Skip to main content

How to Design Adaptive Information Environments to Support Self-Regulated Learning with Multimedia

  • Chapter
  • First Online:
Informational Environments

Abstract

Multimedia materials have become an important component of digital information environments. In general, they have been shown to foster student learning; however, many students fail to process the materials in ways that lead to deeper understanding. This can be regarded as a deficit in students’ self-regulation. That is, many students do not adequately monitor their level of understanding and do not apply cognitive processes that would contribute to better learning. Modern educational technology allows supporting learners by designing information environments that—rather than offering a one-size-fits-all support—are adapted to the degree to which students face learning problems. In particular, adaptive learning environments facilitate (continuous) self-assessment of the students’ learning processes as well as the knowledge they acquire, thereby supporting monitoring. In addition, they improve regulation of learning processes by giving instructional guidance that is adjusted to what is needed by a particular student in a specific situation. In the present contribution, we describe a multimedia learning environment that monitors the students’ learning by registering and analyzing their eye movements and their knowledge by means of rapid assessment tasks. Moreover, the learning environment offers either assistive or directive adaptivity to support them (e.g., instructional prompts, changes in the design of the learning materials). We discuss challenges regarding the design of the adaptive (multimedia) learning environment that refer to the assessment of learning deficits as well as the choice of interventions aimed at overcoming these deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbulut, Y., & Cardak, C. S. (2012). Adaptive educational hypermedia accommodating learning styles: A content analysis of publications from 2000 to 2011. Computers & Education, 58, 835–842. doi:10.1016/j.compedu.2011.10.008

    Article  Google Scholar 

  • Anglin, G. J., Vaez, H., & Cunningham, K. L. (2004). Visual representation and learning: The role of static and animated graphics. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed., pp. 865–916). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Ayres, P., & Sweller, J. (2014). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 206–226). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Azevedo, R. (2005). Using hypermedia as a metacognitive tool for enhancing student learning? The role of self-regulated learning. Educational Psychologist, 40, 199–209.

    Article  Google Scholar 

  • Azevedo, R., Millar, G. C., Taub, M., Mudrick, N. V., Bradbury, A. E., & Price, M. J. (2017). Using data visualizations to foster emotion regulation during self-regulated learning with advanced learning technologies. In J. Buder & F. W. Hesse (Eds.), Informational environments: Effects of use, effective designs (pp. 225–247). New York, NY: Springer.

    Google Scholar 

  • Barab, S. A., Bowdish, B. E., Young, M. F., & Owen, S. V. (1996). Understanding kiosk navigation: Using log files to capture hypermedia searches. Instructional Science, 24, 377–395.

    Article  Google Scholar 

  • Bartholomé, T., & Bromme, R. (2009). Coherence formation when learning from text and pictures: What kind of support for whom? Journal of Educational Psychology, 101, 282–293. doi:10.1037/a0014312

    Article  Google Scholar 

  • Bjork, R. A., Dunlosky, J., & Kornell, N. (2013). Self-regulated learning: Beliefs, techniques, and illusions. Annual Review of Psychology, 64, 417–444. 10.1146/annurev-psych-113011-143823

    Article  PubMed  Google Scholar 

  • Boekaerts, M. (1999). Self-regulated learning: Where we are today. International Journal of Educational Research, 31, 445–457.

    Article  Google Scholar 

  • Brusilovsky, P. (2001). Adaptive hypermedia. User Modeling and User-Adapted Interaction, 11, 87–110.

    Article  Google Scholar 

  • Butcher, K. R. (2014). The multimedia principle. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 174–205). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Conati, C., & Merten, C. (2007). Eye-tracking for user modeling in exploratory learning environments: An empirical evaluation. Knowledge-Based Systems, 20, 557–574. doi:10.1016/j.knosys.2007.04.010

    Article  Google Scholar 

  • Cromley, J. G., Bergey, B. W., Fitzhugh, S. L., Newcombe, N., Wills, T. W., Shipley, T. F., & Tanaka, J. C. (2013). Effectiveness of student-constructed diagrams and self-explanation instruction. Learning & Instruction, 26, 45–58. doi:10.1016/j.learninstruc.2013.01.003

    Article  Google Scholar 

  • D’Mello, S., Olney, A., Williams, C., & Hays, P. (2012). Gaze tutor: A gaze-reactive intelligent tutoring system. International Journal of Human-Computer Studies, 70, 377–398. doi:10.1016/j.ijhcs.2012.01.004

    Article  Google Scholar 

  • Eitel, A. (2016). How repeated studying and testing affects multimedia learning: Evidence for adaptation to task demands. Learning and Instruction, 41, 70–84. doi:10.1016/j.learninstruc.2015.10.003

    Article  Google Scholar 

  • Ginns, P. (2006). Integrating information: A meta-analysis of the spatial contiguity and temporal contiguity effects. Learning & Instruction, 16, 511–525. doi:10.1016/j.learninstruc.2006.10.001

    Article  Google Scholar 

  • Hannus, M., & Hyönä, J. (1999). Utilization of illustrations during learning of science textbook passages among low-and high-ability children. Contemporary Educational Psychology, 24, 95–123. doi:10.1006/ceps.1998.0987

    Article  PubMed  Google Scholar 

  • Johnson, C. I., & Mayer, R. E. (2012). An eye movement analysis of the spatial contiguity effect in multimedia learning. Journal of Experimental Psychology. Applied, 18, 178–191. doi:10.1037/a0026923

    Article  PubMed  Google Scholar 

  • Just, M. A., & Carpenter, P. A. (1980). A theory of reading: From eye fixations to comprehension. Psychological Review, 87, 329–355.

    Article  PubMed  Google Scholar 

  • Kalyuga, S. (2007). Expertise reversal effect and its implications for learner-tailored instruction. Educational Psychology Review, 19, 509–539. doi:10.1007/s10648-007-9054-3

    Article  Google Scholar 

  • Kalyuga, S. (2008). When less is more in cognitive diagnosis: A rapid online method for diagnosing learner task-specific expertise. Journal of Educational Psychology, 100, 603–612. doi:10.1037/0022-0663.100.3.603

    Article  Google Scholar 

  • Kalyuga, S., Ayres, P., Chandler, P., & Sweller, J. (2003). The expertise reversal effect. Educational Psychologist, 38, 23–31. doi:10.1207/s15326985ep3801_4

    Article  Google Scholar 

  • Kalyuga, S., & Renkl, A. (2010). Expertise reversal effect and its instructional implications: Introduction to the special issue. Instructional Science, 38, 209–215. doi:10.1007/s11251-009-9102-0

    Article  Google Scholar 

  • Kombartzky, U., Ploetzner, R., Schlag, S., & Metz, B. (2010). Developing and evaluating a strategy for learning from animations. Learning & Instruction, 20, 424–433. doi:10.1016/j.learninstruc.2009.05.002

    Article  Google Scholar 

  • Mason, L., Pluchino, P., & Tornatora, M. C. (2015). Eye-movement modeling of integrative reading of an illustrated text: Effects on processing and learning. Contemporary Educational Psychology, 41, 172–187. doi:10.1016/j.cedpsych.2015.01.004

    Article  Google Scholar 

  • Mason, L., Tornatora, M. C., & Pluchino, P. (2013). Do fourth graders integrate text and picture in processing and learning from an illustrated science text? Evidence from eye-movement patterns. Computers & Education, 60, 95–109. doi:10.1016/j.compedu.2012.07.011

    Article  Google Scholar 

  • Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • Mayer, R. E., & Moreno, R. (2002). Aids to computer-based multimedia learning. Learning and Instruction, 12, 107–120.

    Article  Google Scholar 

  • McNamara, D., Kintsch, E., Songer, N. B., & Kintsch, W. (1996). Are good texts always better? Interactions of text coherence, background knowledge, and levels of understanding in learning from text. Cognition and Instruction, 14, 1–43. doi:10.1207/s1532690xci1401_1

    Article  Google Scholar 

  • Nückles, M., Hübner, S., Dümer, S., & Renkl, A. (2010). Expertise reversal effects in writing-to-learn. Instructional Science, 38, 237–258. doi:10.1007/s11251-009-9106-9

    Article  Google Scholar 

  • Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computers & Education, 53, 445–453. doi:10.1016/j.compedu.2009.03.002

    Article  Google Scholar 

  • Park, O.-C., & Lee, J. (2004). Adaptive instructional systems. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 651–684). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Pressley, M., Borkowski, J. G., & Schneider, W. (1989). Good information processing: What it is and how education can promote it. International Journal of Educational Research, 13, 857–867.

    Article  Google Scholar 

  • Renkl, A., & Scheiter, K. (2015). Studying visual displays: How to instructionally support learning. Educational Psychology Review, 1–23. doi:10.1007/s10648-015-9340-4

  • Renkl, A., Skuballa, I. T., Schwonke, R., Harr, N., & Leber, J. (2015). The effects of rapid assessments and adaptive restudy prompts in multimedia learning. Educational Technology & Society, 18, 185–199.

    Google Scholar 

  • Richter, J., Scheiter, K., & Eitel, A. (in press). Signaling text–picture relations in multimedia learning: The influence of prior knowledge. Journal of Educational Psychology. https://doi.org/10.1037/edu0000220

    Article  Google Scholar 

  • Roda, C., & Thomas, J. (2006). Attention aware systems: Theories, applications, and research agenda. Computers in Human Behavior, 22, 557–587. doi:10.1016/j.chb.2005.12.005

    Article  Google Scholar 

  • Ruf, T., & Ploetzner, R. (2014). One click is too far! How the presentation of cognitive learning aids influences their use in multimedia learning environments. Computers in Human Behavior, 38, 229–239. doi:10.1016/j.chb.2014.06.002

    Article  Google Scholar 

  • Scheiter, K., & Van Gog, T. (2009). Using eye tracking in applied research to study and stimulate the processing of information from multi-representational sources. Applied Cognitive Psychology, 23, 1209–1214. https://doi.org/10.1002/acp.1524

    Article  Google Scholar 

  • Scheiter, K., & Eitel, A. (2015). Signals foster multimedia learning by supporting integration of highlighted text and diagram elements. Learning and Instruction, 36, 11–26. doi:10.1016/j.learninstruc.2014.11.002

    Article  Google Scholar 

  • Scheiter, K., & Eitel, A. (2016). The use of eye tracking as a research and instructional tool in multimedia learning. In C. Was, F. Sansosti, & B. Morris (Eds.), Eye-tracking technology applications in educational research (pp. 143–164). Hershey, PA: IGI Global.

    Google Scholar 

  • Schlag, S., & Ploetzner, R. (2010). Supporting learning from illustrated texts: Conceptualizing and evaluating a learning strategy. Instructional Science, 39, 921–937. doi:10.1007/s11251-010-9160-3

    Article  Google Scholar 

  • Schmidt, H., Wassermann, B., & Zimmermann, G. (2014). An adaptive and adaptable learning platform with real- time eye-tracking support: Lessons learned. In S. Trahash, R. Ploetzner, G. Schneider, C. Gayer, D. Sassiat, & N. Wöhrle (Eds.), Tagungsband DeLFI 2014 (pp. 241–252). Bonn, Germany: Köölen Druck & Verlag GmbH.

    Google Scholar 

  • Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010a). A closer look at split visual attention in system-and self-paced instruction in multimedia learning. Learning and Instruction, 20, 100–110. doi:10.1016/j.learninstruc.2009.02.011

    Article  Google Scholar 

  • Schmidt-Weigand, F., Kohnert, A., & Glowalla, U. (2010b). Explaining the modality and contiguity effects: New insights from investigating students’ viewing behavior. Applied Cognitive Psychology, 24, 226–237. doi:10.1002/acp.1554

    Article  Google Scholar 

  • Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 49–69). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Schubert, C., Scheiter, K., Schüler, A., Schmidt, H., Zimmermann, G., Wassermann, B., … Eder, T. (n.d.). Adaptive multimedia: Using gaze-contingent instructional guidance to provide personalized processing support.

    Google Scholar 

  • Schwonke, R., Berthold, K., & Renkl, A. (2009). How multiple external representations are used and how they can be made more useful. Applied Cognitive Psychology, 23, 1227–1243. doi:10.1002/acp.1526

    Article  Google Scholar 

  • Serra, M. J., & Dunlosky, J. (2010). Metacomprehension judgements reflect the belief that diagrams improve learning from text. Memory, 18, 698–711. doi:10.1080/09658211.2010.506441

    Article  PubMed  Google Scholar 

  • Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning & Instruction, 13, 227–237. doi:10.1016/S0959-4752(02)00022-1

    Article  Google Scholar 

  • Shute, V. J., & Zapata-Rivera, D. (2008). Adaptive technologies. In J. M. Spector, D. Merrill, J. Van Merriënboer, & M. Driscoll (Eds.), Handbook of research on educational communications and technology (3rd ed., pp. 277–294). New York, NY: Erlbaum.

    Google Scholar 

  • Skuballa, I. T., Fortunski, C., & Renkl, A. (2015). An eye movement pre-training fosters the comprehension of processes and functions in technical systems. Frontiers in Psychology, 6, 598. doi:10.3389/fpsyg.2015.00598

    Article  PubMed  PubMed Central  Google Scholar 

  • Skuballa, I. T., Leber, J., Schmidt, H., Zimmermann, G., & Renkl, A. (2016). Using online eye-movement analyses in an adaptive learning environment. In L. Lin & R. K. Atkinson (Eds.), Educational technologies: Challenges, applications, and learning outcomes (pp. 115–142). Hauppauge, NY: Nova Science.

    Google Scholar 

  • Son, L. K., & Metcalfe, J. (2000). Metacognitive and control strategies in study-time allocation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 204–221.

    PubMed  Google Scholar 

  • Spüler, M., Krumpe, T., Walter, C., Scharinger, C., Rosenstiel, W., & Gerjets, P. (2017). Brain-computer interfaces for educational applications. In J. Buder & F. W. Hesse (Eds.), Informational environments: Effects of use, effective designs (pp. 177–201). New York, NY: Springer.

    Google Scholar 

  • Stalbovs, K., Scheiter, K., & Gerjets, P. (2015). Implementation intentions during multimedia learning: Using if-then plans to facilitate cognitive processing. Learning & Instruction, 35, 1–15. doi:10.1016/j.learninstruc.2014.09.002

    Article  Google Scholar 

  • Sweller, J., Ayres, P. L., & Kalyuga, S. (2011). Cognitive load theory. New York, NY: Springer.

    Book  Google Scholar 

  • Toet, A. (2006). Gaze directed displays as an enabling technology for attention aware systems. Computers in Human Behavior, 22, 615–647. doi:10.1016/j.chb.2005.12.010

    Article  Google Scholar 

  • Van Gog, T., & Scheiter, K. (2010). Eye tracking as a tool to study and enhance multimedia learning. Learning and Instruction, 20, 95–99. https://doi.org/10.1016/j.learninstruc.2009.02.009

    Article  Google Scholar 

  • Veenman, M. J. V., Van Hout-Wolters, B., & Afflerbach, P. (2006). Metacognition and learning: Conceptual and methodological considerations. Metacognition & Learning, 1, 3–14. doi:10.1007/s11409-006-6893-0

    Article  Google Scholar 

  • Wassermann, B., Hardt, A., & Zimmermann, G. (2012). Generic gaze interaction events for web browsers: Using the eye tracker as input device. In WWW2012 Workshop: Emerging web technologies, facing the future of education (p. 6). Retrieved from http://www2012.wwwconference.org/proceedings/nocompanion/EWFE2012_006.pdf

  • Winne, P. H., & Hadwin, A. F. (1998). Studying as self-regulated learning. In D. J. Hacker, J. Dunlosky, & A. C. Graesser (Eds.), Metacognition in educational theory and practice (pp. 277–304). Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Winne, P. H., Vytasek, J. M., Patzak, A., Rakovic, M., Marzouk, Z., Pakdaman-Savoji, A., … Nesbit, J. C. (2017). Designs for learning analytics to support information problem solving. In J. Buder & F. W. Hesse (Eds.), Informational environments: Effects of use, effective designs (pp. 249–272). New York, NY: Springer.

    Google Scholar 

  • Zimmerman, B., & Schunk, D. (Eds.). (2001). Self-regulated learning and academic achievement: Theoretical perspectives (2nd ed.). Mahwah, NJ: Erlbaum.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Scheiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Scheiter, K. et al. (2017). How to Design Adaptive Information Environments to Support Self-Regulated Learning with Multimedia. In: Buder, J., Hesse, F. (eds) Informational Environments . Springer, Cham. https://doi.org/10.1007/978-3-319-64274-1_9

Download citation

Publish with us

Policies and ethics