Skip to main content

The Use of Convolutional Neural Networks in Biomedical Data Processing

  • Conference paper
  • First Online:
Book cover Information Technology in Bio- and Medical Informatics (ITBAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10443))

Abstract

In this work, we study the use of convolutional neural networks for biomedical signal processing. Convolutional neural networks show promising results for classifying images when compared to traditional multilayer perceptron, as the latter do not take spatial structure of the data into an account.

Cardiotocography (CTG) is a monitoring of fetal heart rate (FHR) and uterine contractions (UC) used by obstetricians to assess fetal well-being. Because of the complexity of FHR dynamics, regulated by several neurological feedback loops, the visual inspection of FHR remains a difficult task. The application of most guidelines often result in significant inter-and intra-observer variability.

Convolutional neural network (CNN, or ConvNet) is inspired by the organization of the animal visual cortex.

In the paper we are applying continuous wavelet transform (CWT) to the UC and FHR signals with different levels of time/frequency detail parameter and in two different resolutions. The output 2D structures are fed to convolutional neural network (we are using Tensorflow framework [1]) and we are minimizing the cross entropy function.

On the testing dataset (with pH threshold at 7.15) we have achieved the accuracy of 94.1% which is a promising result that needs to be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Moreover, the results often differ by location and/or country. You can find more information in the works of Spilka et al., i.e. [12].

  2. 2.

    The open-access database [4] is freely available at the following link: http://www.physionet.org/physiobank/database/ctu-uhb-ctgdb/. We therefore encourage other researchers to take advantage of this free database available.

  3. 3.

    Short-Term FFT.

  4. 4.

    The common minimal lengtht of all recordings (lenght of the shortest recording). We are aware that this part of the signal might be affected by the decision of the physician and thus contain information about the outcome and subsequently bias this research.

  5. 5.

    We have omitted the record no 4004 as it caused an unspecified error when processed by FFT.

  6. 6.

    tf.train.exponential_decay().

  7. 7.

    tf.train.AdamOptimizer().

References

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems (2015). http://tensorflow.org/, softwareavailablefromtensorflow.org

  2. Bernardino, A., Santos-Victor, J.: A real-time gabor primal sketch for visual attention. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 335–342. Springer, Heidelberg (2005). doi:10.1007/11492429_41

    Chapter  Google Scholar 

  3. Bursa, M., Lhotska, L., Chudacek, V., Spilka, J., Janku, P., Hruban, L.: Information retrieval from hospital information system: Increasing effectivity using swarm intelligence. J. Appl. Logic 13(2, Pt. A), 126–137 (2015). http://www.sciencedirect.com/science/article/pii/S1570868314000809, sI: SOCO12

  4. Chudacek, V., Spilka, J., Bursa, M., Janku, P., Hruban, L., Huptych, M., Lhotska, L.: Open access intrapartum ctg database. BMC Pregnancy Childbirth 14, 16 (2014)

    Article  Google Scholar 

  5. Chudáček, V., Spilka, J., Huptych, M., Lhotská, L.: Linear and non-linear features for intrapartum cardiotocography evaluation. Computing in Cardiology 2010 Preprints. IEEE, New Jersey (2015)

    Google Scholar 

  6. Doret, M., Spilka, J., Chudáček, V., Gonçalves, P., Abry, P.: Fractal Analysis and Hurst Parameter for intrapartum fetal heart rate variability analysis: A versatile alternative to Frequency bands and LF/HF ratio. PLoS ONE 10(8), e0136661 (2015). http://dx.doi.org/10.1371%2Fjournal.pone.0136661

  7. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000). Circulation Electronic Pages: http://circ.ahajournals.org/cgi/content/full/101/23/e215

  8. Hruban, L., Spilka, J., Chudáček, V., Janků, P., Huptych, M., Burša, M., Hudec, A., Kacerovský, M., Koucký, M., Procházka, M., Korečko, V., Seget’a, J., Šimetka, O., Mchurová, A., Lhotská, L.: Agreement on intrapartum cardiotocogram recordings between expert obstetricians. J. Eval. Clin. Pract., May 2015. http://dx.doi.org/10.1111/jep.12368

  9. Huser, M., Janku, P., Hudecek, R., Zbozinkova, Z., Bursa, M., Unzeitig, V., Ventruba, P.: Pelvic floor dysfunction after vaginal and cesarean delivery among singleton primiparas. Int. J. Gynecol. Obstet. 137(2), 170–173 (2017). http://dx.doi.org/10.1002/ijgo.12116

  10. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

  11. Spilka, J., Frecon, J., Leonarduzzi, R., Pustelnik, N., Abry, P., Doret, M.: Sparse support vector machine for intrapartum fetal heart rate classification. IEEE J. Biomed. Health Inform. 21(3), 664–671 (2017)

    Article  Google Scholar 

  12. Spilka, J., Chudáček, V., Janků, P., Hruban, L., Burša, M., Huptych, M., Zach, L., Lhotská, L.: Analysis of obstetricians decision making on CTG recordings. J. Biomed. Inform. 51(0), 72–79 (2014). http://www.sciencedirect.com/science/article/pii/S1532046414000951

Download references

Acknowledgment

The research is supported by the project No. 15-31398A Features of Electromechanical Dyssynchrony that Predict Effect of Cardiac Resynchronization Therapy of the Agency for Health Care Research of the Czech Republic. This work has been developed in the BEAT research group https://www.ciirc.cvut.cz/research/beat with the support of University Hospital in Brno http://www.fnbrno.cz/en/. Access to computing and storage facilities owned by parties and projects contributing to the National Grid Infrastructure MetaCentrum provided under the programme Projects of Large Research, Development, and Innovations Infrastructures (CESNET LM2015042), is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Bursa .

Editor information

Editors and Affiliations

Appendix: Results

Appendix: Results

Fig. 10.
figure 10

Learning rate for small and large datasets. Used in the tf.train.AdamOptimizer() function.

Fig. 11.
figure 11

Learning rate decay for small and large datasets. Used in the tf.train.exponential_decay() function.

Fig. 12.
figure 12

Dropout parameter (pkeep, number of neurons kept) for small and large datasets. Used in the tf.nn.dropout() function.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bursa, M., Lhotska, L. (2017). The Use of Convolutional Neural Networks in Biomedical Data Processing. In: Bursa, M., Holzinger, A., Renda, M., Khuri, S. (eds) Information Technology in Bio- and Medical Informatics. ITBAM 2017. Lecture Notes in Computer Science(), vol 10443. Springer, Cham. https://doi.org/10.1007/978-3-319-64265-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64265-9_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64264-2

  • Online ISBN: 978-3-319-64265-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics