Skip to main content

Etiology and Epidemiology of Chronic Lymphocytic Leukemia

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Chronic lymphocytic leukemia (CLL) is an indolent malignancy resulting from an accumulation of CD5-positive neoplastic B-cells, which are characterized by a low rate of proliferation. Despite being the most common lymphoid malignancy in Western countries, CLL remains an incurable condition. It is characterized by one of the highest familial risks of any cancer, providing evidence that inherited genetic factors contribute to the risk of developing CLL. In the past decade, common genetic variants that confer an increased risk of CLL have been described in over 30 genomic regions. Future studies are likely to identify additional risk loci and to decipher the molecular mechanisms behind their effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. SEER Stat Fact Sheets. Chronic Lymphocytic Leukemia (CLL) http://seer.cancer.gov/statfacts/html/clyl.html 1975–2013 [cited 2016].

  2. Gale RP, Cozen W, Goodman MT, Wang FF, Bernstein L. Decreased chronic lymphocytic leukemia incidence in Asians in Los Angeles County. Leuk Res. 2000;24(8):665–9.

    Article  CAS  PubMed  Google Scholar 

  3. Haenszel W, Kurihara M. Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl Cancer Inst. 1968;40(1):43–68.

    CAS  PubMed  Google Scholar 

  4. Vigliani EC. Leukemia associated with benzene exposure. Ann N Y Acad Sci. 1976;271:143–51.

    Article  CAS  PubMed  Google Scholar 

  5. Brown LM, Gibson R, Blair A, Burmeister LF, Schuman LM, Cantor KP, et al. Smoking and risk of leukemia. Am J Epidemiol. 1992;135(7):763–8.

    Article  CAS  PubMed  Google Scholar 

  6. Preston DL, Kusumi S, Tomonaga M, Izumi S, Ron E, Kuramoto A, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiat Res. 1994;137(2 Suppl):S68–97.

    Article  CAS  PubMed  Google Scholar 

  7. Amadori D, Nanni O, Falcini F, Saragoni A, Tison V, Callea A, et al. Chronic lymphocytic leukaemias and non-Hodgkin’s lymphomas by histological type in farming-animal breeding workers: a population case-control study based on job titles. Occup Environ Med. 1995;52(6):374–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Blair A, White DW. Leukemia cell types and agricultural practices in Nebraska. Arch Environ Health. 1985;40(4):211–4.

    Article  CAS  PubMed  Google Scholar 

  9. Delzell E, Sathiakumar N, Graff J, Macaluso M, Maldonado G, Matthews R, et al. An updated study of mortality among North American synthetic rubber industry workers. Res Rep Health Eff Inst. 2006;132:1–63. discussion 5-74

    Google Scholar 

  10. Huebner WW, Chen VW, Friedlander BR, Wu XC, Jorgensen G, Bhojani FA, et al. Incidence of lymphohaematopoietic malignancies in a petrochemical industry cohort: 1983–94 follow up. Occup Environ Med. 2000;57(9):605–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Raabe GK, Wong O. Leukemia mortality by cell type in petroleum workers with potential exposure to benzene. Environ Health Perspect. 1996;104(Suppl 6):1381–92.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Gilman PA, Ames RG, McCawley MA. Leukemia risk among U.S. white male coal miners. A case-control study. J Occup Med. 1985;27(9):669–71.

    CAS  PubMed  Google Scholar 

  13. Schwartz DA, Vaughan TL, Heyer NJ, Koepsell TD, Lyon JL, Swanson GM, et al. B cell neoplasms and occupational asbestos exposure. Am J Ind Med. 1988;14(6):661–71.

    Article  CAS  PubMed  Google Scholar 

  14. Blair A, Purdue MP, Weisenburger DD, Baris D. Chemical exposures and risk of chronic lymphocytic leukaemia. Br J Haematol. 2007;139(5):753–61.

    Article  CAS  PubMed  Google Scholar 

  15. Richardson DB, Wing S, Schroeder J, Schmitz-Feuerhake I, Hoffmann W. Ionizing radiation and chronic lymphocytic leukemia. Environ Health Perspect. 2005;113(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  16. Schubauer-Berigan MK, Daniels RD, Fleming DA, Markey AM, Couch JR, Ahrenholz SH, et al. Chronic lymphocytic leukaemia and radiation: findings among workers at five US nuclear facilities and a review of the recent literature. Br J Haematol. 2007;139(5):799–808.

    Article  PubMed  Google Scholar 

  17. Molica S. Infections in chronic lymphocytic leukemia: risk factors, and impact on survival, and treatment. Leuk Lymphoma. 1994;13(3–4):203–14.

    Article  CAS  PubMed  Google Scholar 

  18. Krackhardt AM, Harig S, Witzens M, Broderick R, Barrett P, Gribben JG. T-cell responses against chronic lymphocytic leukemia cells: implications for immunotherapy. Blood. 2002;100(1):167–73.

    Article  CAS  PubMed  Google Scholar 

  19. Krackhardt AM, Witzens M, Harig S, Hodi FS, Zauls AJ, Chessia M, et al. Identification of tumor-associated antigens in chronic lymphocytic leukemia by SEREX. Blood. 2002;100(6):2123–31.

    Article  CAS  PubMed  Google Scholar 

  20. Analo HI, Akanmu AS, Akinsete I, Njoku OS, Okany CC. Seroprevalence study of HTLV-1 and HIV infection in blood donors and patients with lymphoid malignancies in Lagos, Nigeria. Cent Afr J Med. 1998;44(5):130–4.

    CAS  PubMed  Google Scholar 

  21. Cartwright RA, Bernard SM, Bird CC, Darwin CM, O’Brien C, Richards ID, et al. Chronic lymphocytic leukaemia: case control epidemiological study in Yorkshire. Br J Cancer. 1987;56(1):79–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Goldin LR, Pfeiffer RM, Li X, Hemminki K. Familial risk of lymphoproliferative tumors in families of patients with chronic lymphocytic leukemia: results from the Swedish Family-Cancer Database. Blood. 2004;104(6):1850–4.

    Article  CAS  PubMed  Google Scholar 

  23. Jonsson V, Houlston RS, Catovsky D, Yuille MR, Hilden J, Olsen JH, et al. CLL family ‘Pedigree 14’ revisited: 1947–2004. Leukemia. 2005;19(6):1025–8.

    Article  CAS  PubMed  Google Scholar 

  24. Linet MS, Van Natta ML, Brookmeyer R, Khoury MJ, McCaffrey LD, Humphrey RL, et al. Familial cancer history and chronic lymphocytic leukemia. A case-control study. Am J Epidemiol. 1989;130(4):655–64.

    Article  CAS  PubMed  Google Scholar 

  25. Giles GG, Lickiss JN, Baikie MJ, Lowenthal RM, Panton J. Myeloproliferative and lymphoproliferative disorders in Tasmania, 1972–80: occupational and familial aspects. J Natl Cancer Inst. 1984;72(6):1233–40.

    CAS  PubMed  Google Scholar 

  26. Goldgar DE, Easton DF, Cannon-Albright LA, Skolnick MH. Systematic population-based assessment of cancer risk in first-degree relatives of cancer probands. J Natl Cancer Inst. 1994;86(21):1600–8.

    Article  CAS  PubMed  Google Scholar 

  27. Goldin LR, Bjorkholm M, Kristinsson SY, Turesson I, Landgren O. Elevated risk of chronic lymphocytic leukemia and other indolent non-Hodgkin’s lymphomas among relatives of patients with chronic lymphocytic leukemia. Haematologica. 2009;94(5):647–53.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Gunz FW, Gunz JP, Veale AM, Chapman CJ, Houston IB. Familial leukaemia: a study of 909 families. Scand J Haematol. 1975;15(2):117–31.

    Article  CAS  PubMed  Google Scholar 

  29. Pottern LM, Linet M, Blair A, Dick F, Burmeister LF, Gibson R, et al. Familial cancers associated with subtypes of leukemia and non-Hodgkin’s lymphoma. Leuk Res. 1991;15(5):305–14.

    Article  CAS  PubMed  Google Scholar 

  30. Ishibe N, Sgambati MT, Fontaine L, Goldin LR, Jain N, Weissman N, et al. Clinical characteristics of familial B-CLL in the National Cancer Institute Familial Registry. Leuk Lymphoma. 2001;42(1–2):99–108.

    Article  CAS  PubMed  Google Scholar 

  31. Crowther-Swanepoel D, Wild R, Sellick G, Dyer MJ, Mauro FR, Cuthbert RJ, et al. Insight into the pathogenesis of chronic lymphocytic leukemia (CLL) through analysis of IgVH gene usage and mutation status in familial CLL. Blood. 2008;111(12):5691–3.

    Article  CAS  PubMed  Google Scholar 

  32. Horwitz M, Goode EL, Jarvik GP. Anticipation in familial leukemia. Am J Hum Genet. 1996;59(5):990–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Wiernik PH, Ashwin M, Hu XP, Paietta E, Brown K. Anticipation in familial chronic lymphocytic leukaemia. Br J Haematol. 2001;113(2):407–14.

    Article  CAS  PubMed  Google Scholar 

  34. Yuille MR, Houlston RS, Catovsky D. Anticipation in familial chronic lymphocytic leukaemia. Leukemia. 1998;12(11):1696–8.

    Article  CAS  PubMed  Google Scholar 

  35. Daugherty SE, Pfeiffer RM, Mellemkjaer L, Hemminki K, Goldin LR. No evidence for anticipation in lymphoproliferative tumors in population-based samples. Cancer Epidemiol Biomark Prev. 2005;14(5):1245–50.

    Article  Google Scholar 

  36. Fuller SJ, Papaemmanuil E, McKinnon L, Webb E, Sellick GS, Dao-Ung LP, et al. Analysis of a large multi-generational family provides insight into the genetics of chronic lymphocytic leukemia. Br J Haematol. 2008;142(2):238–45.

    Article  PubMed  Google Scholar 

  37. Goldin LR, Ishibe N, Sgambati M, Marti GE, Fontaine L, Lee MP, et al. A genome scan of 18 families with chronic lymphocytic leukaemia. Br J Haematol. 2003;121(6):866–73.

    Article  PubMed  Google Scholar 

  38. Raval A, Tanner SM, Byrd JC, Angerman EB, Perko JD, Chen SS, et al. Downregulation of death-associated protein kinase 1 (DAPK1) in chronic lymphocytic leukemia. Cell. 2007;129(5):879–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sellick GS, Goldin LR, Wild RW, Slager SL, Ressenti L, Strom SS, et al. A high-density SNP genome-wide linkage search of 206 families identifies susceptibility loci for chronic lymphocytic leukemia. Blood. 2007;110(9):3326–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Sellick GS, Webb EL, Allinson R, Matutes E, Dyer MJ, Jonsson V, et al. A high-density SNP genomewide linkage scan for chronic lymphocytic leukemia-susceptibility loci. Am J Hum Genet. 2005;77(3):420–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sava GP, Speedy HE, Houlston RS. Candidate gene association studies and risk of chronic lymphocytic leukemia: a systematic review and meta-analysis. Leuk Lymphoma. 2014;55(1):160–7.

    Article  CAS  PubMed  Google Scholar 

  42. The International HapMap Consortium. A haplotype map of the human genome. Nature. 2005;437(7063):1299–320.

    Article  PubMed Central  Google Scholar 

  43. Berndt SI, Camp NJ, Skibola CF, Vijai J, Wang Z, Gu J, et al. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nat Commun. 2016;7:10933.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Berndt SI, Skibola CF, Joseph V, Camp NJ, Nieters A, Wang Z, et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet. 2013;45(8):868–76.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Crowther-Swanepoel D, Broderick P, Di Bernardo MC, Dobbins SE, Torres M, Mansouri M, et al. Common variants at 2q37.3, 8q24.21, 15q21.3 and 16q24.1 influence chronic lymphocytic leukemia risk. Nat Genet. 2010;42(2):132–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Crowther-Swanepoel D, Di Bernardo MC, Jamroziak K, Karabon L, Frydecka I, Deaglio S, et al. Common genetic variation at 15q25.2 impacts on chronic lymphocytic leukaemia risk. Br J Haematol. 2011;154(2):229–33.

    Article  PubMed  Google Scholar 

  47. Di Bernardo MC, Crowther-Swanepoel D, Broderick P, Webb E, Sellick G, Wild R, et al. A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2008;40(10):1204–10.

    Article  PubMed  Google Scholar 

  48. Sava GP, Speedy HE, Di Bernardo MC, Dyer MJ, Holroyd A, Sunter NJ, et al. Common variation at 12q24.13 (OAS3) influences chronic lymphocytic leukemia risk. Leukemia. 2015;29(3):748–51.

    Article  CAS  PubMed  Google Scholar 

  49. Slager SL, Rabe KG, Achenbach SJ, Vachon CM, Goldin LR, Strom SS, et al. Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood. 2011;117(6):1911–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Slager SL, Skibola CF, Di Bernardo MC, Conde L, Broderick P, McDonnell SK, et al. Common variation at 6p21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. Blood. 2012;120(4):843–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Speedy HE, Di Bernardo MC, Sava GP, Dyer MJ, Holroyd A, Wang Y, et al. A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia. Nat Genet. 2014;46(1):56–60.

    Article  CAS  PubMed  Google Scholar 

  52. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19(2):202–8.

    Article  CAS  PubMed  Google Scholar 

  53. Shukla V, Ma S, Hardy RR, Joshi SS, Lu R. A role for IRF4 in the development of CLL. Blood. 2013;122(16):2848–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Shaffer AL, Emre NC, Lamy L, Ngo VN, Wright G, Xiao W, et al. IRF4 addiction in multiple myeloma. Nature. 2008;454(7201):226–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Busslinger M. Transcriptional control of early B cell development. Annu Rev Immunol. 2004;22:55–79.

    Article  CAS  PubMed  Google Scholar 

  56. Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7(7):773–82.

    Article  CAS  PubMed  Google Scholar 

  57. Shapiro-Shelef M, Calame K. Regulation of plasma-cell development. Nat Rev Immunol. 2005;5(3):230–42.

    Article  CAS  PubMed  Google Scholar 

  58. Wang H, Lee CH, Qi C, Tailor P, Feng J, Abbasi S, et al. IRF8 regulates B-cell lineage specification, commitment, and differentiation. Blood. 2008;112(10):4028–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Xu H, Chaudhri VK, Wu Z, Biliouris K, Dienger-Stambaugh K, Rochman Y, et al. Regulation of bifurcating B cell trajectories by mutual antagonism between transcription factors IRF4 and IRF8. Nat Immunol. 2015;16(12):1274–81.

    Article  CAS  PubMed  Google Scholar 

  60. Lee CH, Melchers M, Wang H, Torrey TA, Slota R, Qi CF, et al. Regulation of the germinal center gene program by interferon (IFN) regulatory factor 8/IFN consensus sequence-binding protein. J Exp Med. 2006;203(1):63–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Carotta S, Willis SN, Hasbold J, Inouye M, Pang SH, Emslie D, et al. The transcription factors IRF8 and PU.1 negatively regulate plasma cell differentiation. J Exp Med. 2014;211(11):2169–81.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Burchert A, Cai D, Hofbauer LC, Samuelsson MK, Slater EP, Duyster J, et al. Interferon consensus sequence binding protein (ICSBP; IRF-8) antagonizes BCR/ABL and down-regulates bcl-2. Blood. 2004;103(9):3480–9.

    Article  CAS  PubMed  Google Scholar 

  63. Yang D, Thangaraju M, Browning DD, Dong Z, Korchin B, Lev DC, et al. IFN regulatory factor 8 mediates apoptosis in nonhemopoietic tumor cells via regulation of Fas expression. J Immunol. 2007;179(7):4775–82.

    Article  CAS  PubMed  Google Scholar 

  64. Bloch DB, de la Monte SM, Guigaouri P, Filippov A, Bloch KD. Identification and characterization of a leukocyte-specific component of the nuclear body. J Biol Chem. 1996;271(46):29198–204.

    Article  CAS  PubMed  Google Scholar 

  65. Dent AL, Yewdell J, Puvion-Dutilleul F, Koken MH, de The H, Staudt LM. LYSP100-associated nuclear domains (LANDs): description of a new class of subnuclear structures and their relationship to PML nuclear bodies. Blood. 1996;88(4):1423–6.

    CAS  PubMed  Google Scholar 

  66. Ling PD, Peng RS, Nakajima A, Yu JH, Tan J, Moses SM, et al. Mediation of Epstein-Barr virus EBNA-LP transcriptional coactivation by Sp100. EMBO J. 2005;24(20):3565–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Madani N, Millette R, Platt EJ, Marin M, Kozak SL, Bloch DB, et al. Implication of the lymphocyte-specific nuclear body protein Sp140 in an innate response to human immunodeficiency virus type 1. J Virol. 2002;76(21):11133–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Sadler AJ, Williams BR. Interferon-inducible antiviral effectors. Nat Rev Immunol. 2008;8(7):559–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Reya T, O’Riordan M, Okamura R, Devaney E, Willert K, Nusse R, et al. Wnt signaling regulates B lymphocyte proliferation through a LEF-1 dependent mechanism. Immunity. 2000;13(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  70. Tandon B, Peterson L, Gao J, Nelson B, Ma S, Rosen S, et al. Nuclear overexpression of lymphoid-enhancer-binding factor 1 identifies chronic lymphocytic leukemia/small lymphocytic lymphoma in small B-cell lymphomas. Mod Pathol. 2011;24(11):1433–43.

    Article  CAS  PubMed  Google Scholar 

  71. Pearce EL, Mullen AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP, et al. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 2003;302(5647):1041–3.

    Article  CAS  PubMed  Google Scholar 

  72. Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson MA, Michaelsson J, et al. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014;10(7):e1004251.

    Article  PubMed Central  PubMed  Google Scholar 

  73. Frampton M, da Silva Filho MI, Broderick P, Thomsen H, Forsti A, Vijayakrishnan J, et al. Variation at 3p24.1 and 6q23.3 influences the risk of Hodgkin’s lymphoma. Nat Commun. 2013;4:2549.

    Article  PubMed Central  PubMed  Google Scholar 

  74. Patsopoulos NA, Bayer Pharma MS Genetics Working Group, Steering Committees of Studies Evaluating IFNβ-1b and a CCR1-Antagonist, ANZgene Consortium, GeneMsa, et al. Genome-wide meta-analysis identifies novel multiple sclerosis susceptibility loci. Ann Neurol. 2011;70(6):897–912.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Okada Y, Wu D, Trynka G, Raj T, Terao C, Ikari K, et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature. 2014;506(7488):376–81.

    Article  CAS  PubMed  Google Scholar 

  76. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Grundberg E, Small KS, Hedman AK, Nica AC, Buil A, Keildson S, et al. Mapping cis- and trans-regulatory effects across multiple tissues in twins. Nat Genet. 2012;44(10):1084–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Nica AC, Parts L, Glass D, Nisbet J, Barrett A, Sekowska M, et al. The architecture of gene regulatory variation across multiple human tissues: the MuTHER study. PLoS Genet. 2011;7(2):e1002003.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Westra HJ, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J, et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat Genet. 2013;45(10):1238–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Gaulton KJ, Ferreira T, Lee Y, Raimondo A, Magi R, Reschen ME, et al. Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci. Nat Genet. 2015;47(12):1415–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Whitington T, Gao P, Song W, Ross-Adams H, Lamb AD, Yang Y, et al. Gene regulatory mechanisms underpinning prostate cancer susceptibility. Nat Genet. 2016;48(4):387–97.

    Article  CAS  PubMed  Google Scholar 

  82. Oldridge DA, Wood AC, Weichert-Leahey N, Crimmins I, Sussman R, Winter C, et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature. 2015;528(7582):418–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Pomerantz MM, Ahmadiyeh N, Jia L, Herman P, Verzi MP, Doddapaneni H, et al. The 8q24 cancer risk variant rs6983267 shows long-range interaction with MYC in colorectal cancer. Nat Genet. 2009;41(8):882–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Tuupanen S, Turunen M, Lehtonen R, Hallikas O, Vanharanta S, Kivioja T, et al. The common colorectal cancer predisposition SNP rs6983267 at chromosome 8q24 confers potential to enhanced Wnt signaling. Nat Genet. 2009;41(8):885–90.

    Article  CAS  PubMed  Google Scholar 

  85. Wright JB, Brown SJ, Cole MD. Upregulation of c-MYC in cis through a large chromatin loop linked to a cancer risk-associated single-nucleotide polymorphism in colorectal cancer cells. Mol Cell Biol. 2010;30(6):1411–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Rawstron AC, Green MJ, Kuzmicki A, Kennedy B, Fenton JA, Evans PA, et al. Monoclonal B lymphocytes with the characteristics of “indolent” chronic lymphocytic leukemia are present in 3.5% of adults with normal blood counts. Blood. 2002;100(2):635–9.

    Article  CAS  PubMed  Google Scholar 

  87. Rawstron AC, Bennett FL, O’Connor SJ, Kwok M, Fenton JA, Plummer M, et al. Monoclonal B-cell lymphocytosis and chronic lymphocytic leukemia. N Engl J Med. 2008;359(6):575–83.

    Article  CAS  PubMed  Google Scholar 

  88. Crowther-Swanepoel D, Corre T, Lloyd A, Gaidano G, Olver B, Bennett FL, et al. Inherited genetic susceptibility to monoclonal B-cell lymphocytosis. Blood. 2010;116(26):5957–60.

    Article  CAS  PubMed  Google Scholar 

  89. Allan JM, Sunter NJ, Bailey JR, Pettitt AR, Harris RJ, Pepper C, et al. Variant IRF4/MUM1 associates with CD38 status and treatment-free survival in chronic lymphocytic leukaemia. Leukemia. 2010;24(4):877–81.

    Article  CAS  PubMed  Google Scholar 

  90. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG, Bahlo J, et al. Mutations driving CLL and their evolution in progression and relapse. Nature. 2015;526(7574):525–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Puente XS, Bea S, Valdes-Mas R, Villamor N, Gutierrez-Abril J, Martin-Subero JI, et al. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature. 2015;526(7574):519–24.

    Article  CAS  PubMed  Google Scholar 

  92. Ramsay AJ, Quesada V, Foronda M, Conde L, Martinez-Trillos A, Villamor N, et al. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat Genet. 2013;45(5):526–30.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Houlston MD, PhD, DSc, FRS, FMedSci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Speedy, H.E., Catovsky, D., Houlston, R.S. (2018). Etiology and Epidemiology of Chronic Lymphocytic Leukemia. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics