Skip to main content

Diagnosis and Treatment of Chronic Myeloid Leukemia

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

The original recognition of leukemia in the nineteenth century and the story of our progressive understanding of the biology and the development of treatment of chronic myeloid leukemia (CML) have been well reviewed in recent years (Goldman, Semin Hematol 47(4):302–11, 2010; Cortes and Kantarjian, Blood 120(7):1390–7, 2012; Hehlmann, Blood 120(4):737–47, 2012). Today, the diagnosis of CML usually presents few problems. In contrast, planning a therapeutic strategy for a patient who presents in chronic phase and monitoring a patient who starts treatment with a tyrosine kinase inhibitor (TKI) present a number of challenges. The same is true for a patient in chronic phase whose disease proves resistant to initial treatment with a TKI. Even more difficult may be the issue of how best to treat a patient presenting in or progressing to an advanced phase of CML. In this chapter, we review some of the essentials of diagnosis of CML with the main focus on the results of available treatment options and guidance on therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Goldman JM. Chronic myeloid leukemia: a historical perspective. Semin Hematol. 2010;47(4):302–11.

    Article  CAS  PubMed  Google Scholar 

  2. Cortes J, Kantarjian H. How I treat newly diagnosed chronic phase CML. Blood. 2012;120(7):1390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hehlmann R. How I treat CML blast crisis. Blood. 2012;120(4):737–47.

    Article  CAS  PubMed  Google Scholar 

  4. Fialkow PJ, Jacobson RJ, Papayannopoulou T. Chronic myelocytic leukemia: clonal origin in a stem cell common to the granulocyte, erythrocyte, platelet and monocyte/macrophage. Am J Med. 1977;63(1):125–30.

    Article  CAS  PubMed  Google Scholar 

  5. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85–109.

    CAS  PubMed  Google Scholar 

  6. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.

    Article  CAS  PubMed  Google Scholar 

  7. Daley GQ, Van Etten RA, Baltimore D. Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science. 1990;247(4944):824–30.

    Article  CAS  PubMed  Google Scholar 

  8. Daley GQ, Van Etten RA, Baltimore D. Blast crisis in a murine model of chronic myelogenous leukemia. Proc Natl Acad Sci U S A. 1991;88(24):11335–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lugo TG, Pendergast AM, Muller AJ, Witte ON. Tyrosine kinase activity and transformation potency of bcr-abl oncogene products. Science. 1990;247(4946):1079–82.

    Article  CAS  PubMed  Google Scholar 

  10. Kurzrock R, Bueso-Ramos CE, Kantarjian H, Freireich E, Tucker SL, Siciliano M, et al. BCR rearrangement-negative chronic myelogenous leukemia revisited. J Clin Oncol. 2001;19(11):2915–26.

    Article  CAS  PubMed  Google Scholar 

  11. Ezdinli EZ, Sokal JE, Crosswhite L, Sandberg AA. Philadelphia-chromosome-positive and -negative chronic myelocytic leukemia. Ann Intern Med. 1970;72(2):175–82.

    Article  CAS  PubMed  Google Scholar 

  12. Bizzozero OJ Jr, Johnson KG, Ciocco A. Radiation-related leukemia in Hiroshima and Nagasaki, 1946-1964. I. Distribution, incidence and appearance time. N Engl J Med. 1966;274(20):1095–101.

    Article  PubMed  Google Scholar 

  13. Ichimaru M, Ishimaru T, Belsky JL. Incidence of leukemia in atomic bomb survivors belonging to a fixed cohort in Hiroshima and Nagasaki, 1950--71. Radiation dose, years after exposure, age at exposure, and type of leukemia. J Radiat Res. 1978;19(3):262–82.

    Article  CAS  PubMed  Google Scholar 

  14. Wald N. Leukemia in Hiroshima City atomic bomb survivors. Science. 1958;127(3300):699–700.

    Article  CAS  PubMed  Google Scholar 

  15. Savage DG, Szydlo RM, Goldman JM. Clinical features at diagnosis in 430 patients with chronic myeloid leukaemia seen at a referral centre over a 16-year period. Br J Haematol. 1997;96(1):111–6.

    Article  CAS  PubMed  Google Scholar 

  16. Kantarjian HM, Dixon D, Keating MJ, Talpaz M, Walters RS, McCredie KB, et al. Characteristics of accelerated disease in chronic myelogenous leukemia. Cancer. 1988;61(7):1441–6.

    Article  CAS  PubMed  Google Scholar 

  17. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–405.

    Article  CAS  PubMed  Google Scholar 

  18. Shumak KH, Baker MA, Taub RN, Coleman MS. Myeloblastic and lymphoblastic markers in acute undifferentiated leukemia and chronic myelogenous leukemia in blast crisis. Cancer Res. 1980;40(11):4048–52.

    CAS  PubMed  Google Scholar 

  19. Forman EN, Padre-Mendoza T, Smith PS, Barker BE, Farnes P. Ph1-positive childhood leukemias: spectrum of lymphoid-myeloid expressions. Blood. 1977;49(4):549–58.

    CAS  PubMed  Google Scholar 

  20. Chan LC, Furley AJ, Ford AM, Yardumian DA, Greaves MF. Clonal rearrangement and expression of the T cell receptor beta gene and involvement of the breakpoint cluster region in blast crisis of CGL. Blood. 1986;67(2):533–6.

    CAS  PubMed  Google Scholar 

  21. Speed DE, Lawler SD. Chronic granulocytic Leukaemia. The chromosomes and the disease. Lancet. 1964;1(7330):403–8.

    Article  CAS  PubMed  Google Scholar 

  22. Kantarjian HM, Keating MJ, Talpaz M, Walters RS, Smith TL, Cork A, et al. Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am J Med. 1987;83(3):445–54.

    Article  CAS  PubMed  Google Scholar 

  23. Mitelman F. The cytogenetic scenario of chronic myeloid leukemia. Leuk Lymphoma. 1993;11(Suppl 1):11–5.

    Article  PubMed  Google Scholar 

  24. Fabarius A, Kalmanti L, Dietz CT, Lauseker M, Rinaldetti S, Haferlach C, et al. Impact of unbalanced minor route versus major route karyotypes at diagnosis on prognosis of CML. Ann Hematol. 2015;94(12):2015–24.

    Article  PubMed  Google Scholar 

  25. Stuppia L, Calabrese G, Peila R, Guanciali-Franchi P, Morizio E, Spadano A, et al. p53 loss and point mutations are associated with suppression of apoptosis and progression of CML into myeloid blastic crisis. Cancer Genet Cytogenet. 1997;98(1):28–35.

    Article  CAS  PubMed  Google Scholar 

  26. Ahuja H, Bar-Eli M, Advani SH, Benchimol S, Cline MJ. Alterations in the p53 gene and the clonal evolution of the blast crisis of chronic myelocytic leukemia. Proc Natl Acad Sci U S A. 1989;86(17):6783–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stoll C, Oberling F, Flori E. Chromosome analysis of spleen and/or lymph nodes of patients with chronic myeloid leukemia (CML). Blood. 1978;52(4):828–38.

    CAS  PubMed  Google Scholar 

  28. Vernant JP, Brun B, Mannoni P, Dreyfus B. Respiratory distress of hyperleukocytic granulocytic leukemias. Cancer. 1979;44(1):264–8.

    Article  CAS  PubMed  Google Scholar 

  29. Schwartz JH, Canellos GP, Young RC, DeVita VT Jr. Meningeal leukemia in the blastic phase of chronic granulocytic leukemia. Am J Med. 1975;59(6):819–28.

    Article  CAS  PubMed  Google Scholar 

  30. Tura S, Baccarani M, Corbelli G. Staging of chronic myeloid leukaemia. Br J Haematol. 1981;47(1):105–19.

    Article  CAS  PubMed  Google Scholar 

  31. Cervantes F, Rozman C. A multivariate analysis of prognostic factors in chronic myeloid leukemia. Blood. 1982;60(6):1298–304.

    CAS  PubMed  Google Scholar 

  32. Sokal JE, Baccarani M, Russo D, Tura S. Staging and prognosis in chronic myelogenous leukemia. Semin Hematol. 1988;25(1):49–61.

    CAS  PubMed  Google Scholar 

  33. Hasford J, Pfirrmann M, Hehlmann R, Allan NC, Baccarani M, Kluin-Nelemans JC, et al. A new prognostic score for survival of patients with chronic myeloid leukemia treated with interferon alfa. Writing Committee for the Collaborative CML Prognostic Factors Project Group. J Natl Cancer Inst. 1998;90(11):850–8.

    Article  CAS  PubMed  Google Scholar 

  34. Hasford J, Baccarani M, Hoffmann V, Guilhot J, Saussele S, Rosti G, et al. Predicting complete cytogenetic response and subsequent progression-free survival in 2060 patients with CML on imatinib treatment: the EUTOS score. Blood. 2011;118(3):686–92.

    Article  CAS  PubMed  Google Scholar 

  35. Gratwohl A, Hermans J, Goldman JM, Arcese W, Carreras E, Devergie A, et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet. 1998;352(9134):1087–92.

    Article  CAS  PubMed  Google Scholar 

  36. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–7.

    Article  CAS  PubMed  Google Scholar 

  37. Caplan SN, Coco FV, Berkman EM. Management of chronic myelocytic leukemia in pregnancy by cell pheresis. Transfusion. 1978;18(1):120–4.

    Article  CAS  PubMed  Google Scholar 

  38. Fitzgerald D, Rowe JM, Heal J. Leukapheresis for control of chronic myelogenous leukemia during pregnancy. Am J Hematol. 1986;22(2):213–8.

    Article  CAS  PubMed  Google Scholar 

  39. Kennedy BJ. Hydroxyurea therapy in chronic myelogenous leukemia. Cancer. 1972;29(4):1052–6.

    Article  CAS  PubMed  Google Scholar 

  40. Kolitz JE, Kempin SJ, Schluger A, Wong GY, Berman E, Jhanwar S, et al. A phase II pilot trial of high-dose hydroxyurea in chronic myelogenous leukemia. Semin Oncol. 1992;19(3 Suppl 9):27–33.

    CAS  PubMed  Google Scholar 

  41. Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK, et al. Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea. The German CML Study Group. Blood. 1993;82(2):398–407.

    CAS  PubMed  Google Scholar 

  42. Talpaz M, McCredie K, Kantarjian H, Trujillo J, Keating M, Gutterman J. Chronic myelogenous leukaemia: haematological remissions with alpha interferon. Br J Haematol. 1986;64(1):87–95.

    Article  CAS  PubMed  Google Scholar 

  43. Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK, et al. Randomized comparison of interferon-alpha with busulfan and hydroxyurea in chronic myelogenous leukemia. The German CML Study Group. Blood. 1994;84(12):4064–77.

    CAS  PubMed  Google Scholar 

  44. Talpaz M. Interferon-alfa-based treatment of chronic myeloid leukemia and implications of signal transduction inhibition. Semin Hematol. 2001;38(3 Suppl 8):22–7.

    Article  CAS  PubMed  Google Scholar 

  45. Guilhot F, Lacotte-Thierry L. Interferon-alpha: mechanisms of action in chronic myelogenous leukemia in chronic phase. Hematol Cell Ther. 1998;40(5):237–9.

    CAS  PubMed  Google Scholar 

  46. Interferon alfa versus chemotherapy for chronic myeloid leukemia: a meta-analysis of seven randomized trials: chronic Myeloid Leukemia Trialists’ Collaborative Group. J Natl Cancer Inst. 1997;89(21):1616–20.

    Google Scholar 

  47. Bonifazi F, de Vivo A, Rosti G, Guilhot F, Guilhot J, Trabacchi E, et al. Chronic myeloid leukemia and interferon-alpha: a study of complete cytogenetic responders. Blood. 2001;98(10):3074–81.

    Article  CAS  PubMed  Google Scholar 

  48. Guilhot F, Chastang C, Michallet M, Guerci A, Harousseau JL, Maloisel F, et al. Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group. N Engl J Med. 1997;337(4):223–9.

    Article  CAS  PubMed  Google Scholar 

  49. Kantarjian HM, O’Brien S, Smith TL, Rios MB, Cortes J, Beran M, et al. Treatment of Philadelphia chromosome-positive early chronic phase chronic myelogenous leukemia with daily doses of interferon alpha and low-dose cytarabine. J Clin Oncol. 1999;17(1):284–92.

    Article  CAS  PubMed  Google Scholar 

  50. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004.

    Article  PubMed  Google Scholar 

  51. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, et al. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med. 1996;2(5):561–6.

    Article  CAS  PubMed  Google Scholar 

  52. Oda T, Tamura S, Matsuguchi T, Griffin JD, Druker BJ. The SH2 domain of ABL is not required for factor-independent growth induced by BCR-ABL in a murine myeloid cell line. Leukemia. 1995;9(2):295–301.

    CAS  PubMed  Google Scholar 

  53. Beran M, Cao X, Estrov Z, Jeha S, Jin G, O’Brien S, et al. Selective inhibition of cell proliferation and BCR-ABL phosphorylation in acute lymphoblastic leukemia cells expressing Mr 190,000 BCR-ABL protein by a tyrosine kinase inhibitor (CGP-57148). Clin Cancer Res. 1998;4(7):1661–72.

    CAS  PubMed  Google Scholar 

  54. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, et al. CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood. 1997;90(12):4947–52.

    CAS  PubMed  Google Scholar 

  55. Deininger MW, Goldman JM, Lydon N, Melo JV. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood. 1997;90(9):3691–8.

    CAS  PubMed  Google Scholar 

  56. Gambacorti-Passerini C, le Coutre P, Mologni L, Fanelli M, Bertazzoli C, Marchesi E, et al. Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ leukemic cells and induces apoptosis. Blood Cells Mol Dis. 1997;23(3):380–94.

    Article  CAS  PubMed  Google Scholar 

  57. Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest. 2000;105(1):3–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Druker BJ, Sawyers CL, Kantarjian H, Resta DJ, Reese SF, Ford JM, et al. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med. 2001;344(14):1038–42.

    Article  CAS  PubMed  Google Scholar 

  59. Kantarjian H, Sawyers C, Hochhaus A, Guilhot F, Schiffer C, Gambacorti-Passerini C, et al. Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia. N Engl J Med. 2002;346(9):645–52.

    Article  CAS  PubMed  Google Scholar 

  60. Ottmann OG, Druker BJ, Sawyers CL, Goldman JM, Reiffers J, Silver RT, et al. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood. 2002;100(6):1965–71.

    Article  CAS  PubMed  Google Scholar 

  61. Talpaz M, Silver RT, Druker BJ, Goldman JM, Gambacorti-Passerini C, Guilhot F, et al. Imatinib induces durable hematologic and cytogenetic responses in patients with accelerated phase chronic myeloid leukemia: results of a phase 2 study. Blood. 2002;99(6):1928–37.

    Article  CAS  PubMed  Google Scholar 

  62. Sawyers CL, Hochhaus A, Feldman E, Goldman JM, Miller CB, Ottmann OG, et al. Imatinib induces hematologic and cytogenetic responses in patients with chronic myelogenous leukemia in myeloid blast crisis: results of a phase II study. Blood. 2002;99(10):3530–9.

    Article  CAS  PubMed  Google Scholar 

  63. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–32.

    Article  CAS  PubMed  Google Scholar 

  64. Baccarani M, Rosti G, Castagnetti F, Haznedaroglu I, Porkka K, Abruzzese E, et al. Comparison of imatinib 400 mg and 800 mg daily in the front-line treatment of high-risk, Philadelphia-positive chronic myeloid leukemia: a European LeukemiaNet Study. Blood. 2009;113(19):4497–504.

    Article  CAS  PubMed  Google Scholar 

  65. Gugliotta G, Castagnetti F, Palandri F, Breccia M, Intermesoli T, Capucci A, et al. Frontline imatinib treatment of chronic myeloid leukemia: no impact of age on outcome, a survey by the GIMEMA CML Working Party. Blood. 2011;117(21):5591–9.

    Article  CAS  PubMed  Google Scholar 

  66. Hehlmann R, Muller MC, Lauseker M, Hanfstein B, Fabarius A, Schreiber A, et al. Deep molecular response is reached by the majority of patients treated with imatinib, predicts survival, and is achieved more quickly by optimized high-dose imatinib: results from the randomized CML-study IV. J Clin Oncol. 2014;32(5):415–23.

    Article  PubMed  CAS  Google Scholar 

  67. Jain P, Kantarjian H, Alattar ML, Jabbour E, Sasaki K, Nogueras Gonzalez G, et al. Long-term molecular and cytogenetic response and survival outcomes with imatinib 400 mg, imatinib 800 mg, dasatinib, and nilotinib in patients with chronic-phase chronic myeloid leukaemia: retrospective analysis of patient data from five clinical trials. Lancet Haematol. 2015;2(3):e118–28.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, et al. Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med. 2006;355(23):2408–17.

    Article  CAS  PubMed  Google Scholar 

  69. Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med. 2017; 376(10):917–27.

    Google Scholar 

  70. Kantarjian HM, Talpaz M, O’Brien S, Jones D, Giles F, Garcia-Manero G, et al. Survival benefit with imatinib mesylate versus interferon-alpha-based regimens in newly diagnosed chronic-phase chronic myelogenous leukemia. Blood. 2006;108(6):1835–40.

    Article  CAS  PubMed  Google Scholar 

  71. Roy L, Guilhot J, Krahnke T, Guerci-Bresler A, Druker BJ, Larson RA, et al. Survival advantage from imatinib compared with the combination interferon-alpha plus cytarabine in chronic-phase chronic myelogenous leukemia: historical comparison between two phase 3 trials. Blood. 2006;108(5):1478–84.

    Article  CAS  PubMed  Google Scholar 

  72. Kantarjian H, Talpaz M, O’Brien S, Garcia-Manero G, Verstovsek S, Giles F, et al. High-dose imatinib mesylate therapy in newly diagnosed Philadelphia chromosome-positive chronic phase chronic myeloid leukemia. Blood. 2004;103(8):2873–8.

    Article  CAS  PubMed  Google Scholar 

  73. Hughes TP, Branford S, White DL, Reynolds J, Koelmeyer R, Seymour JF, et al. Impact of early dose intensity on cytogenetic and molecular responses in chronic- phase CML patients receiving 600 mg/day of imatinib as initial therapy. Blood. 2008;112(10):3965–73.

    Article  CAS  PubMed  Google Scholar 

  74. Baccarani M, Druker BJ, Branford S, Kim DW, Pane F, Mongay L, et al. Long-term response to imatinib is not affected by the initial dose in patients with Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: final update from the Tyrosine Kinase Inhibitor Optimization and Selectivity (TOPS) study. Int J Hematol. 2014;99(5):616–24.

    Article  CAS  PubMed  Google Scholar 

  75. Millot F, Guilhot J, Nelken B, Leblanc T, De Bont ES, Bekassy AN, et al. Imatinib mesylate is effective in children with chronic myelogenous leukemia in late chronic and advanced phase and in relapse after stem cell transplantation. Leukemia. 2006;20(2):187–92.

    Article  CAS  PubMed  Google Scholar 

  76. Deininger MW, O’Brien SG, Ford JM, Druker BJ. Practical management of patients with chronic myeloid leukemia receiving imatinib. J Clin Oncol. 2003;21(8):1637–47.

    Article  CAS  PubMed  Google Scholar 

  77. Marin D, Marktel S, Bua M, Armstrong L, Goldman JM, Apperley JF, et al. The use of imatinib (STI571) in chronic myelod leukemia: some practical considerations. Haematologica. 2002;87(9):979–88.

    CAS  PubMed  Google Scholar 

  78. Steegmann JL, Baccarani M, Breccia M, Casado LF, Garcia-Gutierrez V, Hochhaus A, et al. European LeukemiaNet recommendations for the management and avoidance of adverse events of treatment in chronic myeloid leukaemia. Leukemia. 2016;30(8):1648–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gambacorti-Passerini C, Antolini L, Mahon FX, Guilhot F, Deininger M, Fava C, et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst. 2011;103(7):553–61.

    Article  CAS  PubMed  Google Scholar 

  80. Saussele S, Krauss MP, Hehlmann R, Lauseker M, Proetel U, Kalmanti L, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia: results of the randomized CML study IV. Blood. 2015;126(1):42–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Millot F, Claviez A, Leverger G, Corbaciglu S, Groll AH, Suttorp M. Imatinib cessation in children and adolescents with chronic myeloid leukemia in chronic phase. Pediatr Blood Cancer. 2014;61(2):355–7.

    Article  PubMed  Google Scholar 

  82. Hughes T, Branford S. Molecular monitoring of BCR-ABL as a guide to clinical management in chronic myeloid leukaemia. Blood Rev. 2006;20(1):29–41.

    Article  CAS  PubMed  Google Scholar 

  83. Kaeda J, Chase A, Goldman JM. Cytogenetic and molecular monitoring of residual disease in chronic myeloid leukaemia. Acta Haematol. 2002;107(2):64–75.

    Article  CAS  PubMed  Google Scholar 

  84. Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J, et al. Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood. 2006;108(1):28–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Reinhold U, Hennig E, Leiblein S, Niederwieser D, Deininger MW. FISH for BCR-ABL on interphases of peripheral blood neutrophils but not of unselected white cells correlates with bone marrow cytogenetics in CML patients treated with imatinib. Leukemia. 2003;17(10):1925–9.

    Article  CAS  PubMed  Google Scholar 

  86. Branford S, Fletcher L, Cross NC, Muller MC, Hochhaus A, Kim DW, et al. Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood. 2008;112(8):3330–8.

    Article  CAS  PubMed  Google Scholar 

  87. Cross NC, White HE, Ernst T, Welden L, Dietz C, Saglio G, et al. Development and evaluation of a secondary reference panel for BCR-ABL1 quantification on the International Scale. Leukemia. 2016;30(9):1844–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. White HE, Matejtschuk P, Rigsby P, Gabert J, Lin F, Lynn Wang Y, et al. Establishment of the first World Health Organization International Genetic Reference Panel for quantitation of BCR-ABL mRNA. Blood. 2010;116(22):e111–7.

    Article  CAS  PubMed  Google Scholar 

  89. Bartley PA, Ross DM, Latham S, Martin-Harris MH, Budgen B, Wilczek V, et al. Sensitive detection and quantification of minimal residual disease in chronic myeloid leukaemia using nested quantitative PCR for BCR-ABL DNA. Int J Lab Hematol. 2010;32(6 Pt 1):e222–8.

    Article  CAS  PubMed  Google Scholar 

  90. Modugno M, Casale E, Soncini C, Rosettani P, Colombo R, Lupi R, et al. Crystal structure of the T315I Abl mutant in complex with the aurora kinases inhibitor PHA-739358. Cancer Res. 2007;67(17):7987–90.

    Article  CAS  PubMed  Google Scholar 

  91. Shah NP. Ponatinib: targeting the T315I mutation in chronic myelogenous leukemia. Clin Adv Hematol Oncol. 2011;9(12):925–6.

    PubMed  Google Scholar 

  92. Soverini S, Iacobucci I, Baccarani M, Martinelli G. Targeted therapy and the T315I mutation in Philadelphia-positive leukemias. Haematologica. 2007;92(4):437–9.

    Article  CAS  PubMed  Google Scholar 

  93. Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN, et al. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science. 2001;293(5531):876–80.

    Article  CAS  PubMed  Google Scholar 

  94. Corbin AS, La Rosee P, Stoffregen EP, Druker BJ, Deininger MW. Several Bcr-Abl kinase domain mutants associated with imatinib mesylate resistance remain sensitive to imatinib. Blood. 2003;101(11):4611–4.

    Article  CAS  PubMed  Google Scholar 

  95. O’Hare T, Deininger MW, Eide CA, Clackson T, Druker BJ. Targeting the BCR-ABL signaling pathway in therapy-resistant Philadelphia chromosome-positive leukemia. Clin Cancer Res. 2011;17(2):212–21.

    Article  PubMed  Google Scholar 

  96. O’Hare T, Walters DK, Stoffregen EP, Jia T, Manley PW, Mestan J, et al. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005;65(11):4500–5.

    Article  PubMed  Google Scholar 

  97. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, Reiffers J, et al. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood. 2003;101(6):2368–73.

    Article  CAS  PubMed  Google Scholar 

  98. Thomas J, Wang L, Clark RE, Pirmohamed M. Active transport of imatinib into and out of cells: implications for drug resistance. Blood. 2004;104(12):3739–45.

    Article  CAS  PubMed  Google Scholar 

  99. Watkins DB, Hughes TP, White DL. OCT1 and imatinib transport in CML: is it clinically relevant? Leukemia. 2015;29(10):1960–9.

    Article  CAS  PubMed  Google Scholar 

  100. Radich JP, Dai H, Mao M, Oehler V, Schelter J, Druker B, et al. Gene expression changes associated with progression and response in chronic myeloid leukemia. Proc Natl Acad Sci U S A. 2006;103(8):2794–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. White D, Saunders V, Lyons AB, Branford S, Grigg A, To LB, et al. In vitro sensitivity to imatinib-induced inhibition of ABL kinase activity is predictive of molecular response in patients with de novo CML. Blood. 2005;106(7):2520–6.

    Article  CAS  PubMed  Google Scholar 

  102. Larson RA, Druker BJ, Guilhot F, O’Brien SG, Riviere GJ, Krahnke T, et al. Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood. 2008;111(8):4022–8.

    Article  CAS  PubMed  Google Scholar 

  103. Picard S, Titier K, Etienne G, Teilhet E, Ducint D, Bernard MA, et al. Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood. 2007;109(8):3496–9.

    Article  CAS  PubMed  Google Scholar 

  104. Marin D, Bazeos A, Mahon FX, Eliasson L, Milojkovic D, Bua M, et al. Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol. 2010;28(14):2381–8.

    Article  CAS  PubMed  Google Scholar 

  105. Tefferi A, Kantarjian H, Rajkumar SV, Baker LH, Abkowitz JL, Adamson JW, et al. In support of a patient-driven initiative and petition to lower the high price of cancer drugs. Mayo Clin Proc. 2015;90(8):996–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J, et al. Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol. 2009;27(35):6041–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kantarjian H, Pasquini R, Hamerschlak N, Rousselot P, Holowiecki J, Jootar S, et al. Dasatinib or high-dose imatinib for chronic-phase chronic myeloid leukemia after failure of first-line imatinib: a randomized phase 2 trial. Blood. 2007;109(12):5143–50.

    Article  CAS  PubMed  Google Scholar 

  109. Cortes JE, Kantarjian HM, Rea D, Wetzler M, Lipton JH, Akard L, et al. Final analysis of the efficacy and safety of omacetaxine mepesuccinate in patients with chronic- or accelerated-phase chronic myeloid leukemia: results with 24 months of follow-up. Cancer. 2015;121(10):1637–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol. 2016;34(20):2333–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Hanfstein B, Shlyakhto V, Lauseker M, Hehlmann R, Saussele S, Dietz C, et al. Velocity of early BCR-ABL transcript elimination as an optimized predictor of outcome in chronic myeloid leukemia (CML) patients in chronic phase on treatment with imatinib. Leukemia. 2014;28(10):1988–92.

    Article  CAS  PubMed  Google Scholar 

  112. Milojkovic D, Nicholson E, Apperley JF, Holyoake TL, Shepherd P, Drummond MW, et al. Early prediction of success or failure of treatment with second-generation tyrosine kinase inhibitors in patients with chronic myeloid leukemia. Haematologica. 2010;95(2):224–31.

    Article  CAS  PubMed  Google Scholar 

  113. Radich JP, Kopecky KJ, Appelbaum FR, Kamel-Reid S, Stock W, Malnassy G, et al. A randomized trial of dasatinib 100 mg versus imatinib 400 mg in newly diagnosed chronic-phase chronic myeloid leukemia. Blood. 2012;120(19):3898–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yeung DT, Osborn MP, White DL, Branford S, Braley J, Herschtal A, et al. TIDEL-II: first-line use of imatinib in CML with early switch to nilotinib for failure to achieve time-dependent molecular targets. Blood. 2015;125(6):915–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Branford S, Yeung DT, Parker WT, Roberts ND, Purins L, Braley JA, et al. Prognosis for patients with CML and >10% BCR-ABL1 after 3 months of imatinib depends on the rate of BCR-ABL1 decline. Blood. 2014;124(4):511–8.

    Article  CAS  PubMed  Google Scholar 

  116. Branford S, Rudzki Z, Walsh S, Parkinson I, Grigg A, Szer J, et al. Detection of BCR-ABL mutations in patients with CML treated with imatinib is virtually always accompanied by clinical resistance, and mutations in the ATP phosphate-binding loop (P-loop) are associated with a poor prognosis. Blood. 2003;102(1):276–83.

    Article  CAS  PubMed  Google Scholar 

  117. Shah NP, Nicoll JM, Nagar B, Gorre ME, Paquette RL, Kuriyan J, et al. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib (STI571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell. 2002;2(2):117–25.

    Article  CAS  PubMed  Google Scholar 

  118. Soverini S, Gnani A, Colarossi S, Castagnetti F, Abruzzese E, Paolini S, et al. Philadelphia-positive patients who already harbor imatinib-resistant Bcr-Abl kinase domain mutations have a higher likelihood of developing additional mutations associated with resistance to second- or third-line tyrosine kinase inhibitors. Blood. 2009;114(10):2168–71.

    Article  CAS  PubMed  Google Scholar 

  119. Cortes JE, Khoury HJ, Kantarjian HM, Lipton JH, Kim DW, Schafhausen P, et al. Long-term bosutinib for chronic phase chronic myeloid leukemia after failure of imatinib plus dasatinib and/or nilotinib. Am J Hematol. 2016;91(12):1206–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kantarjian H, Giles F, Wunderle L, Bhalla K, O’Brien S, Wassmann B, et al. Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med. 2006;354(24):2542–51.

    Article  PubMed  Google Scholar 

  121. Kantarjian HM, Giles FJ, Bhalla KN, Pinilla-Ibarz J, Larson RA, Gattermann N, et al. Nilotinib is effective in patients with chronic myeloid leukemia in chronic phase after imatinib resistance or intolerance: 24-month follow-up results. Blood. 2011;117(4):1141–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kantarjian H, Cortes J, Kim DW, Dorlhiac-Llacer P, Pasquini R, DiPersio J, et al. Phase 3 study of dasatinib 140 mg once daily versus 70 mg twice daily in patients with chronic myeloid leukemia in accelerated phase resistant or intolerant to imatinib: 15-month median follow-up. Blood. 2009;113(25):6322–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Khoury HJ, Cortes JE, Kantarjian HM, Gambacorti-Passerini C, Baccarani M, Kim DW, et al. Bosutinib is active in chronic phase chronic myeloid leukemia after imatinib and dasatinib and/or nilotinib therapy failure. Blood. 2012;119(15):3403–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Redaelli S, Piazza R, Rostagno R, Magistroni V, Perini P, Marega M, et al. Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol. 2009;27(3):469–71.

    Article  CAS  PubMed  Google Scholar 

  125. Shah NP, Guilhot F, Cortes JE, Schiffer CA, le Coutre P, Brummendorf TH, et al. Long-term outcome with dasatinib after imatinib failure in chronic-phase chronic myeloid leukemia: follow-up of a phase 3 study. Blood. 2014;123(15):2317–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, Flinn I, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med. 2012;367(22):2075–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tanneeru K, Guruprasad L. Ponatinib is a pan-BCR-ABL kinase inhibitor: MD simulations and SIE study. PLoS One. 2013;8(11):e78556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Lombardo LJ, Lee FY, Chen P, Norris D, Barrish JC, Behnia K, et al. Discovery of N-(2-chloro-6-methyl- phenyl)-2-(6-(4-(2-hydroxyethyl)- piperazin-1-yl)-2-methylpyrimidin-4- ylamino)thiazole-5-carboxamide (BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem. 2004;47(27):6658–61.

    Article  CAS  PubMed  Google Scholar 

  129. Talpaz M, Shah NP, Kantarjian H, Donato N, Nicoll J, Paquette R, et al. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med. 2006;354(24):2531–41.

    Article  CAS  PubMed  Google Scholar 

  130. Shah NP, Rousselot P, Schiffer C, Rea D, Cortes JE, Milone J, et al. Dasatinib in imatinib-resistant or -intolerant chronic-phase, chronic myeloid leukemia patients: 7-year follow-up of study CA180-034. Am J Hematol. 2016;91(9):869–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Rasheed W, Flaim B, Seymour JF. Reversible severe pulmonary hypertension secondary to dasatinib in a patient with chronic myeloid leukemia. Leuk Res. 2009;33(6):861–4.

    Article  PubMed  Google Scholar 

  132. Shah NP, Wallis N, Farber HW, Mauro MJ, Wolf RA, Mattei D, et al. Clinical features of pulmonary arterial hypertension in patients receiving dasatinib. Am J Hematol. 2015;90(11):1060–4.

    Article  CAS  PubMed  Google Scholar 

  133. Kreutzman A, Juvonen V, Kairisto V, Ekblom M, Stenke L, Seggewiss R, et al. Mono/oligoclonal T and NK cells are common in chronic myeloid leukemia patients at diagnosis and expand during dasatinib therapy. Blood. 2010;116(5):772–82.

    Article  CAS  PubMed  Google Scholar 

  134. Kreutzman A, Ladell K, Koechel C, Gostick E, Ekblom M, Stenke L, et al. Expansion of highly differentiated CD8+ T-cells or NK-cells in patients treated with dasatinib is associated with cytomegalovirus reactivation. Leukemia. 2011;25(10):1587–97.

    Article  CAS  PubMed  Google Scholar 

  135. Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F, et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23(8):1398–405.

    Article  CAS  PubMed  Google Scholar 

  136. Valent JN, Schiffer CA. Prevalence of large granular lymphocytosis in patients with chronic myelogenous leukemia (CML) treated with dasatinib. Leuk Res. 2011;35(1):e1–3.

    Article  PubMed  Google Scholar 

  137. Schiffer CA, Cortes JE, Hochhaus A, Saglio G, le Coutre P, Porkka K, et al. Lymphocytosis after treatment with dasatinib in chronic myeloid leukemia: effects on response and toxicity. Cancer. 2016;122(9):1398–407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A, et al. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell. 2005;7(2):129–41.

    Article  CAS  PubMed  Google Scholar 

  139. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110(10):3540–6.

    Article  CAS  PubMed  Google Scholar 

  140. Giles FJ, le Coutre PD, Pinilla-Ibarz J, Larson RA, Gattermann N, Ottmann OG, et al. Nilotinib in imatinib-resistant or imatinib-intolerant patients with chronic myeloid leukemia in chronic phase: 48-month follow-up results of a phase II study. Leukemia. 2013;27(1):107–12.

    Article  CAS  PubMed  Google Scholar 

  141. Kantarjian HM, Hochhaus A, Saglio G, De Souza C, Flinn IW, Stenke L, et al. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol. 2011;12(9):841–51.

    Article  CAS  PubMed  Google Scholar 

  142. Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DW, Issaragrisil S, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Le Coutre P, Rea D, Abruzzese E, Dombret H, Trawinska MM, Herndlhofer S, et al. Severe peripheral arterial disease during nilotinib therapy. J Natl Cancer Inst. 2011;103(17):1347–8.

    Article  PubMed  CAS  Google Scholar 

  144. Valent P, Hadzijusufovic E, Schernthaner GH, Wolf D, Rea D, le Coutre P. Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood. 2015;125(6):901–6.

    Article  CAS  PubMed  Google Scholar 

  145. Golas JM, Arndt K, Etienne C, Lucas J, Nardin D, Gibbons J, et al. SKI-606, a 4-anilino-3-quinolinecarbonitrile dual inhibitor of Src and Abl kinases, is a potent antiproliferative agent against chronic myelogenous leukemia cells in culture and causes regression of K562 xenografts in nude mice. Cancer Res. 2003;63(2):375–81.

    CAS  PubMed  Google Scholar 

  146. Puttini M, Coluccia AM, Boschelli F, Cleris L, Marchesi E, Donella-Deana A, et al. In vitro and in vivo activity of SKI-606, a novel Src-Abl inhibitor, against imatinib-resistant Bcr-Abl+ neoplastic cells. Cancer Res. 2006;66(23):11314–22.

    Article  CAS  PubMed  Google Scholar 

  147. Cortes JE, Kantarjian HM, Brummendorf TH, Kim DW, Turkina AG, Shen ZX, et al. Safety and efficacy of bosutinib (SKI-606) in chronic phase Philadelphia chromosome-positive chronic myeloid leukemia patients with resistance or intolerance to imatinib. Blood. 2011;118(17):4567–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Gambacorti-Passerini C, Cortes JE, Lipton JH, Dmoszynska A, Wong RS, Rossiev V, et al. Safety of bosutinib versus imatinib in the phase 3 BELA trial in newly diagnosed chronic phase chronic myeloid leukemia. Am J Hematol. 2014;89(10):947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Buffa P, Romano C, Pandini A, Massimino M, Tirro E, Di Raimondo F, et al. BCR-ABL residues interacting with ponatinib are critical to preserve the tumorigenic potential of the oncoprotein. FASEB J. 2014;28(3):1221–36.

    Article  CAS  PubMed  Google Scholar 

  150. O’Hare T, Shakespeare WC, Zhu X, Eide CA, Rivera VM, Wang F, et al. AP24534, a pan-BCR-ABL inhibitor for chronic myeloid leukemia, potently inhibits the T315I mutant and overcomes mutation-based resistance. Cancer Cell. 2009;16(5):401–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Cortes JE, Talpaz M, Kantarjian H. Ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2014;370(6):577.

    Article  CAS  PubMed  Google Scholar 

  152. Dalzell MD. Ponatinib pulled off market over safety issues. Manag Care. 2013;22(12):42–3.

    PubMed  Google Scholar 

  153. Breccia M, Pregno P, Spallarossa P, Arboscello E, Ciceri F, Giorgi M, et al. Identification, prevention and management of cardiovascular risk in chronic myeloid leukaemia patients candidate to ponatinib: an expert opinion. Ann Hematol. 2016;96(4):549–58.

    Article  PubMed  CAS  Google Scholar 

  154. Gandhi V, Plunkett W, Cortes JE. Omacetaxine: a protein translation inhibitor for treatment of chronic myelogenous leukemia. Clin Cancer Res. 2014;20(7):1735–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. O’Brien S, Kantarjian H, Keating M, Beran M, Koller C, Robertson LE, et al. Homoharringtonine therapy induces responses in patients with chronic myelogenous leukemia in late chronic phase. Blood. 1995;86(9):3322–6.

    PubMed  Google Scholar 

  156. O’Brien S, Kantarjian H, Koller C, Feldman E, Beran M, Andreeff M, et al. Sequential homoharringtonine and interferon-alpha in the treatment of early chronic phase chronic myelogenous leukemia. Blood. 1999;93(12):4149–53.

    PubMed  Google Scholar 

  157. Cortes J, Lipton JH, Rea D, Digumarti R, Chuah C, Nanda N, et al. Phase 2 study of subcutaneous omacetaxine mepesuccinate after TKI failure in patients with chronic-phase CML with T315I mutation. Blood. 2012;120(13):2573–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kantarjian HM, Shah NP, Cortes JE, Baccarani M, Agarwal MB, Undurraga MS, et al. Dasatinib or imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: 2-year follow-up from a randomized phase 3 trial (DASISION). Blood. 2012;119(5):1123–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9.

    Article  CAS  PubMed  Google Scholar 

  160. Brummendorf TH, Cortes JE, de Souza CA, Guilhot F, Duvillie L, Pavlov D, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol. 2015;168(1):69–81.

    Article  PubMed  CAS  Google Scholar 

  161. Cortes JE, Kim DW, Kantarjian HM, Brummendorf TH, Dyagil I, Griskevicius L, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol. 2012;30(28):3486–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lipton JH, Chuah C, Guerci-Bresler A, Rosti G, Simpson D, Assouline S, et al. Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol. 2016;17(5):612–21.

    Article  CAS  PubMed  Google Scholar 

  163. Breccia M, Arboscello E, Bellodi A, Colafigli G, Molica M, Bergamaschi M, et al. Proposal for a tailored stratification at baseline and monitoring of cardiovascular effects during follow-up in chronic phase chronic myeloid leukemia patients treated with nilotinib frontline. Crit Rev Oncol Hematol. 2016;107:190–8.

    Article  PubMed  Google Scholar 

  164. Breccia M, Colafigli G, Molica M, Alimena G. Cardiovascular risk assessments in chronic myeloid leukemia allow identification of patients at high risk of cardiovascular events during treatment with nilotinib. Am J Hematol. 2015;90(5):E100–1.

    Article  CAS  PubMed  Google Scholar 

  165. Rea D, Mirault T, Raffoux E, Boissel N, Andreoli AL, Rousselot P, et al. Usefulness of the 2012 European CVD risk assessment model to identify patients at high risk of cardiovascular events during nilotinib therapy in chronic myeloid leukemia. Leukemia. 2015;29(5):1206–9.

    Article  CAS  PubMed  Google Scholar 

  166. Schiffer CA. First-line treatment for patients with CML in chronic phase: why imatinib is an appropriate choice. Oncology (Williston Park). 2013;27(8):780, 825.

    Google Scholar 

  167. Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O, et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood. 2007;109(1):58–60.

    Article  CAS  PubMed  Google Scholar 

  168. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol. 2010;11(11):1029–35.

    Article  CAS  PubMed  Google Scholar 

  169. Rousselot P, Charbonnier A, Cony-Makhoul P, Agape P, Nicolini FE, Varet B, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol. 2014;32(5):424–30.

    Article  CAS  PubMed  Google Scholar 

  170. Goh HG, Kim YJ, Kim DW, Kim HJ, Kim SH, Jang SE, et al. Previous best responses can be re-achieved by resumption after imatinib discontinuation in patients with chronic myeloid leukemia: implication for intermittent imatinib therapy. Leuk Lymphoma. 2009;50(6):944–51.

    Article  CAS  PubMed  Google Scholar 

  171. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22.

    Article  CAS  PubMed  Google Scholar 

  172. Hughes TP, Ross DM. Moving treatment-free remission into mainstream clinical practice in CML. Blood. 2016;128(1):17–23.

    Article  CAS  PubMed  Google Scholar 

  173. Ross DM, Hughes TP. How I determine if and when to recommend stopping tyrosine kinase inhibitor treatment for chronic myeloid leukaemia. Br J Haematol. 2014;166(1):3–11.

    Article  CAS  PubMed  Google Scholar 

  174. Lee SE, Choi SY, Song HY, Kim SH, Choi MY, Park JS, et al. Imatinib withdrawal syndrome and longer duration of imatinib have a close association with a lower molecular relapse after treatment discontinuation: the KID study. Haematologica. 2016;101(6):717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Richter J, Soderlund S, Lubking A, Dreimane A, Lotfi K, Markevarn B, et al. Musculoskeletal pain in patients with chronic myeloid leukemia after discontinuation of imatinib: a tyrosine kinase inhibitor withdrawal syndrome? J Clin Oncol. 2014;32(25):2821–3.

    Article  PubMed  Google Scholar 

  176. Milojkovic D, Apperley JF. How I treat leukemia during pregnancy. Blood. 2014;123(7):974–84.

    Article  CAS  PubMed  Google Scholar 

  177. Pye SM, Cortes J, Ault P, Hatfield A, Kantarjian H, Pilot R, et al. The effects of imatinib on pregnancy outcome. Blood. 2008;111(12):5505–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ault P, Kantarjian H, O’Brien S, Faderl S, Beran M, Rios MB, et al. Pregnancy among patients with chronic myeloid leukemia treated with imatinib. J Clin Oncol. 2006;24(7):1204–8.

    Article  CAS  PubMed  Google Scholar 

  179. Ravandi F, O’Brien SM, Cortes JE, Thomas DM, Garris R, Faderl S, et al. Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2015;121(23):4158–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Sacchi S, Kantarjian HM, O’Brien S, Cortes J, Rios MB, Giles FJ, et al. Chronic myelogenous leukemia in nonlymphoid blastic phase: analysis of the results of first salvage therapy with three different treatment approaches for 162 patients. Cancer. 1999;86(12):2632–41.

    Article  CAS  PubMed  Google Scholar 

  181. Goldman JM, Majhail NS, Klein JP, Wang Z, Sobocinski KA, Arora M, et al. Relapse and late mortality in 5-year survivors of myeloablative allogeneic hematopoietic cell transplantation for chronic myeloid leukemia in first chronic phase. J Clin Oncol. 2010;28(11):1888–95.

    Google Scholar 

Download references

Acknowledgments

This section is an extensive update of the chapter from the earlier edition authored by Drs. Stephen O’Brien and John Goldman and is dedicated to the memory of John Goldman who was a pioneer and leader in our understanding of the biology and therapy of CML and a valued friend and colleague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles A. Schiffer M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Schiffer, C.A. (2018). Diagnosis and Treatment of Chronic Myeloid Leukemia. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics