Skip to main content

Treatment of Chronic Lymphocytic Leukemia and Related Disorders

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Chronic lymphocytic leukemia is a hetereogenous disease with outcomes based on cytogenetics, immunoglobulin heavy-chain gene rearrangement (IgVH) status, and other disease-specific characteristics. According to SEER data, in 2016, there will be 18,960 new cases of CLL diagnosed and more than 100,000 people with CLL living in the USA (http://seer.cancer.gov/statfacts/html/clyl.html). Fludarabine, cyclophosphamide, and rituximab is an effective regimen in CLL, producing long-term survivors. However, given that the average age of newly diagnosed patients with CLL is 71, many patients are not candidates for this therapy. Recently, there have been several new agents approved for use in CLL including inhibitors of BTK, PI3K, and BCL-2. There are many other agents in various stages of clinical development. These agents are particularly exciting since they are highly effective and generally well tolerated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. http://seer.cancer.gov/statfacts/html/clyl.html.

  2. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rawstron AC, Bennett FL, O’Connor SJ, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359:575–83.

    Article  CAS  PubMed  Google Scholar 

  4. Shanafelt TD, Ghia P, Lanasa MC, Landgren O, Rawstron AC. Monoclonal B-cell lymphocytosis (MBL): biology, natural history and clinical management. Leukemia. 2010;24(3):512–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Matutes E, Owusu-Ankomah K, Morilla R, et al. The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia. 1994;8:1640–5.

    CAS  PubMed  Google Scholar 

  6. Dearden C. Disease-specific complications of chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2008:450–6.

    Google Scholar 

  7. Ben-Bassat I, Many A, Modan M, Peretz C, Ramot B. Serum immunoglobulins in chronic lymphocytic leukemia. Am J Med Sci. 1979;278:4–9.

    Article  CAS  PubMed  Google Scholar 

  8. Morrison VA. Management of infectious complications in patients with chronic lymphocytic leukemia. Hematology Am Soc Hematol Educ Program. 2007:332–8.

    Google Scholar 

  9. Rai KR, Sawitsky A, Cronkite EP, Chanana AD, Levy RN, Pasternack BS. Clinical staging of chronic lymphocytic leukemia. Blood. 1975;46:219–34.

    CAS  PubMed  Google Scholar 

  10. Binet JL, Auquier A, Dighiero G, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981;48:198–206.

    Article  CAS  PubMed  Google Scholar 

  11. Rai KR, Han T. Prognostic factors and clinical staging in chronic lymphocytic leukemia. Hematol Oncol Clin North Am. 1990;4:447–56.

    CAS  PubMed  Google Scholar 

  12. Effects of chlorambucil and therapeutic decision in initial forms of chronic lymphocytic leukemia (stage A): results of a randomized clinical trial on 612 patients. The French Cooperative Group on Chronic Lymphocytic Leukemia. Blood. 1990;75:1414–21.

    Google Scholar 

  13. Dighiero G, Maloum K, Desablens B, et al. Chlorambucil in indolent chronic lymphocytic leukemia. French Cooperative Group on Chronic Lymphocytic Leukemia. N Engl J Med. 1998;338:1506–14.

    Article  CAS  PubMed  Google Scholar 

  14. Montserrat E, Vinolas N, Reverter JC, Rozman C. Natural history of chronic lymphocytic leukemia: on the progression and progression and prognosis of early clinical stages. Nouv Rev Fr Hematol. 1988;30:359–61.

    CAS  PubMed  Google Scholar 

  15. Catovsky D, Fooks J, Richards S. Prognostic factors in chronic lymphocytic leukaemia: the importance of age, sex and response to treatment in survival. A report from the MRC CLL 1 trial. MRC Working Party on Leukaemia in Adults. Br J Haematol. 1989;72:141–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hallek M, Langenmayer I, Nerl C, et al. Elevated serum thymidine kinase levels identify a subgroup at high risk of disease progression in early, nonsmoldering chronic lymphocytic leukemia. Blood. 1999;93:1732–7.

    CAS  PubMed  Google Scholar 

  17. Ibrahim S, Keating M, Do KA, et al. CD38 expression as an important prognostic factor in B-cell chronic lymphocytic leukemia. Blood. 2001;98:181–6.

    Article  CAS  PubMed  Google Scholar 

  18. Molica S, Levato D, Dell’Olio M, et al. Cellular expression and serum circulating levels of CD23 in B-cell chronic lymphocytic leukemia. Implications for prognosis. Haematologica. 1996;81:428–33.

    CAS  PubMed  Google Scholar 

  19. Lee JS, Dixon DO, Kantarjian HM, Keating MJ, Talpaz M. Prognosis of chronic lymphocytic leukemia: a multivariate regression analysis of 325 untreated patients. Blood. 1987;69:929–36.

    CAS  PubMed  Google Scholar 

  20. Dohner H, Stilgenbauer S, Fischer K, Bentz M, Lichter P. Cytogenetic and molecular cytogenetic analysis of B cell chronic lymphocytic leukemia: specific chromosome aberrations identify prognostic subgroups of patients and point to loci of candidate genes. Leukemia. 1997;11(Suppl 2):S19–24.

    PubMed  Google Scholar 

  21. Autio K, Elonen E, Teerenhovi L, Knuutila S. Cytogenetic and immunologic characterization of mitotic cells in chronic lymphocytic leukaemia. Eur J Haematol. 1987;39:289–98.

    Article  CAS  PubMed  Google Scholar 

  22. Dohner H, Stilgenbauer S, Benner A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

    Article  CAS  PubMed  Google Scholar 

  23. Dohner H, Stilgenbauer S, James MR, et al. 11q deletions identify a new subset of B-cell chronic lymphocytic leukemia characterized by extensive nodal involvement and inferior prognosis. Blood. 1997;89:2516–22.

    CAS  PubMed  Google Scholar 

  24. Calin GA, Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A. 2002;99:15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005;102:13944–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Calin GA, Cimmino A, Fabbri M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci U S A. 2008;105:5166–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stilgenbauer S, Liebisch P, James MR, et al. Molecular cytogenetic delineation of a novel critical genomic region in chromosome bands 11q22.3-923.1 in lymphoproliferative disorders. Proc Natl Acad Sci U S A. 1996;93:11837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bredemeyer AL, Sharma GG, Huang CY, et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature. 2006;442:466–70.

    Article  CAS  PubMed  Google Scholar 

  29. Austen B, Skowronska A, Baker C, et al. Mutation status of the residual ATM allele is an important determinant of the cellular response to chemotherapy and survival in patients with chronic lymphocytic leukemia containing an 11q deletion. J Clin Oncol. 2007;25:5448–57.

    Article  CAS  PubMed  Google Scholar 

  30. Dohner H, Fischer K, Bentz M, et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood. 1995;85:1580–9.

    CAS  PubMed  Google Scholar 

  31. el Rouby S, Thomas A, Costin D, et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood. 1993;82:3452–9.

    PubMed  Google Scholar 

  32. Zenz T, Krober A, Scherer K, et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: results from a detailed genetic characterization with long-term follow-up. Blood. 2008;112:3322–9.

    Article  CAS  PubMed  Google Scholar 

  33. Rossi D, Cerri M, Deambrogi C, et al. The prognostic value of TP53 mutations in chronic lymphocytic leukemia is independent of Del17p13: implications for overall survival and chemorefractoriness. Clin Cancer Res. 2009;15:995–1004.

    Article  CAS  PubMed  Google Scholar 

  34. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94:1848–54.

    CAS  PubMed  Google Scholar 

  35. Damle RN, Wasil T, Fais F, et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood. 1999;94:1840–7.

    CAS  PubMed  Google Scholar 

  36. Ghia P, Stamatopoulos K, Belessi C, et al. Geographic patterns and pathogenetic implications of IGHV gene usage in chronic lymphocytic leukemia: the lesson of the IGHV3-21 gene. Blood. 2005;105:1678–85.

    Article  CAS  PubMed  Google Scholar 

  37. Murray F, Darzentas N, Hadzidimitriou A, et al. Stereotyped patterns of somatic hypermutation in subsets of patients with chronic lymphocytic leukemia: implications for the role of antigen selection in leukemogenesis. Blood. 2008;111:1524–33.

    Article  CAS  PubMed  Google Scholar 

  38. Stamatopoulos K, Belessi C, Moreno C, et al. Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations. Blood. 2007;109:259–70.

    Article  CAS  PubMed  Google Scholar 

  39. Fais F, Ghiotto F, Hashimoto S, et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest. 1998;102:1515–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mauerer K, Zahrieh D, Gorgun G, et al. Immunoglobulin gene segment usage, location and immunogenicity in mutated and unmutated chronic lymphocytic leukaemia. Br J Haematol. 2005;129:499–510.

    Article  CAS  PubMed  Google Scholar 

  41. Tobin G, Thunberg U, Johnson A, et al. Chronic lymphocytic leukemias utilizing the VH3-21 gene display highly restricted Vlambda2-14 gene use and homologous CDR3s: implicating recognition of a common antigen epitope. Blood. 2003;101:4952–7.

    Article  CAS  PubMed  Google Scholar 

  42. Rosenwald A, Alizadeh AA, Widhopf G, et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med. 2001;194:1639–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Crespo M, Bosch F, Villamor N, et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med. 2003;348:1764–75.

    Article  CAS  PubMed  Google Scholar 

  44. Orchard JA, Ibbotson RE, Davis Z, et al. ZAP-70 expression and prognosis in chronic lymphocytic leukaemia. Lancet. 2004;363:105–11.

    Article  CAS  PubMed  Google Scholar 

  45. Rassenti LZ, Huynh L, Toy TL, et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med. 2004;351:893–901.

    Article  CAS  PubMed  Google Scholar 

  46. Wiestner A, Rosenwald A, Barry TS, et al. ZAP-70 expression identifies a chronic lymphocytic leukemia subtype with unmutated immunoglobulin genes, inferior clinical outcome, and distinct gene expression profile. Blood. 2003;101:4944–51.

    Article  CAS  PubMed  Google Scholar 

  47. Hamblin TJ, Orchard JA, Gardiner A, Oscier DG, Davis Z, Stevenson FK. Immunoglobulin V genes and CD38 expression in CLL. Blood. 2000;95:2455–7.

    CAS  PubMed  Google Scholar 

  48. Hamblin TJ, Orchard JA, Ibbotson RE, et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood. 2002;99:1023–9.

    Article  CAS  PubMed  Google Scholar 

  49. Rassenti LZ, Jain S, Keating MJ, et al. Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood. 2008;112:1923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Krober A, Seiler T, Benner A, et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood. 2002;100:1410–6.

    CAS  PubMed  Google Scholar 

  51. Byrd JC, Gribben JG, Peterson BL, et al. Select high-risk genetic features predict earlier progression following chemoimmunotherapy with fludarabine and rituximab in chronic lymphocytic leukemia: justification for risk-adapted therapy. J Clin Oncol. 2006;24:437–43.

    Article  CAS  PubMed  Google Scholar 

  52. Lin KI, Tam CS, Keating MJ, et al. Relevance of the immunoglobulin VH somatic mutation status in patients with chronic lymphocytic leukemia treated with fludarabine, cyclophosphamide, and rituximab (FCR) or related chemoimmunotherapy regimens. Blood. 2009;113:3168–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O’Brien SM, Jones JA, Coutre S, et al. Efficacy and Safety of ibrutinib in patients with relapsed or refractory chronic lymphocytic leukemia or small lymphocytic leukemia with 17p deletion: results from the Phase II Resonate-17 Trial. Blood. 2014;124(21):327.

    Google Scholar 

  54. Wierda WG, O’Brien S, Wang X, et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood. 2007;109:4679–85.

    Article  CAS  PubMed  Google Scholar 

  55. Gandhi V, Kemena A, Keating MJ, Plunkett W. Cellular pharmacology of fludarabine triphosphate in chronic lymphocytic leukemia cells during fludarabine therapy. Leuk Lymphoma. 1993;10:49–56.

    Article  CAS  PubMed  Google Scholar 

  56. Dillman RO, Mick R, McIntyre OR. Pentostatin in chronic lymphocytic leukemia: a phase II trial of cancer and leukemia group B. J Clin Oncol. 1989;7:433–8.

    Article  CAS  PubMed  Google Scholar 

  57. Johnson SA, Catovsky D, Child JA, Newland AC, Milligan DW, Janmohamed R. Phase I/II evaluation of pentostatin (2′-deoxycoformycin) in a five day schedule for the treatment of relapsed/refractory B-cell chronic lymphocytic leukaemia. Investig New Drugs. 1998;16:155–60.

    Article  CAS  Google Scholar 

  58. Knauf WU, Lissichkov T, Aldaoud A, et al. Phase III randomized study of bendamustine compared with chlorambucil in previously untreated patients with chronic lymphocytic leukemia. J Clin Oncol. 2009;27:4378–84.

    Article  CAS  PubMed  Google Scholar 

  59. Carson DA, Carrera CJ, Wasson DB, Yamanaka H. Programmed cell death and adenine deoxynucleotide metabolism in human lymphocytes. Adv Enzym Regul. 1988;27:395–404.

    Article  CAS  Google Scholar 

  60. O’Brien SM, Kantarjian HM, Cortes J, et al. Results of the fludarabine and cyclophosphamide combination regimen in chronic lymphocytic leukemia. J Clin Oncol. 2001;19:1414–20.

    Article  PubMed  Google Scholar 

  61. Hallek M, Schmitt B, Wilhelm M, et al. Fludarabine plus cyclophosphamide is an efficient treatment for advanced chronic lymphocytic leukaemia (CLL): results of a phase II study of the German CLL Study Group. Br J Haematol. 2001;114:342–8.

    Article  CAS  PubMed  Google Scholar 

  62. Di Gaetano N, Xiao Y, Erba E, et al. Synergism between fludarabine and rituximab revealed in a follicular lymphoma cell line resistant to cytoxic activity of either drug alone. Br J Hematol. 2001;114:800–9.

    Article  Google Scholar 

  63. Byrd JC, Peterson BL, Morrison VA, et al. Randomized phase 2 study of fludarabine with concurrent or sequential rituximab in symptomatic untreated patients with B cell chronic lymphocytic leukemia: results from Cancer and Leukemia Group B 9712 (CALBG 9712). Blood. 2003;101:6–14.

    Article  CAS  PubMed  Google Scholar 

  64. Byrd JC, Rai K, Peterson BL, et al. Addition of rituximab to fludarabine may prolong progression free survival and overall survival in patients with previously untreated chronic lymphocytic leukemia: an updated retrospective comparative analysis of CALBG 9712 and CALBG 9011. Blood. 2005;23:4070–8.

    Google Scholar 

  65. Keating MJ, O’Brien S, Albitar M, et al. Early results of a chemoimmunotherapy regimen of fludarabine, cyclophosphamide, and rituximab as initial therapy for chronic lymphocytic leukemia. J Clin Oncol. 2005;23:4079–88.

    Article  CAS  PubMed  Google Scholar 

  66. Tam CS, O’Brien S, Wierda W, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008;112:975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hallek M, Fingerle-Rowson G, Fink A-M, et al. First-line treatment with fludarabine (F), cyclophosphamide (C), and rituximab (R) (FCR) improves overall survival (OS) in previously untreated patients (pts) with advanced chronic lymphocytic leukemia (CLL): results of a randomized phase III trial on behalf of an international group of investigators and the German CLL Study Group. Blood (ASH Annual Meeting Abstracts). 2009;114:535.

    Google Scholar 

  68. Wierda W, O’Brien S, Wen S, et al. Chemoimmunotherapy with fludarabine, cyclophosphamide, and rituximab for relapsed and refractory chronic lymphocytic leukemia. J Clin Oncol. 2005;23:4070–8.

    Article  CAS  PubMed  Google Scholar 

  69. Kay NE, Geyer SM, Call TG, et al. Combination chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B chronic lymphocytic leukemia. Blood. 2007;109:405–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Reynolds C, Di Bella N, Lyons RM, et al. Phase III trial of fludarabine, cyclophosphamide, and rituximab vs. pentostatin, cyclophosphamide, and rituximab in B-cell chronic lymphocytic leukemia. Blood (ASH Annual Meeting Abstracts). 2008;112:327.

    Google Scholar 

  71. Fischer K, Cramer P, Busch R, et al. Bendamustine in combination with rituximab for previously untreated patients with chronic lymphocytic leukemia: a multicenter phase II trial of the German Chronic lymphocytic leukemia study group. J Clin Oncol. 2012;30:3209–16.

    Article  CAS  PubMed  Google Scholar 

  72. Eichhorst B, Fink AM, Bahlo J, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide and rituximab in patients with advanced chronic lymphocytic leukemia (CLL10): an international, open-label, randomized, phase 3, non-inferiorty trial. Lancet Oncol. 2016;17:928–42.

    Article  CAS  PubMed  Google Scholar 

  73. Lefebvre ML, Krause SW, Salcedo M, Nardin A. Ex vivo-activated human macrophages kill chronic lymphocytic leukemia cells in the presence of rituximab: mechanism of antibody-dependent cellular cytotoxicity and impact of human serum. J Immunother. 2006;29:388–97.

    Article  CAS  PubMed  Google Scholar 

  74. Di Gaetano N, Cittera E, Nota R, et al. Complement activation determines the therapeutic activity of rituximab in vivo. J Immunol. 2003;171:1581–7.

    Article  PubMed  Google Scholar 

  75. Byrd JC, Kitada S, Flinn IW, et al. The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood. 2002;99:1038–43.

    Article  CAS  PubMed  Google Scholar 

  76. McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16:2825–33.

    Article  CAS  PubMed  Google Scholar 

  77. O’Brien SM, Kantarjian H, Thomas DA, et al. Rituximab dose-escalation trial in chronic lymphocytic leukemia. J Clin Oncol. 2001;19:2165–70.

    Article  PubMed  Google Scholar 

  78. Paiva M, Marques H, Martins A, Ferreira P, Catarino R, Medeiros R. FcgammaRIIa polymorphism and clinical response to rituximab in non-Hodgkin lymphoma patients. Cancer Genet Cytogenet. 2008;183:35–40.

    Article  CAS  PubMed  Google Scholar 

  79. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7.

    Article  CAS  PubMed  Google Scholar 

  80. Farag SS, Flinn IW, Modali R, Lehman TA, Young D, Byrd JC. Fc gamma RIIIa and Fc gamma RIIa polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood. 2004;103:1472–4.

    Article  CAS  PubMed  Google Scholar 

  81. Osterborg A, Jewell RC, Padmanabhan-Iyer S, et al. Ofatumumab monotherapy in fludarabine-refractory chronic lymphocytic leukemia: final results from a pivotal study. Haematologica. 2015;100:e311–4.

    PubMed  PubMed Central  Google Scholar 

  82. Hillmen P, Robak T, Janssens A, et al. Chlorambucil plus ofatumumab versus chlorambucil alone in previously untreated patients with chronic lymphocytic leukemia (complement 1): a randomized multicenter, open-label phase 3 trial. Lancet. 2015;385:1873–83.

    Article  CAS  PubMed  Google Scholar 

  83. Herter S, Herting F, Mundigl O, et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013;12:2031–42.

    Article  CAS  PubMed  Google Scholar 

  84. Goede V, Fischer K, Busch R, et al. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370:1101–10.

    Article  CAS  PubMed  Google Scholar 

  85. Goede V, Fischer K, Engelke A, et al. Obinutuzumab as frontline treatment of chronic lymphocytic leukemia: updated results of the CLL 1 study. Leukemia. 2015;29:1602–4.

    Article  CAS  PubMed  Google Scholar 

  86. O’Connor OA, Schreeder MT, Deng C, et al. Ublituximab (TG-1101), a novel anti-CD20 monoclonal antibody for rituximab relapsed/refractory B cell malignancies. Milan, Italy: European Hematology Association (EHA); 2014.

    Google Scholar 

  87. Sharman J, Farber CM, Mahadevan D, et al. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 mAb, in combination with ibrutinib achieves 95% ORR in patients with high-risk relapsed/refractory CLL. Presented at: 13th International Congress on Malignant Lymphoma; June 17–20, 2015; Lugano, Switzerland. Abstract 105.

    Google Scholar 

  88. Lundin J, Kimby E, Bjorkholm M, et al. Phase II trial of subcutaneous anti-CD52 monoclonal antibody alemtuzumab (Campath-1H) as first-line treatment for patients with B-cell chronic lymphocytic leukemia (B-CLL). Blood. 2002;100:768–73.

    Article  CAS  PubMed  Google Scholar 

  89. Keating MJ, Flinn I, Jain V, et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: results of a large international study. Blood. 2002;99:3554–61.

    Article  CAS  PubMed  Google Scholar 

  90. McConkey DJ, Chandra J, Wright S, et al. Apoptosis sensitivity in chronic lymphocytic leukemia is determined by endogenous endonuclease content and relative expression of BCL-2 and BAX. J Immunol. 1996;156:2624–30.

    CAS  PubMed  Google Scholar 

  91. Robertson LE, Plunkett W, McConnell K, Keating MJ, McDonnell TJ. Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia. 1996;10:456–9.

    CAS  PubMed  Google Scholar 

  92. Roberts AW, Davids MS, Pagel JM, et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N Engl J Med. 2016;374:311–22.

    Article  CAS  PubMed  Google Scholar 

  93. Stilgenbauer S, Eichhorst B, Schetelig J, et al. Venetoclax in relapsed or refractory chronic lymphocytic leukemia with 17p deletion: a multicenter, open-label, phase 2 study. Lancet Oncol. 2016;17:768–78.

    Article  CAS  PubMed  Google Scholar 

  94. Wiestner A. BCR pathway inhibition as therapy for chronic lymphocytic leukemia and lymphoplasmacytic lymphoma. ASH Education Book. 2014;2014:125–34.

    Article  Google Scholar 

  95. Woyach JA, Smucker K, Smith LL, et al. Prolonged lymphocytosis during ibrutinib therapy is associated with distinct molecular characteristics and does not indicate a suboptimal response to therapy. Blood. 2014;123(12):1810–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cheson BD, Byrd JC, Rai KR, et al. Novel targeted agents and the need to refine clinical end points in chronic lymphocytic leukemia. J Clin Onc. 2012;30:2820–2.

    Article  CAS  Google Scholar 

  97. Singh J, Petter RC, Kluge AF. Targeting covalent drugs of the kinase family. Curr Opin Chem Biol. 2010;14(4):475–80.

    Article  CAS  PubMed  Google Scholar 

  98. Dubovsky JA, Beckwith KA, Natarajan G, et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th-1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Byrd JC, Furman RR, Coutre SE, et al. Targeting BTK with ibrutinib in relapsed chronic lymphocytic leukemia. N Engl J Med. 2013;369(1):32–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Byrd JC, Furman RR, Coutre SE, et al. Three-year follow-up in treatment-naïve and previously treated patients with CLL and SLL receiving single-agent ibrutinib. Blood. 2015;125(16):2497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Byrd JC, Brown JR, O’Brien S, et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N Engl J Med. 2014;371(3):213–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Stephens DM, Byrd JC. Chronic lymphocytic leukemia with del(17p13.1): a distinct clinical subtype requiring novel treatment approaches. Oncology. 2012;11:1044–54.

    Google Scholar 

  103. Farooqui MZ, Valdez J, Martyr S, et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukemia with TP53 aberrations: a phase 2 single arm trial. Lancet Oncol. 2015;16:169–76.

    Article  CAS  PubMed  Google Scholar 

  104. Burger JA, Tedeschi A, Barr PM, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. NEJM. 2015;373:2425–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Advani RH, Buggy JJ, Sharman JP, et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Onc. 2013;31(1):88–94.

    Article  CAS  Google Scholar 

  106. Levade M, David E, Garcia C, et al. Ibrutinib treatment affects collagen and von Willebrand factor-dependent platelet functions. Blood. 2014;124(26):3991–5.

    Article  CAS  PubMed  Google Scholar 

  107. Kamel S, Horton L, Ysebaert L, et al. Ibrutinib inhibits collagen-mediated but not ADP-mediated platelet aggregration. Leukemia. 2015;29:783–7.

    Article  CAS  PubMed  Google Scholar 

  108. Herman SE, Niemann CU, Farooqui M, et al. Ibrutinib-induced lymphocytosis in patients with chronic lymphocytic leukemia: correlative analysis from phase II study. Leukemia. 2014;28:2188–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jain P, Keating M, Wierda W, et al. Outcomes of patients with chronic lymphocytic leukemia after discontinuing ibrutinib. Blood. 2015;125(13):2062–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. O’Brien SM, Byrd JC, Hillmen P, et al. Outcomes with ibrutinib by line of therapy in patients with CLL: analyses from phase III data. J Clin Oncol. 2016;34(suppl):abstr 7520.

    Google Scholar 

  111. Woyach JA, Furmann RR, Liu TM, et al. Resistance mechanisms for the Bruton’s tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;270(24):2286–94.

    Article  CAS  Google Scholar 

  112. Liu TM, Woyach JA, Zhong Y, et al. Hypermorphic mutation of phospholipase C, γ2 acquired in ibrutinib-resistant CLL confer BTK independency upon B cell receptor activation. Blood. 2015;126(1):61–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Landau D, Hoellenriegel J, Sougnez C, et al. Clonal evolution in patients with chronic lymphocytic leukemia (CLL) developing resistance to BTK inhibition. Blood. 2013;122(21):866.

    Google Scholar 

  114. Woyach JA, Johnson AJ. Targeted therapies in CLL: mechanisms of resistance and strategies for management. Blood. Prepublished online June 11, 2015.

    Google Scholar 

  115. Daver N, Cortes J, Ravandi F, et al. Secondary mutations as mediators of resistance to targeted therapy in leukemia. Blood. 2015;125(21):3236–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Porcu P, Flinn I, Kahl BS, et al. Clinical activity of Duvelisib (IPI-145), a phosphoinositide-3-kinsase-∂/γ inhibitor in patients previously treated with ibrutinib. Blood. 2014;123(21):3335.

    Google Scholar 

  117. Hing ZA, Mantle R, Beckwith KA, et al. Selinexor is effective in acquired resistance to ibrutinib and synergizes with ibrutinib in chronic lymphocytic leukemia. Blood. 2015;125(20):3128–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. https://clinicaltrials.gov/ct2/show/NCT02303392.

  119. Jones J, Mato AR, Coutre S, et al. Preliminary results of phase 2 open-label study of venetoclax (ABT-199/GDC-0199) monotherapy in patients with CLL relapsed after or refractory to ibrutinib or idealisib therapy. Oral presentation abstract 715.

    Google Scholar 

  120. Sales G, Karlin L, Rule S, Shah N, et al. A phase I study of oral BTK inhibitor ONO-4059 in patients with relapsed/refractory or high-risk chronic lymphocytic leukemia (CLL). ASH Annual Meeting Abstracts. 2013;122(21):676.

    Google Scholar 

  121. Walters HS, Rule SA, Dyer MJ, et al. A phase 1 clinical trial of the selective BTK inhibitor ONO/GS-4059 in relapsed and refractory mature B-cell malignancies. Blood. 2016;127:411–9.

    Article  CAS  Google Scholar 

  122. Covey T, Barf T, Gulrajani M, et al. ACP-196: a novel covalent Bruton’s tyrosine kinase (BTK) inhibitor with improved selectivity and in vivo target coverage in chronic lymphocytic leukemia.

    Google Scholar 

  123. Byrd JC, Harrington B, O’Brien S, et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. NEJM. 2016;374:323–32.

    Article  CAS  PubMed  Google Scholar 

  124. Li Na SZ, Ye L, et al. BGB-311 is a novel and highly selective Bruton’s tyrosine kinase (BTK) inhibitor. Cancer Res. 2015;75:Abstract nr 2597.

    Article  Google Scholar 

  125. https://clinicaltrials.gov/ct2/show/NCT02457598.

  126. https://clinicaltrials.gov/ct2/show/NCT02968563.

  127. https://clinicaltrials.gov/ct2/show/NCT02477696.

  128. https://clinicaltrials.gov/ct2/show/NCT02337829.

  129. Kohrt HE, Sagiv-Barfi I, Rafiq S, Herman SE, Butchar JP, Cheney C, et al. Ibrutinib antagonizes rituximab-dependent NK cell-mediated cytotoxicity. Blood. 2014;123:1957–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Tam C, Grigg AP, Opat S, et al. The BTK inhibitor, BGB 3111, is safe, tolerable and highly active in patients with relapsed/refractory B-cell malignancies: initial report of a phase 1 first-in-human trial. Blood. 2015;126:832.

    Google Scholar 

  131. Tam C, Opat S, Cull G, et al. Twice daily dosing with the highly specific BTK inhibitor, BGB-3111, achieved complete and continuous BTK occupancy in lymph nodes and is associated with durable responses in patients with chronic lymphocytic leukemia (CLL)/Small lymphocytic leukemia (SLL). Blood 2016. Oral session 642.

    Google Scholar 

  132. Herman SE, Gordon AL, Wagner AJ, et al. Phosphatidylinositol 3-kinase-δ inhibitor shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood. 2010;116(12):2078–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Brown JR, Byrd JC, Coutre SE, et al. Idelalisib, an inhibitor of phosphatidylinositol 3-kinase p110delta, for relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;123(22):3390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Furman RR, Sharman JP, Coutre SE, et al. Idelalisib and rituxan in relapsed chronic lymphocytic leukemia. N Engl J Med. 2014;370(11):997–1007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Sharman JP, Coutre SE, Furman RR, et al. Second interim analysis of a phase 3 study of idelalisib (Zydelig) plus Rituximab for relapsed chronic lymphocytic leukemia: Efficacy analysis in patient subpopulations with del(17p) and other adverse prognostic factors. Blood (ASH Annual Meeting Abstracts) 2014; Abstract 330.

    Google Scholar 

  136. O’Brien S, Lamanna N, Kipps TJ, et al. A phase 2 study of idelalisib plus rituximab in treatment-naïve older patients with chronic lymphocytic leukemia. Blood. 2015;126(25):2686–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Lampson BL, Kasar SN, Matos TR, et al. Idelalisib given front-line for treatment of chronic lymphocytic leukemia causes frequent immune-mediated hepatotoxicity. Blood. 2016;128(2):195–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dong S, Guinn D, Dubovsky, et al. IPI-145 antagonizes intrinsic and extrinsic survival signals in chronic lymphocytic leukemia cells. Blood. 2014;124(24):3583–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. O’Brien S, Patel M, Kahl BS, et al. Duvelisib (IPI-145), a PI3K-∂/γ inhibitor, is clinically active in patients with relapsed/refractory chronic lymphocytic leukemia. Blood. 2014;124(21):3334.

    Google Scholar 

  140. https://clinicaltrials.gov/ct2/show/NCT02004522.

  141. Burris HA, Patel MA, Lanasa MC, et al. Activity of TGR-1202, a novel once-daily PI3kδ inhibitor in patients with relapsed and refractory hematologic malignancies. J Clin Onc. 2014;32(suppl 5s):abstr 2513.

    Google Scholar 

  142. Burris HA, Patel MR, Brander DM, et al. TGR-1202, a novel once daily PI3kδ inhibitor, demonstrates clinical activity with a favorable safety profile, lacking hepatotoxicity, in patients with chronic lymphocytic leukemia and B cell lymphoma. Blood. 2014;124(21):1984.

    Google Scholar 

  143. Lunning MA, Vose J, Fowler NH, et al. Ublituximab plus TGR-1202 activity and safety profile in relapsed/refractory B-cell NHL and high risk CLL. J Clin Onc. 2015;33(suppl):abstr 8548.

    Google Scholar 

  144. Flower NH, Nastoupil LJ, Lunning MA, et al. Safety and activity of the chemotherapy-free triplet of ublituximab, TGR-1202 and ibrutinib in relapsed B cell malignancies. J Clin Onc. 2015;33(suppl):abstr 8501.

    Google Scholar 

  145. Castro JE, Kipps TJ. Adoptive cellular therapy for chronic lymphocytic leukemia and B cell malignancies. CARs and more. Best Pract Res Clin Haematol. 2016;29:15–29.

    Article  PubMed  Google Scholar 

  146. Diehl LF, Ketchum LH. Autoimmune disease and chronic lymphocytic leukemia: autoimmune hemolytic anemia, pure red cell aplasia, and autoimmune thrombocytopenia. Semin Oncol. 1998;25:80–97.

    CAS  PubMed  Google Scholar 

  147. Weiss RB, Freiman J, Kweder SL, Diehl LF, Byrd JC. Hemolytic anemia after fludarabine therapy for chronic lymphocytic leukemia. J Clin Oncol. 1998;16:1885–9.

    Article  CAS  PubMed  Google Scholar 

  148. Kyasa MJ, Parrish RS, Schichman SA, Zent CS. Autoimmune cytopenia does not predict poor prognosis in chronic lymphocytic leukemia/small lymphocytic lymphoma. Am J Hematol. 2003;74:1–8.

    Article  PubMed  Google Scholar 

  149. Cortes J, O’Brien S, Loscertales J, et al. Cyclosporin a for the treatment of cytopenia associated with chronic lymphocytic leukemia. Cancer. 2001;92:2016–22.

    Article  CAS  PubMed  Google Scholar 

  150. Hegde UP, Wilson WH, White T, Cheson BD. Rituximab treatment of refractory fludarabine-associated immune thrombocytopenia in chronic lymphocytic leukemia. Blood. 2002;100:2260–2.

    CAS  PubMed  Google Scholar 

  151. Lundin J, Karlsson C, Celsing F. Alemtuzumab therapy for severe autoimmune hemolysis in a patient with B-cell chronic lymphocytic leukemia. Med Oncol. 2006;23:137–9.

    Article  PubMed  Google Scholar 

  152. Kaufman M, Limaye SA, Driscoll N, et al. A combination of rituximab, cyclophosphamide and dexamethasone effectively treats immune cytopenias of chronic lymphocytic leukemia. Leuk Lymphoma. 2009;50:892–9.

    Article  CAS  PubMed  Google Scholar 

  153. Robertson LE, Pugh W, O’Brien S, et al. Richter’s syndrome: a report on 39 patients. J Clin Oncol. 1993;11:1985–9.

    Article  CAS  PubMed  Google Scholar 

  154. Tsimberidou AM, Keating MJ. Richter syndrome: biology, incidence, and therapeutic strategies. Cancer. 2005;103:216–28.

    Article  CAS  PubMed  Google Scholar 

  155. Rossi D. Richter’s syndrome: novel and promising therapeutic alternatives. Best Pract Res Clin Hematol. 2016;29:30–9.

    Article  Google Scholar 

  156. Vollamor N, Conde L, Martinez-Trillos A, et al. NOTCH1 mutations identify a genetic subgroup of chronic lymphocytic leukemia patients with high risk of transformation and poor outcome. Leukemia. 2013;27:1100–6.

    Article  CAS  Google Scholar 

  157. Lens D, De Schouwer PJ, Hamoudi RA, et al. p53 abnormalities in B-cell prolymphocytic leukemia. Blood. 1997;89:2015–23.

    CAS  PubMed  Google Scholar 

  158. Lens D, Coignet LJ, Brito-Babapulle V, et al. B cell prolymphocytic leukaemia (B-PLL) with complex karyotype and concurrent abnormalities of the p53 and c-MYC gene. Leukemia. 1999;13:873–6.

    Article  CAS  PubMed  Google Scholar 

  159. Lens D, Matutes E, Catovsky D, Coignet LJ. Frequent deletions at 11q23 and 13q14 in B cell prolymphocytic leukemia (B-PLL). Leukemia. 2000;14:427–30.

    Article  CAS  PubMed  Google Scholar 

  160. Herling M, Khoury JD, Washington LT, Duvic M, Keating MJ, Jones D. A systematic approach to diagnosis of mature T-cell leukemias reveals heterogeneity among WHO categories. Blood. 2004;104:328–35.

    Article  CAS  PubMed  Google Scholar 

  161. Herling M, Patel KA, Teitell MA, et al. High TCL1 expression and intact T-cell receptor signaling define a hyperproliferative subset of T-cell prolymphocytic leukemia. Blood. 2008;111:328–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Dearden C, Matutes E, Catovsky D. Deoxycoformycin in the treatment of mature T-cell leukaemias. Br J Cancer. 1991;64:903–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ferrajoli A, O’Brien SM, Cortes JE, et al. Phase II study of alemtuzumab in chronic lymphoproliferative disorders. Cancer. 2003;98:773–8.

    Article  CAS  PubMed  Google Scholar 

  164. Keating MJ, Cazin B, Coutre S, et al. Campath-1H treatment of T-cell prolymphocytic leukemia in patients for whom at least one prior chemotherapy regimen has failed. J Clin Oncol. 2002;20:205–13.

    Article  CAS  PubMed  Google Scholar 

  165. Pawson R, Dyer MJ, Barge R, et al. Treatment of T-cell prolymphocytic leukemia with human CD52 antibody. J Clin Oncol. 1997;15:2667–72.

    Article  CAS  PubMed  Google Scholar 

  166. Dearden CE, Matutes E, Cazin B, et al. High remission rate in T-cell prolymphocytic leukemia with CAMPATH-1H. Blood. 2001;98:1721–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Jeyakumar M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Jeyakumar, D., O’Brien, S. (2018). Treatment of Chronic Lymphocytic Leukemia and Related Disorders. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics