Abstract
Regression tasks such as forecasting of sensor values play a principal role in industrial applications. For instance, modern automobiles have hundreds of process variables which are used to predict target sensor values. Due to the complexity of these systems, each subset of features often shows different type of correlations with the target. Capturing such local interactions improve the regression models. Nevertheless, several existing feature selection algorithms focus on obtaining a single projection of the features and are not able to exploit the multiple local interactions from different subsets of variables. It is still an open challenge to efficiently select multiple subsets that not only contribute for the prediction quality, but are also diverse, i.e., subsets with complementary information. Such diverse subsets enrich the regression model with novel and essential knowledge by capturing the local interactions using multiple views of a high-dimensional feature space. In this work, we propose a framework to select multiple diverse subsets. First, our approach prunes the feature space by using the properties of multiple correlation measures. The pruned feature space is used to systematically generate new diverse combinations of feature subsets without decrease in the prediction quality. We show that our approach outperforms prevailing approaches on synthetic and several real world datasets from different application domains.
Keywords
- Feature Subset
- Ensemble Regression Model
- Measures Multiple Regression
- Prediction Quality
- Correlation Measures
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options





References
Stock closing prices for 156 companies and 3 indexes from 2000 to 2007 (2011). http://mldata.org/repository/data/viewslug/stockvalues/
Babatunde, O., Armstrong, L., Leng, J., Diepeveen, D.: A genetic algorithm-based feature selection. Br. J. Math. Comput. Sci. 4(21), 889–905 (2014)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Camacho, R.: Delta ailerons (1997). http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
Fei, T., Kraus, D., Zoubir, A.M.: Contributions to automatic target recognition systems for underwater mine classification. IEEE Trans. Geosci. Remote Sens. 53(1), 505–518 (2015)
Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J.-Jpn. Soc. Artif. Intell. 14(771–780), 1612 (1999)
Hollander, M., Wolfe, D.A., Chicken, E.: Nonparametric Statistical Methods. Wiley, New York (2013)
Jolliffe, I.: Principal Component Analysis. Wiley Online Library (2002)
Kawala, F., Douzal-Chouakria, A., Gaussier, E., Dimert, E.: Prédictions d’activité dans les réseaux sociaux en ligne. In: 4ième conférence sur les modèles et l’analyse des réseaux: Approches mathématiques et informatiques, p. 16 (2013)
Kohavi, R., John, G.H.: Wrappers for feature subset selection. Artif. Intell. 97(1), 273–324 (1997)
Lázaro Gredilla, M.: Sparse Gaussian processes for large-scale machine learning (2010)
Lewitt, M., Polikar, R.: An ensemble approach for data fusion with learn++. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709, pp. 176–185. Springer, Heidelberg (2003). doi:10.1007/3-540-44938-8_18
Molina, L.C., Belanche, L., Nebot, À.: Feature selection algorithms: a survey and experimental evaluation. In: 2002 IEEE International Conference on Data Mining, 2002, ICDM 2003, Proceedings, pp. 306–313. IEEE (2002)
NIPS: Workshop on variable and feature selection (2001). http://www.clopinet.com/isabelle/Projects/NIPS2001/
Olson, J.E.: On the symmetric difference of two sets in a group. Eur. J. Combin. 7(1), 43–54 (1986)
Oza, N.C., Tumer, K., Norwig, P.: Dimensionality reduction through classifier ensembles (1999)
Reshef, D.N., Reshef, Y.A., Finucane, H.K., Grossman, S.R., McVean, G., Turnbaugh, P.J., Lander, E.S., Mitzenmacher, M., Sabeti, P.C.: Detecting novel associations in large data sets. Science 334(6062), 1518–1524 (2011)
Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)
Saeys, Y., Abeel, T., Van de Peer, Y.: Robust feature selection using ensemble feature selection techniques. In: Daelemans, W., Goethals, B., Morik, K. (eds.) ECML PKDD 2008. LNCS, vol. 5212, pp. 313–325. Springer, Heidelberg (2008). doi:10.1007/978-3-540-87481-2_21
Sharkawy, R., Ibrahim, K., Salama, M., Bartnikas, R.: Particle swarm optimization feature selection for the classification of conducting particles in transformer oil. IEEE Trans. Dielectr. Electr. Insulation 18(6), 1897–1907 (2011)
Smola, A., Vapnik, V.: Support vector regression machines. Adv. Neural Inf. Process. Syst. 9, 155–161 (1997)
Székely, G.J., Rizzo, M.L., Bakirov, N.K.: Measuring and testing dependence by correlation of distances. Ann. Stat. 35(6), 2769–2794 (2007)
Tan, P.N.: Introduction to Data Mining. Pearson Education, Noida (2006)
Yoon, H., Yang, K., Shahabi, C.: Feature subset selection and feature ranking for multivariate time series. IEEE Trans. Knowl. Data Eng. 17(9), 1186–1198 (2005)
Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: ICML, vol. 3, pp. 856–863 (2003)
Zamora-Martínez, F., Romeu, P., Botella-Rocamora, P., Pardo, J.: On-line learning of indoor temperature forecasting models towards energy efficiency. Energy Build. 83, 162–172 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Shekar, A.K., Sánchez, P.I., Müller, E. (2017). Diverse Selection of Feature Subsets for Ensemble Regression. In: Bellatreche, L., Chakravarthy, S. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2017. Lecture Notes in Computer Science(), vol 10440. Springer, Cham. https://doi.org/10.1007/978-3-319-64283-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-64283-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-64282-6
Online ISBN: 978-3-319-64283-3
eBook Packages: Computer ScienceComputer Science (R0)