Skip to main content

Intelligent Data Analysis, Soft Computing and Imperfect Data

  • Chapter
  • First Online:
Soft Computing Based Optimization and Decision Models

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 360))

  • 676 Accesses

Abstract

In different real problems the available information is not as precise or as accurate as we would like. Due to possible imperfection in the data (understanding that these contain data where not all the attributes are precisely known, such as missing, imprecise, uncertain, ambiguous, etc. values), tools provided by Soft Computing are quite adequate, and the hybridization of these tools with the Intelligent Data Analysis is a field that is gaining more importance. In this paper, first we present a brief overview of the different stages of Intelligent Data Analysis, focusing on two core stages: data preprocessing and data mining. Second, we perform an analysis of different hybridization approaches of the Intelligent Data Analysis with the Soft Computing for these two stages. The analysis is performed from two levels: If elements of Soft Computing are incorporated in the design of the method/model, or if they are also incorporated to be able to deal with imperfect information. Finally, in a third section, we present in more detail several methods which allow the use of imperfect data both for their learning phase and for the prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abe, S.: Fuzzy support vector machines for multilabel classification. Pattern Recogn. 48(6), 2110–2117 (2015)

    Article  Google Scholar 

  2. Barua, A., Mudunuri, L.S., Kosheleva, O.: Why trapezoidal and triangular membership functions work so well: Towards a theoretical explanation. J. Uncertain Syst. 8(3), 164–168 (2014)

    Google Scholar 

  3. Battiti, R.: Using mutual information for selection features in supervised neural net learning. IEEE Trans. Neural Netw. 5, 537–550 (1994)

    Article  Google Scholar 

  4. Berlanga, F.J., Rivera, A., del Jesús, M.J., Herrera, F.: GP-COACH: genetic programming-based learning of compact and accurate fuzzy rule-based classification systems for high-dimensional problems. Inf. Sci. 180(8), 1183–1200 (2010)

    Article  Google Scholar 

  5. Berthold, M.R., Borgelt, C., Höppner, F., Klawonn, F.: Guide to Intelligent Data Analysis: How to Intelligently Make Sense of Real Data. Springer (2010)

    Google Scholar 

  6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press (1981)

    Google Scholar 

  7. Bonissone, P.: Soft computing: the convergence of emerging reasoning technologies. Soft Comput. 1(1), 6–18 (1997)

    Article  MathSciNet  Google Scholar 

  8. Bonissone, P., Cadenas, J.M., Garrido, M.C., Díaz-Valladares, R.A.: A fuzzy random forest. Int. J. Approximate Reasoning 51(7), 729–747 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boulle, M.: Khiops: a statistical discretization method of continuous attributes. Mach. Learn. 55(1), 53–69 (2004)

    Article  MATH  Google Scholar 

  10. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. CRC Press (1984)

    Google Scholar 

  11. Cadenas, J.M., Garrido, M.C., Martínez, R.: Feature subset selection filter-wrapper based on low quality data. Expert Syst. Appl. 40(16), 6241–6252 (2013)

    Article  Google Scholar 

  12. Cadenas, J.M., Garrido, M.C., Martínez, R., Bonissone, P.P.: Extending information processing in a fuzzy random forest ensemble. Soft Comput. 16(5), 845–861 (2012)

    Article  Google Scholar 

  13. Cadenas, J.M., Garrido, M.C., Martínez, R., Bonissone, P.P.: OFP_CLASS: a hybrid method to generate optimized fuzzy partitions for classification. Soft Comput. 16(4), 667–682 (2012)

    Article  Google Scholar 

  14. Cadenas, J.M., Garrido, M.C., Martínez, R., Muñoz, E., Bonissone, P.P.: A fuzzy k-nearest neighbor classifier to deal with imperfect data. Soft Comput. (2017). doi:10.1007/s00500-017-2567-x

    Google Scholar 

  15. Chan, C.C., Batur, C., Srinivasan, A.: Determination of quantization intervals in rule based model for dynamic systems. In: Proceedings of the International Conference on Systems, Man, and Cybernetics, pp. 1719–1723 (1991)

    Google Scholar 

  16. Choi, Y.S., Moon, B.R.: Feature selection in genetic fuzzy discretization for the pattern classification problems. IEICE Trans. Inf. Syst. 90(7), 1047–1054 (2007)

    Article  Google Scholar 

  17. Clark, P., Boswell, R.: Rule induction with CN2: Some recent improvements. In: Y. Kodratoff (ed.) Lecture Notes in Artificial Intelligence. Machine Learning EWSL-91, pp. 151–163. Springer (1991)

    Google Scholar 

  18. Cox, E., Taber, R., O’Hagen, M.: The Fuzzy Systems Handbook, 2nd edn. Academic Press (1998)

    Google Scholar 

  19. Crockett, K., Bandar, Z., Mclean, D.: Growing a fuzzy decision forest. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, vol. 2, pp. 614–617 (2001)

    Google Scholar 

  20. Derrac, J., García, S., Herrera, F.: Fuzzy nearest neighbor algorithms: taxonomy, experimental analysis and prospects. Inf. Sci. 260, 98–119 (2014)

    Article  Google Scholar 

  21. Djouadi, A., Bouktache, E.: A fast algorithm for the nearest-neighbor classifier. IEEE Trans. Pattern Anal. Mach. Intell. 19(3), 277–282 (1997)

    Article  Google Scholar 

  22. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley (2001)

    Google Scholar 

  23. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery: an overview. In: U.M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, R. Uthurusamy (eds.) Advances in Knowledge Discovery and Data Mining, pp. 1–34. American Association for Artificial Intelligence (1996)

    Google Scholar 

  24. Fernández, A., del Jesus, M.J., Herrera, F.: Hierarchical fuzzy rule based classification systems with genetic rule selection for imbalanced data-sets. Int. J. Approximate Reasoning 50(3), 561–577 (2009)

    Article  MATH  Google Scholar 

  25. Fisher, D.H.: Knowledge acquisition via incremental conceptual clustering. Mach. Learn. 2(2), 139–172 (1987)

    Google Scholar 

  26. Fukunaga, K.: Introduction to statistical pattern recognition. Academic Press (1990)

    Google Scholar 

  27. García, S., Luengo, J., Herrera, F.: Data Preprocessing in Data Mining. Springer (2015)

    Google Scholar 

  28. Garrido, M.C., Cadenas, J.M., Bonissone, P.P.: A classification and regression technique to handle heterogeneous and imperfect information. Soft Comput. 14(11), 1165–1185 (2010)

    Article  Google Scholar 

  29. George, G., Raj, V.C.: Review on feature selection techniques and the impact of svm for cancer classification using gene expression profile. Int. J. Comput. Sci. Eng. Surv. 2(3), 16–27 (2011)

    Article  Google Scholar 

  30. Ghosh, A., Pal, S.K.: Soft computing approach to pattern recognition and image processing. World Scientific (2002)

    Google Scholar 

  31. Hamamoto, Y., Uchimura, S., Tomita, S.: A bootstrap technique for nearest neighbor classifier design. IEEE Trans. Pattern Anal. Mach. Intell. 19(1), 73–79 (1997)

    Article  Google Scholar 

  32. Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley (1990)

    Google Scholar 

  33. Ho, K.M., Scott, P.D.: Zeta: a global method for discretization of cotitinuous variables. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining, pp. 191–194 (1997)

    Google Scholar 

  34. Holte, R.C.: Very simple classification rules perform well on most on most commonly used datasets. Mach. Learn. 11, 63–90 (1993)

    Article  MATH  Google Scholar 

  35. Huang, Z., Ng, M.K.: A fuzzy k-modes algorithm for clustering categorical data. IEEE Trans. Fuzzy Syst. 7(4), 446–452 (1999)

    Article  Google Scholar 

  36. Isasi, P., Galván, I.: Las redes neuronales artificiales - Un enfoque práctico. Pearson - Prentice Hall (2004)

    Google Scholar 

  37. Ishibuchi, H., Yamamoto, T.: Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13(4), 428–435 (2005)

    Article  Google Scholar 

  38. Janikow, C.Z.: Fuzzy decision trees: issues and methods. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 28(1), 1–14 (1998)

    Google Scholar 

  39. Janikow, C.Z.: Fuzzy decision forest. In: Proceedings of the 22nd International Conference of the North American Fuzzy Information Processing Society, pp. 480–483 (2003)

    Google Scholar 

  40. Janikow, C.Z., Fajfer, M.: Fuzzy partitioning with fid3. 1. In: Proceedings of the 18th International Conference of the North American Fuzzy Information Processing Society, pp. 467–471 (1999)

    Google Scholar 

  41. Jensen, R., Shen, Q.: Fuzzy-rough sets assisted attribute selection. IEEE Trans. Fuzzy Syst. 15(1), 73–89 (2007)

    Article  Google Scholar 

  42. Kabir, M., Shahjahan, M., Murase, K.: A new hybrid ant colony optimization algorithm for feature selection. Expert Syst. Appl. 39, 3747–3763 (2012)

    Article  Google Scholar 

  43. Kbir, M.A., Benkirane, H., Maalmi, K., Benslimane, R.: Hierarchical fuzzy partition for pattern classification with fuzzy if-then rules. Pattern Recogn. Lett. 21(6), 503–509 (2000)

    Article  Google Scholar 

  44. Kerber, R.: ChiMerge: discretization of numeric attributes. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 123–128 (1992)

    Google Scholar 

  45. Kohonen, T.: Self-Organising Maps, 3rd edn. Springer (2001)

    Google Scholar 

  46. Kurgan, L.A., Cios, K.J.: Caim discretization algorithm. IEEE Trans. Knowl. Data. Eng. 16(2), 145–153 (2004)

    Article  Google Scholar 

  47. Lee, K.M., Lee, K.M., Lee, J.H., Lee-Kwang, H.: A fuzzy decision tree induction method for fuzzy data. Proceedings of the IEEE International Conference on Fuzzy Systems 1, 16–21 (1999)

    Google Scholar 

  48. Li, C.: A combination scheme for fuzzy partitions based on fuzzy majority voting rule. In: Proc. of the International Conference on Networks Security, Wireless Communications and Trusted Computing, vol. 2, pp. 675–678 (2009)

    Google Scholar 

  49. Li, D., Gu, H., Zhang, L.: A fuzzy c-means clustering algorithm based on nearest-neighbor intervals for incomplete data. Expert Syst. Appl. 37(10), 6942–6947 (2010)

    Article  Google Scholar 

  50. Lin, C.F., Wang, S.D.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002)

    Article  Google Scholar 

  51. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: an enabling technique. Data Min. Knowl. Discov. 6(4), 393–423 (2002)

    Article  MathSciNet  Google Scholar 

  52. Liu, H., Setiono, R.: Feature selection via discretization. IEEE Trans. Knowl. Data. Eng. 9(4), 642–645 (1997)

    Article  Google Scholar 

  53. Luukka, P.: Feature selection using fuzzy entropy measures with similarity classifier. Expert Syst. Appl. 38(4), 4600–4607 (2011)

    Article  Google Scholar 

  54. Madjarov, G., Kocev, D., Gjorgjevikj, D., Džeroski, S.: An extensive experimental comparison of methods for multi-label learning. Pattern Recogn. 45(9), 3084–3104 (2012)

    Article  Google Scholar 

  55. Marsala, C.: Data mining with ensembles of fuzzy decision trees. In: Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining, pp. 348–354 (2009)

    Google Scholar 

  56. Mayer-Schönberger, V., Cukier, K.: Big Data: A revolution that will transform how we live, work, and think. Houghton Mifflin Harcourt (2013)

    Google Scholar 

  57. Michalski, R.S., Mozetic, I., Hong, J., Lavrac, N.: The AQ15 inductive learning system: an overview and experiments. In: Proceedings of the International Meeting on Advances in Learning (1986)

    Google Scholar 

  58. Micó, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating and eliminating search algorithm with linear preprocessing time and memory requirements. Pattern Recogn. Lett. 15(1), 9–17 (1994)

    Article  Google Scholar 

  59. Mirkin, B.: Mathematical Classification and Clustering. Kluwer Academic Publishers (1996)

    Google Scholar 

  60. Mitra, S., Pal, S.K.: Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Trans. Neural Netw. 6(1), 51–63 (1995)

    Article  Google Scholar 

  61. Mitra, S., Pal, S.K., Mitra, P.: Data mining in soft computing framework: a survey. IEEE Trans. Neural Netw. 13(1), 3–14 (2002)

    Article  Google Scholar 

  62. Moody, J., Darken, C.J.: Fast learning in networks of locally-tuned processing units. Neural Comput. 1(2), 281–294 (1989)

    Article  Google Scholar 

  63. Myles, A.J., Brown, S.D.: Induction of decision trees using fuzzy partitions. J. Chemom. 17(10), 531–536 (2003)

    Article  Google Scholar 

  64. Nascimento, S., Mirkin, B., Moura-Pires, F.: A fuzzy clustering model of data and fuzzy c-means. Proceedings of the Ninth IEEE International Conference on Fuzzy Systems 1, 302–307 (2000)

    Google Scholar 

  65. Nauck, D., Kruse, R.: A neuro-fuzzy method to learn fuzzy classification rules from data. Fuzzy Sets Syst. 89(3), 277–288 (1997)

    Article  MathSciNet  Google Scholar 

  66. Olaru, C., Wehenkel, L.: A complete fuzzy decision tree technique. Fuzzy Sets Syst. 138(2), 221–254 (2003)

    Article  MathSciNet  Google Scholar 

  67. Palacios, A.M., Palacios, J.L., Sánchez, L., Alcalá-Fdez, J.: Genetic learning of the membership functions for mining fuzzy association rules from low quality data. Inf. Sci. 295, 358–378 (2015)

    Article  MATH  Google Scholar 

  68. Palacios, A.M., Sánchez, L., Couso, I.: Extending a simple genetic cooperative-competitive learning fuzzy classifier to low quality datasets. Evol. Intell. 2(1–2), 73–84 (2009)

    Article  Google Scholar 

  69. Palacios, A.M., Sanchez, L., Couso, I.: Boosting of fuzzy rules with low quality data. Multiple-Valued Logic Soft Comput. 19(5–6), 591–619 (2012)

    MathSciNet  Google Scholar 

  70. Palacios, A.M., Sanchez, L., Couso, I.: An extension of the FURIA classification algorithm to low quality data. In: Proceedings of the International Conference on Hybrid Artificial Intelligence Systems, pp. 679–688 (2013)

    Google Scholar 

  71. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)

    Google Scholar 

  72. Quinlan, J.R.: C4.5 Programs for Machine Learning. Morgan Kaufmann (1993)

    Google Scholar 

  73. Redmond, S.J., Heneghan, C.: A method for initialising the k-means clustering algorithm using kd-trees. Pattern Recogn. Lett. 28(8), 965–973 (2007)

    Article  Google Scholar 

  74. Ruck, D.W., Rogers, S.K., Kabrisky, M., Oxley, M.E., Suter, B.W.: The multilayer perceptron as an approximation to a bayes optimal discriminant function. IEEE Trans. Neural Netw. 1(4), 296–298 (1990)

    Article  Google Scholar 

  75. Saeys, Y., Inza, I., Larrañaga, P.: A review of feature selection techniques in bioinformatics. Bioinformatics 23(19), 2507–2517 (2007)

    Article  Google Scholar 

  76. Saha, S., Bandyopadhyay, S.: A fuzzy genetic clustering technique using a new symmetry based distance for automatic evolution of clusters. In: Proceedings of the International Conference on Computing: Theory and Applications, pp. 309–314 (2007)

    Google Scholar 

  77. Sánchez, L., Suárez, M.R., Villar, J.R., Couso, I.: Mutual information-based feature selection and partition design in fuzzy rule-based classifiers from vague data. Int. J. Approximate Reasoning 49, 607–622 (2008)

    Article  Google Scholar 

  78. Suárez, M.R., Villar, J.R., Grande, J.: A feature selection method using a fuzzy mutual information measure. Int. J. Reasoning-Based Intell. Syst. 2, 133–141 (2010)

    Article  Google Scholar 

  79. Toivonen, H.: Sampling large databases for association rules. In: Proceedings of the 22nd Conference on Very Large Databases, vol. 96, pp. 134–145 (1996)

    Google Scholar 

  80. Torra, V.: Fuzzy c-means for fuzzy hierarchical clustering. In: Proceedings of the 14th IEEE International Conference on Fuzzy Systems, pp. 646–651 (2005)

    Google Scholar 

  81. Tsai, C.J., Lee, C.I., Yang, W.P.: A discretization algorithm based on class-attribute contingency coefficient. Inf. Sci. 178, 714–731 (2008)

    Article  Google Scholar 

  82. Verdegay, J.L., Yager, R.R., Bonissone, P.: On heuristic as a fundamental constituent of soft computing. Fuzzy Sets Syst. 159(7), 846–855 (2008)

    Article  MathSciNet  Google Scholar 

  83. Vieira, S.M., Sousa, J.M.C., Kaymak, U.: Fuzzy criteria for feature selection. Fuzzy Set Syst. 189, 1–18 (2012)

    Article  MathSciNet  Google Scholar 

  84. Wang, Y., Li, C., Zuo, Y.: A selection model for optimal fuzzy clustering algorithm and number of clusters based on competitive comprehensive fuzzy evaluation. IEEE Trans. Fuzzy Syst. 17(3), 568–577 (2009)

    Article  Google Scholar 

  85. Witten, I.H., Frank, E., Hall, M.: Data Mining—Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2011)

    Google Scholar 

  86. Wong, M.L., Leung, K.S.: Data Mining Using Grammar Based Genetic Programming and Applications. Kluwer Academic Publishers (2002)

    Google Scholar 

  87. Yan-Qing, Y., Ju-Sheng, M., Zhou-Jun, L.: Attribute reduction based on generalized fuzzy evidence theory in fuzzy decision systems. Fuzzy Sets Syst. 170, 64–75 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  88. Yang, Y., Jia, Z., Chang, C., Qin, X., Li, T., Wang, H., Zhao, J.: An efficient fuzzy kohonen clustering network algorithm. Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery 1, 510–513 (2008)

    Google Scholar 

  89. Younes, Z., Abdallah, F., Denœux, T.: Fuzzy multi-label learning under veristic variables. In: Proceedings of the IEEE International Conference on Fuzzy Systems, pp. 1–8 (2010)

    Google Scholar 

  90. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  91. Zadeh, L.A.: Soft computing and fuzzy logic. IEEE Softw. 11(6), 48–56 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

Supported by the projects TIN2014-52099-R (EDISON) and TIN2014-56381-REDT (LODISCO) granted by the Ministry of Economy and Competitiveness of Spain (including ERDF support).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose M. Cadenas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cadenas, J.M., Garrido, M.C. (2018). Intelligent Data Analysis, Soft Computing and Imperfect Data. In: Pelta, D., Cruz Corona, C. (eds) Soft Computing Based Optimization and Decision Models. Studies in Fuzziness and Soft Computing, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-319-64286-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64286-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64285-7

  • Online ISBN: 978-3-319-64286-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics