric field and zonal current in the Earth’s ionosphere: the dynamo field and equatorial electrojet. Geomagn. Aeron. (Engl. translation) 46(4), 457–466 (2006)ADSCrossRefGoogle Scholar
  11. Klimenko, V.V., Klimenko, M.V., Bryukhanov, V.V.: Numerical modeling of the electric field and zonal current in the Earth’s ionosphere - statement of the problem and test calculations (in Russian). Matem. Mod. 18(3), 77–92 (2006)zbMATHGoogle Scholar
  12. Klimenko, M.V., Klimenko, V.V., Bryukhanov, V.V.: Numerical modeling of the equatorial electrojet UT-variation on the basis of the model GSM TIP. Adv. Radio Sci. 5, 385–392 (2007)ADSCrossRefGoogle Scholar
  13. Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M.: Global model of the thermosphere–ionosphere–protonosphere system. Pure Appl. Geophys. 127(2/3), 219–254 (1988)ADSCrossRefGoogle Scholar
  14. Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Surotkin, V.A., Glushchenko, T.A., Naumova, N.M.: A global numerical model of the thermosphere, ionosphere, and protonosphere of the earth. Geomagn. Aeron. (Engl. translation) 30(4), 515–521 (1990)Google Scholar
  15. Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Surotkin, V.A., Naumova, N.M.: Numerical modelling of the thermosphere–ionosphere–protonosphere system. J. Atmos. Terr. Phys. 53, 1113–1124 (1991)ADSCrossRefGoogle Scholar
  16. Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., Karpov, I.V., Bessarab, F.S., Smertin, V.M., Surotkin, V.A.: Numerical modelling of the global coupling processes in the near–earth space environment. In: Baker, D.N., Papitashvili, V.O., Teague, M.J., (eds.) Proceedings of the 1992 Symposium/5th COSPAR Colloquium, vol. 5, pp. 807–811. Pergamon Press, Washington (1994)Google Scholar
  17. Namgaladze, A.A., Martynenko, O.V., Namgaladze, A.N.: Global model of the upper atmosphere with variable latitudinal integration step. Int. J. Geomagn. Aeron. 1(1), 53–58 (1998)Google Scholar
  18. Namgaladze, A.A., Namgaladze, A.N., Yurik, R.Yu.: Global modeling of the quiet and disturbed upper atmosphere. Phys. Chem. Earth Part C 25(5/6), 533–536 (2000)ADSGoogle Scholar
  19. Namgaladze, A.A., Förster, M., Yurik, R.Y.: Analysis of the positive ionospheric response to a moderate geomagnetic storm using a global numerical model. Ann. Geophys. 18, 461–477 (2000)ADSCrossRefGoogle Scholar
  20. Namgaladze, A.A., Förster, M., Prokhorov, B.E., Zolotov, O.V.: Electromagnetic drivers in the upper atmosphere: observations and modeling.Physics of Earth and Space Environment, pp. 165–219. Springer, Dordrecht (2013). ISBN: 978-94-007-2913-1 (Print) 978-94-007-2914-8 (online)Google Scholar
  21. Papitashvili, V.O., Rich, F.J.: High-latitude ionospheric convection models derived from defense meteorological satellite program ion drift observations and parameterized by the interplanetary magnetic field strength and direction. J. Geophys. Res. 107(A8), SIA 17-1–SIA 17-13 (2002)CrossRefGoogle Scholar
  22. Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), 1468 (2002)CrossRefGoogle Scholar
  23. Prokhorov, B.E.: High-latitude coupling processes between thermospheric circulation and solar wind driven magnetospheric currents and plasma convection. PhD thesis, Universität Potsdam, Mathematisch-Naturwissenschaftliche Fakultät, Potsdam, Germany (2016)Google Scholar
  24. Prokhorov, B.E., Förster, M., He, M., Namgaladze, A.A., Holschneider, M.: Using MFACE as input in the UAM to specify MIT dynamics. J. Geophys. Res. 119(8), 6704–6714 (2014)CrossRefGoogle Scholar
  25. Richmond, A.D., Ridley, E.C., Roble, R.G.: A thermosphere/ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19(6), 601–604 (1992)ADSCrossRefGoogle Scholar
  26. Takeda, M., Maeda, H.: Three-dimensional structure of ionospheric currents, I. Currents caused by diurnal tidal winds. J. Geophys. Res. 85(A12), 6895–6899 (1980)ADSGoogle Scholar
  27. Volkov, M.A., Namgaladze, A.A.: Models of field–aligned currents needful to simulate the substorm variations of the electric field and other parameters observed by EISCAT. Ann. Geophys. 14(12), 1356–1361 (1996)ADSCrossRefGoogle Scholar
  28. Yu, T., Wan, W., Liu, L.: A theoretical model for ionospheric electric fields at mid- and low-latitudes. Sci. China Ser. G 46(1), 23–32 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Boris E. Prokhorov
    • 1
  • Matthias Förster
    • 1
  • Vincent Lesur
    • 2
  • Alexander A. Namgaladze
    • 3
  • Matthias Holschneider
    • 4
  • Claudia Stolle
    • 1
  1. 1.GFZ German Research Centre for GeosciencesHelmholtz Centre PotsdamPotsdamGermany
  2. 2.Institut de Physique du Globe de ParisSorbonne Paris Cité, Université Paris-DiderotParisFrance
  3. 3.Murmansk Arctic State UniversityMurmanskRussia
  4. 4.Institute of Applied MathematicsUniversity of PotsdamPotsdamGermany

Personalised recommendations