Skip to main content

Diverse Selection of Feature Subsets for Ensemble Regression

  • 1596 Accesses

Part of the Lecture Notes in Computer Science book series (LNISA,volume 10440)

Abstract

Regression tasks such as forecasting of sensor values play a principal role in industrial applications. For instance, modern automobiles have hundreds of process variables which are used to predict target sensor values. Due to the complexity of these systems, each subset of features often shows different type of correlations with the target. Capturing such local interactions improve the regression models. Nevertheless, several existing feature selection algorithms focus on obtaining a single projection of the features and are not able to exploit the multiple local interactions from different subsets of variables. It is still an open challenge to efficiently select multiple subsets that not only contribute for the prediction quality, but are also diverse, i.e., subsets with complementary information. Such diverse subsets enrich the regression model with novel and essential knowledge by capturing the local interactions using multiple views of a high-dimensional feature space. In this work, we propose a framework to select multiple diverse subsets. First, our approach prunes the feature space by using the properties of multiple correlation measures. The pruned feature space is used to systematically generate new diverse combinations of feature subsets without decrease in the prediction quality. We show that our approach outperforms prevailing approaches on synthetic and several real world datasets from different application domains.

Keywords

  • Feature Subset
  • Ensemble Regression Model
  • Measures Multiple Regression
  • Prediction Quality
  • Correlation Measures

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-64283-3_19
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   64.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-64283-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

References

  1. Stock closing prices for 156 companies and 3 indexes from 2000 to 2007 (2011). http://mldata.org/repository/data/viewslug/stockvalues/

  2. Babatunde, O., Armstrong, L., Leng, J., Diepeveen, D.: A genetic algorithm-based feature selection. Br. J. Math. Comput. Sci. 4(21), 889–905 (2014)

    Google Scholar 

  3. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    CrossRef  MATH  Google Scholar 

  4. Camacho, R.: Delta ailerons (1997). http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html

  5. Fei, T., Kraus, D., Zoubir, A.M.: Contributions to automatic target recognition systems for underwater mine classification. IEEE Trans. Geosci. Remote Sens. 53(1), 505–518 (2015)

    CrossRef  Google Scholar 

  6. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J.-Jpn. Soc. Artif. Intell. 14(771–780), 1612 (1999)

    Google Scholar 

  7. Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods. Wiley, New York (2013)

    MATH  Google Scholar 

  8. Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2002)

    Google Scholar 

  9. Kawala, F., Douzal-Chouakria, A., Gaussier, E., Dimert, E.: Prédictions d’activité dans les réseaux sociaux en ligne. In: 4ième conférence sur les modèles et l’analyse des réseaux: Approches mathématiques et informatiques, p. 16 (2013)

    Google Scholar 

  10. Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)

    CrossRef  MATH  Google Scholar 

  11. Lázaro Gredilla, M.: Sparse Gaussian processes for large-scale machine learning (2010)

    Google Scholar 

  12. Lewitt, M., Polikar, R.: An ensemble approach for data fusion with learn++. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 176–185. Springer, Heidelberg (2003). doi:10.1007/3-540-44938-8_18

    CrossRef  Google Scholar 

  13. Molina, L.C., Belanche, L., Nebot, À.: Feature selection algorithms: a survey and experimental evaluation. In: 2002 IEEE International Conference on Data Mining, 2002, ICDM 2003, Proceedings, pp. 306–313. IEEE (2002)

    Google Scholar 

  14. NIPS: Workshop on variable and feature selection (2001). http://www.clopinet.com/isabelle/Projects/NIPS2001/

  15. Olson, J.E.: On the symmetric difference of two sets in a group. Eur. J. Combin. 7(1), 43–54 (1986)

    CrossRef  MathSciNet  MATH  Google Scholar 

  16. Oza, N.C., Tumer, K., Norwig, P.: Dimensionality reduction through classifier ensembles (1999)

    Google Scholar 

  17. Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel associations in large data sets. Science 334(6062), 1518–1524 (2011)

    CrossRef  MATH  Google Scholar 

  18. Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)

    CrossRef  MATH  Google Scholar 

  19. Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS, vol. 5212, pp. 313–325. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87481-2_21

    CrossRef  Google Scholar 

  20. Sharkawy, R., Ibrahim, K., Salama, M., Bartnikas, R.: Particle swarm optimization feature selection for the classification of conducting particles in transformer oil. IEEE Trans. Dielectr. Electr. Insulation 18(6), 1897–1907 (2011)

    CrossRef  Google Scholar 

  21. Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)

    Google Scholar 

  22. Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Tan, P.N.: Introduction to Data Mining. Pearson Education, Noida (2006)

    Google Scholar 

  24. Yoon, H., Yang, K., Shahabi, C.: Feature subset selection and feature ranking for multivariate time series. IEEE Trans. Knowl. Data Eng. 17(9), 1186–1198 (2005)

    CrossRef  Google Scholar 

  25. Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: ICML, vol. 3, pp. 856–863 (2003)

    Google Scholar 

  26. Zamora-Martínez, F., Romeu, P., Botella-Rocamora, P., Pardo, J.: On-line learning of indoor temperature forecasting models towards energy efficiency. Energy Build. 83, 162–172 (2014)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Shekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Shekar, A.K., Sánchez, P.I., Müller, E. (2017). Diverse Selection of Feature Subsets for Ensemble Regression. In: Bellatreche, L., Chakravarthy, S. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2017. Lecture Notes in Computer Science(), vol 10440. Springer, Cham. https://doi.org/10.1007/978-3-319-64283-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64283-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64282-6

  • Online ISBN: 978-3-319-64283-3

  • eBook Packages: Computer ScienceComputer Science (R0)