Skip to main content

Epidemiology and Hereditary Aspects of Acute Leukemia

  • Chapter
  • First Online:
Neoplastic Diseases of the Blood

Abstract

Recent projections for the USA estimate that 6590 patients are diagnosed annually with acute lymphocytic leukemia (ALL) and 19,950 with acute myeloid leukemia (AML), while approximately 1430 patients die from ALL and 10,430 from AML (Siegel et al., CA Cancer J Clin 66(1):7–30, 2016). Together these forms of acute leukemia represent about 1.6% of all newly diagnosed cancers and 2.0% of all cancer deaths in the USA (Siegel et al., CA Cancer J Clin 66(1):7–30, 2016). Advances in the understanding of immunology and molecular/genetic features of the acute leukemias along with laboratory improvements in immunophenotyping and cytogenetic characterization have led to the recognition of molecularly defined subtypes of ALL and AML, targeted therapeutics, and recognition of distinct prognostic groups. The most recent World Health Organization (WHO) classification of hematopoietic malignancies considers three major categories of acute leukemia: AML and related myeloid precursor neoplasms, precursor lymphoid neoplasms (encompassing the entities previously known as ALL), and acute leukemias of ambiguous lineage (World Health Organization classification of tumours of haematopoietic and lymphoid tissues, 4th ed. Lyon: International Agency for Research on Cancer, 2008). Consistent with classifications used in cancer registries, to date most epidemiologic investigations have considered all acute leukemias combined or the broad categories of ALL and AML, although an increasing number of studies, especially those of genetic risk factors, examine cases by molecular subtype. Traditionally pediatric acute leukemias, defined either as those diagnosed at 0–14 or 0–19 years of age, have been studied separately from that in adults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.

    Article  PubMed  Google Scholar 

  2. Swerdlow SHCE, Harris NL, et al., editors. World Health Organization classification of tumours of haematopoietic and lymphoid tissues. 4th ed. Lyon: International Agency for Research on Cancer; 2008.

    Google Scholar 

  3. Anderson LM, Diwan BA, Fear NT, Roman E. Critical windows of exposure for children’s health: cancer in human epidemiological studies and neoplasms in experimental animal models. Environ Health Perspect. 2000;108(Suppl 3):573–94.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359–E86.

    Article  CAS  PubMed  Google Scholar 

  5. National Cancer Institute S, Epidemiology, and End Results (SEER) Program. SEER*Stat Database: Incidence—SEER-9 Regs Research Data (1975–2013). In: DCCPS SRP, Cancer Statistics Branch, editor. National Cancer Institute, DCCPS, Surveillance Research Program, Cancer Statistics Branch, released April 2010, based on the November 2009 submission: National Cancer Institute; 2016.

    Google Scholar 

  6. Greaves MF. Biological models for leukaemia and lymphoma. IARC Sci Publ. 2004;157:351–72.

    Google Scholar 

  7. Mori H, Colman SM, Xiao Z, et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci U S A. 2002;99(12):8242–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lausten-Thomsen U, Madsen HO, Vestergaard TR, et al. Prevalence of t(12;21)[ETV6-RUNX1]-positive cells in healthy neonates. Blood. 2011;117(1):186–9.

    Article  CAS  PubMed  Google Scholar 

  9. Brown P. TEL-AML1 in cord blood: 1% or 0.01%? Blood. 2011;117(1):2–4.

    Article  CAS  PubMed  Google Scholar 

  10. Ma X, Metayer C, Does MB, Buffler PA. Maternal pregnancy loss, birth characteristics, and childhood leukemia (United States). Cancer Causes Control. 2005;16(9):1075–83.

    Article  PubMed  Google Scholar 

  11. Podvin D, Kuehn CM, Mueller BA, Williams M. Maternal and birth characteristics in relation to childhood leukaemia. Paediatr Perinat Epidemiol. 2006;20(4):312–22.

    Article  PubMed  Google Scholar 

  12. van Steensel-Moll HA, Valkenburg HA, Vandenbroucke JP, van Zanen GE. Are maternal fertility problems related to childhood leukaemia? Int J Epidemiol. 1985;14(4):555–9.

    Article  PubMed  Google Scholar 

  13. Schuz J, Kaatsch P, Kaletsch U, Meinert R, Michaelis J. Association of childhood cancer with factors related to pregnancy and birth. Int J Epidemiol. 1999;28(4):631–9.

    Article  CAS  PubMed  Google Scholar 

  14. Roman E, Simpson J, Ansell P, et al. Perinatal and reproductive factors: a report on haematological malignancies from the UKCCS. Eur J Cancer. 2005;41(5):749–59.

    Article  CAS  PubMed  Google Scholar 

  15. Ross JA, Potter JD, Shu XO, et al. Evaluating the relationships among maternal reproductive history, birth characteristics, and infant leukemia: a report from the Children’s cancer group. Ann Epidemiol. 1997;7(3):172–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sergentanis TN, Thomopoulos TP, Gialamas SP, et al. Risk for childhood leukemia associated with maternal and paternal age. Eur J Epidemiol. 2015;30(12):1229–61.

    Article  PubMed  Google Scholar 

  17. Rudant J, Lightfoot T, Urayama KY, et al. Childhood acute lymphoblastic leukemia and indicators of early immune stimulation: a childhood leukemia international consortium study. Am J Epidemiol. 2015;181(8):549–62.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Von Behren J, Spector LG, Mueller BA, et al. Birth order and risk of childhood cancer: a pooled analysis from five US states. Int J Cancer. 2011;128(11):2709–16.

    Article  CAS  Google Scholar 

  19. Smith M. Considerations on a possible viral etiology for B-precursor acute lymphoblastic leukemia of childhood. J Immunother. 1997;20(2):89–100.

    Article  CAS  PubMed  Google Scholar 

  20. Hakulinen T, Hovi L, Karkinen J, Penttinen K, Saxen L. Association between influenza during pregnancy and childhood leukaemia. Br Med J. 1973;4(5887):265–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lehtinen M, Koskela P, Ogmundsdottir HM, et al. Maternal herpesvirus infections and risk of acute lymphoblastic leukemia in the offspring. Am J Epidemiol. 2003;158(3):207–13.

    Article  PubMed  Google Scholar 

  22. Randolph VL, Heath CW Jr. Influenza during pregnancy in relation to subsequent childhood leukemia and lymphoma. Am J Epidemiol. 1974;100(5):399–409.

    Article  CAS  PubMed  Google Scholar 

  23. Tedeschi R, Luostarinen T, Marus A, et al. No risk of maternal EBV infection for childhood leukemia. Cancer Epidemiol Biomark Prev. 2009;18(10):2790–2.

    Article  Google Scholar 

  24. Bzhalava D, Hultin E, Arroyo Muhr LS, et al. Viremia during pregnancy and risk of childhood leukemia and lymphomas in the offspring: nested case-control study. Int J Cancer. 2016;138(9):2212–20.

    Article  CAS  PubMed  Google Scholar 

  25. Smith MA, Strickler HD, Granovsky M, et al. Investigation of leukemia cells from children with common acute lymphoblastic leukemia for genomic sequences of the primate polyomaviruses JC virus, BK virus, and simian virus 40. Med Pediatr Oncol. 1999;33(5):441–3.

    Article  CAS  PubMed  Google Scholar 

  26. MacKenzie J, Gallagher A, Clayton RA, et al. Screening for herpesvirus genomes in common acute lymphoblastic leukemia. Leukemia. 2001;15(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  27. Isa A, Priftakis P, Broliden K, Gustafsson B. Human parvovirus B19 DNA is not detected in Guthrie cards from children who have developed acute lymphoblastic leukemia. Pediatr Blood Cancer. 2004;42(4):357–60.

    Article  PubMed  Google Scholar 

  28. Cnattingius S, Zack M, Ekbom A, et al. Prenatal and neonatal risk factors for childhood myeloid leukemia. Cancer Epidemiol Biomark Prev. 1995;4(5):441–5.

    CAS  Google Scholar 

  29. Cnattingius S, Zack MM, Ekbom A, et al. Prenatal and neonatal risk factors for childhood lymphatic leukemia. J Natl Cancer Inst. 1995;87(12):908–14.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson KJ, Soler JT, Puumala SE, Ross JA, Spector LG. Parental and infant characteristics and childhood leukemia in Minnesota. BMC Pediatr. 2008;8:7.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Oksuzyan S, Crespi CM, Cockburn M, Mezei G, Kheifets L. Birth weight and other perinatal characteristics and childhood leukemia in California. Cancer Epidemiol. 2012;36(6):e359–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kaatsch P, Scheidemann-Wesp U, Schuz J. Maternal use of antibiotics and cancer in the offspring: results of a case-control study in Germany. Cancer Causes Control. 2010;21(8):1335–45.

    Article  PubMed  Google Scholar 

  33. Wen W, Shu XO, Potter JD, et al. Parental medication use and risk of childhood acute lymphoblastic leukemia. Cancer. 2002;95(8):1786–94.

    Article  PubMed  Google Scholar 

  34. Rudant J, Amigou A, Orsi L, et al. Fertility treatments, congenital malformations, fetal loss, and childhood acute leukemia: the ESCALE study (SFCE). Pediatr Blood Cancer. 2013;60(2):301–8.

    Article  PubMed  Google Scholar 

  35. Brinton LA, Kruger Kjaer S, Thomsen BL, et al. Childhood tumor risk after treatment with ovulation-stimulating drugs. Fertil Steril. 2004;81(4):1083–91.

    Article  PubMed  Google Scholar 

  36. Robison LL, Buckley JD, Daigle AE, et al. Maternal drug use and risk of childhood nonlymphoblastic leukemia among offspring. An epidemiologic investigation implicating marijuana (a report from the Childrens cancer study group). Cancer. 1989;63(10):1904–11.

    CAS  PubMed  Google Scholar 

  37. Trivers KF, Mertens AC, Ross JA, et al. Parental marijuana use and risk of childhood acute myeloid leukaemia: a report from the Children’s cancer group (United States and Canada). Paediatr Perinat Epidemiol. 2006;20(2):110–8.

    Article  PubMed  Google Scholar 

  38. Shu XO, Potter JD, Linet MS, et al. Diagnostic X-rays and ultrasound exposure and risk of childhood acute lymphoblastic leukemia by immunophenotype. Cancer Epidemiol Biomark Prev. 2002;11(2):177–85.

    Google Scholar 

  39. Wakeford R. Childhood leukaemia following medical diagnostic exposure to ionizing radiation in utero or after birth. Radiat Prot Dosim. 2008;132(2):166–74.

    Article  CAS  Google Scholar 

  40. Stewart A, Webb J, Hewitt D. A survey of childhood malignancies. Br Med J. 1958;1(5086):1495–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Preston DL, Cullings H, Suyama A, et al. Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst. 2008;100(6):428–36.

    Article  PubMed  Google Scholar 

  42. Hatch M, Brenner A, Bogdanova T, et al. A screening study of thyroid cancer and other thyroid diseases among individuals exposed in utero to iodine-131 from Chernobyl fallout. J Clin Endocrinol Metab. 2009;94(3):899–906.

    Article  CAS  PubMed  Google Scholar 

  43. United Nations. Scientific committee on the effects of atomic radiation. Sources and effects of ionizing radiation: United Nations scientific committee on the effects of atomic radiation : UNSCEAR 2008 report to the general assembly, with scientific annexes. New York: United Nations; 2010.

    Google Scholar 

  44. Kendall GM, Little MP, Wakeford R, et al. A record-based case-control study of natural background radiation and the incidence of childhood leukaemia and other cancers in great Britain during 1980–2006. Leukemia. 2013;27(1):3–9.

    Article  CAS  PubMed  Google Scholar 

  45. Spycher BD, Lupatsch JE, Zwahlen M, et al. Background ionizing radiation and the risk of childhood cancer: a census-based nationwide cohort study. Environ Health Perspect. 2015;123(6):622–8.

    PubMed  PubMed Central  Google Scholar 

  46. Del Risco KR, Blaasaas KG, Claussen B. Risk of leukaemia or cancer in the central nervous system among children living in an area with high indoor radon concentrations: results from a cohort study in Norway. Br J Cancer. 2014;111(7):1413–20.

    Article  CAS  Google Scholar 

  47. Gardner MJ, Snee MP, Hall AJ, et al. Results of case-control study of leukaemia and lymphoma among young people near Sellafield nuclear plant in west Cumbria. BMJ. 1990;300(6722):423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Roman E, Doyle P, Maconochie N, et al. Cancer in children of nuclear industry employees: report on children aged under 25 years from nuclear industry family study. BMJ. 1999;318(7196):1443–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Roman E, Doyle P, Ansell P, Bull D, Beral V. Health of children born to medical radiographers. Occup Environ Med. 1996;53(2):73–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Johnson KJ, Alexander BH, Doody MM, et al. Childhood cancer in the offspring born in 1921–1984 to US radiologic technologists. Br J Cancer. 2008;99(3):545–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Su L, Fei Y, Wei X, et al. Associations of parental occupational exposure to extremely low-frequency magnetic fields with childhood leukemia risk. Leuk Lymphoma. 2016;57(12):2855–62.

    Article  PubMed  Google Scholar 

  52. Zahm SH, Ward MH. Pesticides and childhood cancer. Environ Health Perspect. 1998;106(Suppl 3):893–908.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Infante-Rivard C, Weichenthal S. Pesticides and childhood cancer: an update of Zahm and Ward’s 1998 review. J Toxicol Environ Health B Crit Rev. 2007;10(1–2):81–99.

    Article  CAS  PubMed  Google Scholar 

  54. Wigle DT, Turner MC, Krewski D. A systematic review and meta-analysis of childhood leukemia and parental occupational pesticide exposure. Environ Health Perspect. 2009;117(10):1505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Van Maele-Fabry G, Lantin AC, Hoet P, Lison D. Childhood leukaemia and parental occupational exposure to pesticides: a systematic review and meta-analysis. Cancer Causes Control. 2010;21(6):787–809.

    Article  PubMed  Google Scholar 

  56. Bailey HD, Fritschi L, Infante-Rivard C, et al. Parental occupational pesticide exposure and the risk of childhood leukemia in the offspring: findings from the childhood leukemia international consortium. Int J Cancer. 2014;135(9):2157–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bailey HD, Infante-Rivard C, Metayer C, et al. Home pesticide exposures and risk of childhood leukemia: findings from the childhood leukemia international consortium. Int J Cancer. 2015;137(11):2644–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Carlos-Wallace FM, Zhang L, Smith MT, Rader G, Steinmaus C. Parental, in utero, and early-life exposure to benzene and the risk of childhood leukemia: a meta-analysis. Am J Epidemiol. 2016;183(1):1–14.

    Article  PubMed  Google Scholar 

  59. Bailey HD, Fritschi L, Metayer C, et al. Parental occupational paint exposure and risk of childhood leukemia in the offspring: findings from the childhood leukemia international consortium. Cancer Causes Control. 2014;25(10):1351–67.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bailey HD, Metayer C, Milne E, et al. Home paint exposures and risk of childhood acute lymphoblastic leukemia: findings from the childhood leukemia international consortium. Cancer Causes Control. 2015;26(9):1257–70.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ghosh JK, Heck JE, Cockburn M, et al. Prenatal exposure to traffic-related air pollution and risk of early childhood cancers. Am J Epidemiol. 2013;178(8):1233–9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Heck JE, Wu J, Lombardi C, et al. Childhood cancer and traffic-related air pollution exposure in pregnancy and early life. Environ Health Perspect. 2013;121(11–12):1385–91.

    PubMed  PubMed Central  Google Scholar 

  63. McKinney PA, Fear NT, Stockton D, Investigators UKCCS. Parental occupation at periconception: findings from the United Kingdom childhood cancer study. Occup Environ Med. 2003;60(12):901–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wigle DT, Arbuckle TE, Turner MC, et al. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxicol Environ Health B Crit Rev. 2008;11(5–6):373–517.

    Article  CAS  PubMed  Google Scholar 

  65. Slater ME, Linabery AM, Spector LG, et al. Maternal exposure to household chemicals and risk of infant leukemia: a report from the Children’s oncology group. Cancer Causes Control. 2011;22(8):1197–204.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Klimentopoulou A, Antonopoulos CN, Papadopoulou C, et al. Maternal smoking during pregnancy and risk for childhood leukemia: a nationwide case-control study in Greece and meta-analysis. Pediatr Blood Cancer. 2012;58(3):344–51.

    Article  PubMed  Google Scholar 

  67. Bonaventure A, Goujon-Bellec S, Rudant J, et al. Maternal smoking during pregnancy, genetic polymorphisms of metabolic enzymes, and childhood acute leukemia: the ESCALE study (SFCE). Cancer Causes Control. 2012;23(2):329–45.

    Article  PubMed  Google Scholar 

  68. Milne E, Greenop KR, Scott RJ, et al. Parental prenatal smoking and risk of childhood acute lymphoblastic leukemia. Am J Epidemiol. 2012;175(1):43–53.

    Article  PubMed  Google Scholar 

  69. Orsi L, Rudant J, Ajrouche R, et al. Parental smoking, maternal alcohol, coffee and tea consumption during pregnancy, and childhood acute leukemia: the ESTELLE study. Cancer Causes Control. 2015;26(7):1003–17.

    Article  CAS  PubMed  Google Scholar 

  70. Liu R, Zhang L, McHale CM, Hammond SK. Paternal smoking and risk of childhood acute lymphoblastic leukemia: systematic review and meta-analysis. J Oncol. 2011;2011:854584.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Infante-Rivard C, El-Zein M. Parental alcohol consumption and childhood cancers: a review. J Toxicol Environ Health B Crit Rev. 2007;10(1–2):101–29.

    Article  CAS  PubMed  Google Scholar 

  72. MacArthur AC, McBride ML, Spinelli JJ, et al. Risk of childhood leukemia associated with parental smoking and alcohol consumption prior to conception and during pregnancy: the cross-Canada childhood leukemia study. Cancer Causes Control. 2008;19(3):283–95.

    Article  PubMed  Google Scholar 

  73. Latino-Martel P, Chan DS, Druesne-Pecollo N, et al. Maternal alcohol consumption during pregnancy and risk of childhood leukemia: systematic review and meta-analysis. Cancer Epidemiol Biomark Prev. 2010;19(5):1238–60.

    Article  CAS  Google Scholar 

  74. Spector LG, Xie Y, Robison LL, et al. Maternal diet and infant leukemia: the DNA topoisomerase II inhibitor hypothesis: a report from the children’s oncology group. Cancer Epidemiol Biomark Prev. 2005;14(3):651–5.

    Article  CAS  Google Scholar 

  75. Jensen CD, Block G, Buffler P, et al. Maternal dietary risk factors in childhood acute lymphoblastic leukemia (United States). Cancer Causes Control. 2004;15(6):559–70.

    Article  PubMed  Google Scholar 

  76. Petridou E, Ntouvelis E, Dessypris N, et al. Maternal diet and acute lymphoblastic leukemia in young children. Cancer Epidemiol Biomark Prev. 2005;14(8):1935–9.

    Article  Google Scholar 

  77. Kwan ML, Jensen CD, Block G, et al. Maternal diet and risk of childhood acute lymphoblastic leukemia. Public Health Rep. 2009;124(4):503–14.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Metayer C, Milne E, Dockerty JD, et al. Maternal supplementation with folic acid and other vitamins and risk of leukemia in offspring: a childhood leukemia international consortium study. Epidemiology. 2014;25(6):811–22.

    Article  PubMed  Google Scholar 

  79. Singer AW, Selvin S, Block G, et al. Maternal prenatal intake of one-carbon metabolism nutrients and risk of childhood leukemia. Cancer Causes Control. 2016;27(7):929–40.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Kwan ML, Metayer C, Crouse V, Buffler PA. Maternal illness and drug/medication use during the period surrounding pregnancy and risk of childhood leukemia among offspring. Am J Epidemiol. 2007;165(1):27–35.

    Article  PubMed  Google Scholar 

  81. Thomopoulos TP, Ntouvelis E, Diamantaras AA, et al. Maternal and childhood consumption of coffee, tea and cola beverages in association with childhood leukemia: a meta-analysis. Cancer Epidemiol. 2015;39(6):1047–59.

    Article  PubMed  Google Scholar 

  82. Dominguez-Bello MG, Costello EK, Contreras M, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A. 2010;107(26):11971–5.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Jakobsson HE, Abrahamsson TR, Jenmalm MC, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. 2014;63(4):559–66.

    Article  CAS  PubMed  Google Scholar 

  84. Gronlund MM, Lehtonen OP, Eerola E, Kero P. Fecal microflora in healthy infants born by different methods of delivery: permanent changes in intestinal Flora after cesarean delivery. J Pediatr Gastroenterol Nutr. 1999;28(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  85. Cardwell CR, Stene LC, Joner G, et al. Caesarean section is associated with an increased risk of childhood-onset type 1 diabetes mellitus: a meta-analysis of observational studies. Diabetologia. 2008;51(5):726–35.

    Article  CAS  PubMed  Google Scholar 

  86. Thavagnanam S, Fleming J, Bromley A, Shields MD, Cardwell CR. A meta-analysis of the association between caesarean section and childhood asthma. Clin Exp Allergy. 2008;38(4):629–33.

    Article  CAS  PubMed  Google Scholar 

  87. Bager P, Wohlfahrt J, Westergaard T. Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy. 2008;38(4):634–42.

    Article  CAS  PubMed  Google Scholar 

  88. Mears K, McAuliffe F, Grimes H, Morrison JJ. Fetal cortisol in relation to labour, intrapartum events and mode of delivery. J Obstet Gynaecol. 2004;24(2):129–32.

    Article  CAS  PubMed  Google Scholar 

  89. Lagercrantz H. Stress, arousal, and gene activation at birth. News Physiol Sci. 1996;11:214–8.

    CAS  Google Scholar 

  90. Zanardo V, Solda G, Trevisanuto D. Elective cesarean section and fetal immune-endocrine response. Int J Gynaecol Obstet. 2006;95(1):52–3.

    Article  CAS  PubMed  Google Scholar 

  91. Marcotte EL, Thomopoulos TP, Infante-Rivard C, et al. Caesarean delivery and risk of childhood leukaemia: a pooled analysis from the childhood leukemia international consortium (CLIC). Lancet Haematol. 2016;3(4):e176–85.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Caughey RW, Michels KB. Birth weight and childhood leukemia: a meta-analysis and review of the current evidence. Int J Cancer. 2009;124(11):2658–70.

    Article  CAS  PubMed  Google Scholar 

  93. Milne E, Greenop KR, Metayer C, et al. Fetal growth and childhood acute lymphoblastic leukemia: findings from the childhood leukemia international consortium. Int J Cancer. 2013;133(12):2968–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Shu XO, Linet MS, Steinbuch M, et al. Breast-feeding and risk of childhood acute leukemia. J Natl Cancer Inst. 1999;91(20):1765–72.

    Article  CAS  PubMed  Google Scholar 

  95. Investigators UKCCS. Breastfeeding and childhood cancer. Br J Cancer. 2001;85(11):1685–94.

    Article  Google Scholar 

  96. Amitay EL, Keinan-Boker L. Breastfeeding and childhood leukemia incidence: a meta-analysis and systematic review. JAMA Pediatr. 2015;169(6):e151025.

    Article  PubMed  Google Scholar 

  97. MacArthur AC, McBride ML, Spinelli JJ, et al. Risk of childhood leukemia associated with vaccination, infection, and medication use in childhood: the cross-Canada childhood leukemia study. Am J Epidemiol. 2008;167(5):598–606.

    Article  PubMed  Google Scholar 

  98. Alexander FE. Clusters and clustering of childhood cancer: a review. Eur J Epidemiol. 1999;15(9):847–52.

    Article  CAS  PubMed  Google Scholar 

  99. Heath CW Jr. Community clusters of childhood leukemia and lymphoma: evidence of infection? Am J Epidemiol. 2005;162(9):817–22.

    Article  PubMed  Google Scholar 

  100. Rubin CS, Holmes AK, Belson MG, et al. Investigating childhood leukemia in Churchill County, Nevada. Environ Health Perspect. 2007;115(1):151–7.

    Article  CAS  PubMed  Google Scholar 

  101. Greaves M. Infection, immune responses and the aetiology of childhood leukaemia. Nat Rev Cancer. 2006;6(3):193–203.

    Article  CAS  PubMed  Google Scholar 

  102. Urayama KY, Buffler PA, Gallagher ER, Ayoob JM, Ma X. A meta-analysis of the association between day-care attendance and childhood acute lymphoblastic leukaemia. Int J Epidemiol. 2010;39(3):718–32.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Marcotte EL, Ritz B, Cockburn M, Yu F, Heck JE. Exposure to infections and risk of leukemia in young children. Cancer Epidemiol Biomark Prev. 2014;23(7):1195–203.

    Article  Google Scholar 

  104. Roman E, Simpson J, Ansell P, et al. Childhood acute lymphoblastic leukemia and infections in the first year of life: a report from the United Kingdom childhood cancer study. Am J Epidemiol. 2007;165(5):496–504.

    Article  CAS  PubMed  Google Scholar 

  105. Kinlen L. Evidence for an infective cause of childhood leukaemia: comparison of a Scottish new town with nuclear reprocessing sites in Britain. Lancet. 1988;2(8624):1323–7.

    Article  CAS  PubMed  Google Scholar 

  106. Kinlen LJ. Epidemiological evidence for an infective basis in childhood leukaemia. Br J Cancer. 1995;71(1):1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Law GR, Parslow RC, Roman E. United Kingdom childhood cancer study I. Childhood cancer and population mixing. Am J Epidemiol. 2003;158(4):328–36.

    Article  PubMed  Google Scholar 

  108. Pagaoa MA, Okcu MF, Bondy ML, Scheurer ME. Associations between vaccination and childhood cancers in Texas regions. J Pediatr. 2011;158(6):996–1002.

    Article  PubMed  Google Scholar 

  109. Linabery AM, Jurek AM, Duval S, Ross JA. The association between atopy and childhood/adolescent leukemia: a meta-analysis. Am J Epidemiol. 2010;171(7):749–64.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Dahl S, Schmidt LS, Vestergaard T, Schuz J, Schmiegelow K. Allergy and the risk of childhood leukemia: a meta-analysis. Leukemia. 2009;23(12):2300–4.

    Article  CAS  PubMed  Google Scholar 

  111. Linet MS, Kim KP, Rajaraman P. Children’s exposure to diagnostic medical radiation and cancer risk: epidemiologic and dosimetric considerations. Pediatr Radiol. 2009;39(Suppl 1):S4–26.

    Article  PubMed  Google Scholar 

  112. Pearce MS, Salotti JA, Little MP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Krille L, Dreger S, Schindel R, et al. Risk of cancer incidence before the age of 15 years after exposure to ionising radiation from computed tomography: results from a German cohort study. Radiat Environ Biophys. 2015;54(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  114. BJ J. Ionizing radiation. In: Schottenfeld D, Fraumeni JF, editors. Cancer epidemiology and prevention. New York: Oxford University Press; 2006. p. 259–935.

    Google Scholar 

  115. Ron E, Modan B, Boice JD Jr. Mortality after radiotherapy for ringworm of the scalp. Am J Epidemiol. 1988;127(4):713–25.

    Article  CAS  PubMed  Google Scholar 

  116. Allard A, Haddy N, Le Deley MC, et al. Role of radiation dose in the risk of secondary leukemia after a solid tumor in childhood treated between 1980 and 1999. Int J Radiat Oncol Biol Phys. 2010;78(5):1474–82.

    Article  PubMed  Google Scholar 

  117. Preston DL, Kusumi S, Tomonaga M, et al. Cancer incidence in atomic bomb survivors. Part III. Leukemia, lymphoma and multiple myeloma, 1950–1987. Radiat Res. 1994;137(2 Suppl):S68–97.

    Article  CAS  PubMed  Google Scholar 

  118. Hsu WL, Preston DL, Soda M, et al. The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors: 1950–2001. Radiat Res. 2013;179(3):361–82.

    Article  CAS  PubMed  Google Scholar 

  119. Darby SC, Doll R. Fallout, radiation doses near Dounreay, and childhood leukaemia. Br Med J (Clin Res Ed). 1987;294(6572):603–7.

    Article  CAS  Google Scholar 

  120. Lubin JH, Linet MS, Boice JD Jr, et al. Case-control study of childhood acute lymphoblastic leukemia and residential radon exposure. J Natl Cancer Inst. 1998;90(4):294–300.

    Article  CAS  PubMed  Google Scholar 

  121. Kaletsch U, Kaatsch P, Meinert R, et al. Childhood cancer and residential radon exposure—results of a population-based case-control study in lower Saxony (Germany). Radiat Environ Biophys. 1999;38(3):211–5.

    Article  CAS  PubMed  Google Scholar 

  122. Demoury C, Marquant F, Ielsch G, et al. Residential exposure to natural background radiation and risk of childhood acute leukemia in France, 1990–2009. Environ Health Perspect. 2017;125(4):714–20.

    PubMed  Google Scholar 

  123. Investigators UKCCS. The United Kingdom childhood cancer study of exposure to domestic sources of ionising radiation: 1: radon gas. Br J Cancer. 2002;86(11):1721–6.

    Article  CAS  Google Scholar 

  124. Steinbuch M, Weinberg CR, Buckley JD, Robison LL, Sandler DP. Indoor residential radon exposure and risk of childhood acute myeloid leukaemia. Br J Cancer. 1999;81(5):900–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ahlbom A, Day N, Feychting M, et al. A pooled analysis of magnetic fields and childhood leukaemia. Br J Cancer. 2000;83(5):692–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Slusky DA, Does M, Metayer C, et al. Potential role of selection bias in the association between childhood leukemia and residential magnetic fields exposure: a population-based assessment. Cancer Epidemiol. 2014;38(3):307–13.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Boorman GA, Rafferty CN, Ward JM, Sills RC. Leukemia and lymphoma incidence in rodents exposed to low-frequency magnetic fields. Radiat Res. 2000;153(5 Pt 2):627–36.

    Article  CAS  PubMed  Google Scholar 

  128. Infante-Rivard C, Labuda D, Krajinovic M, Sinnett D. Risk of childhood leukemia associated with exposure to pesticides and with gene polymorphisms. Epidemiology. 1999;10(5):481–7.

    Article  CAS  PubMed  Google Scholar 

  129. Ward MH, Colt JS, Metayer C, et al. Residential exposure to polychlorinated biphenyls and organochlorine pesticides and risk of childhood leukemia. Environ Health Perspect. 2009;117(6):1007–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Janitz AE, Campbell JE, Magzamen S, et al. Traffic-related air pollution and childhood acute leukemia in Oklahoma. Environ Res. 2016;148:102–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Spycher BD, Feller M, Roosli M, et al. Childhood cancer and residential exposure to highways: a nationwide cohort study. Eur J Epidemiol. 2015;30(12):1263–75.

    Article  PubMed  Google Scholar 

  132. Buckley JD, Robison LL, Swotinsky R, et al. Occupational exposures of parents of children with acute nonlymphocytic leukemia: a report from the Childrens cancer study group. Cancer Res. 1989;49(14):4030–7.

    CAS  PubMed  Google Scholar 

  133. Freedman DM, Stewart P, Kleinerman RA, et al. Household solvent exposures and childhood acute lymphoblastic leukemia. Am J Public Health. 2001;91(4):564–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Scelo G, Metayer C, Zhang L, et al. Household exposure to paint and petroleum solvents, chromosomal translocations, and the risk of childhood leukemia. Environ Health Perspect. 2009;117(1):133–9.

    Article  PubMed  Google Scholar 

  135. Kwan ML, Block G, Selvin S, Month S, Buffler PA. Food consumption by children and the risk of childhood acute leukemia. Am J Epidemiol. 2004;160(11):1098–107.

    Article  PubMed  Google Scholar 

  136. Liu CY, Hsu YH, Wu MT, et al. Cured meat, vegetables, and bean-curd foods in relation to childhood acute leukemia risk: a population based case-control study. BMC Cancer. 2009;9:15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Golding J, Greenwood R, Birmingham K, Mott M. Childhood cancer, intramuscular vitamin K, and pethidine given during labour. BMJ. 1992;305(6849):341–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Roman E, Fear NT, Ansell P, et al. Vitamin K and childhood cancer: analysis of individual patient data from six case-control studies. Br J Cancer. 2002;86(1):63–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Pedersen-Bjergaard J, Andersen MK, Christiansen DH. Therapy-related acute myeloid leukemia and myelodysplasia after high-dose chemotherapy and autologous stem cell transplantation. Blood. 2000;95(11):3273–9.

    CAS  PubMed  Google Scholar 

  140. Boice JD Jr, Greene MH, Killen JY Jr, et al. Leukemia and preleukemia after adjuvant treatment of gastrointestinal cancer with semustine (methyl-CCNU). N Engl J Med. 1983;309(18):1079–84.

    Article  PubMed  Google Scholar 

  141. Pedersen-Bjergaard J, Daugaard G, Hansen SW, et al. Increased risk of myelodysplasia and leukaemia after etoposide, cisplatin, and bleomycin for germ-cell tumours. Lancet. 1991;338(8763):359–63.

    Article  CAS  PubMed  Google Scholar 

  142. McLaughlin P, Estey E, Glassman A, et al. Myelodysplasia and acute myeloid leukemia following therapy for indolent lymphoma with fludarabine, mitoxantrone, and dexamethasone (FND) plus rituximab and interferon alpha. Blood. 2005;105(12):4573–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Hershman D, Neugut AI, Jacobson JS, et al. Acute myeloid leukemia or myelodysplastic syndrome following use of granulocyte colony-stimulating factors during breast cancer adjuvant chemotherapy. J Natl Cancer Inst. 2007;99(3):196–205.

    Article  CAS  PubMed  Google Scholar 

  144. Bhatia S. Therapy-related myelodysplasia and acute myeloid leukemia. Semin Oncol. 2013;40(6):666–75.

    Article  CAS  PubMed  Google Scholar 

  145. Vardiman JW. The World Health Organization (WHO) classification of tumors of the hematopoietic and lymphoid tissues: an overview with emphasis on the myeloid neoplasms. Chem Biol Interact. 2010;184(1–2):16–20.

    Article  CAS  PubMed  Google Scholar 

  146. Godley LA, Larson RA. Therapy-related myeloid leukemia. Semin Oncol. 2008;35(4):418–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pedersen-Bjergaard J, Philip P. Balanced translocations involving chromosome bands 11q23 and 21q22 are highly characteristic of myelodysplasia and leukemia following therapy with cytostatic agents targeting at DNA-topoisomerase II. Blood. 1991;78(4):1147–8.

    CAS  PubMed  Google Scholar 

  148. Pedersen-Bjergaard J, Andersen MK, Christiansen DH, Nerlov C. Genetic pathways in therapy-related myelodysplasia and acute myeloid leukemia. Blood. 2002;99(6):1909–12.

    Article  CAS  PubMed  Google Scholar 

  149. Leone G, Fianchi L, Pagano L, Voso MT. Incidence and susceptibility to therapy-related myeloid neoplasms. Chem Biol Interact. 2010;184(1–2):39–45.

    Article  CAS  PubMed  Google Scholar 

  150. Kwong YL. Azathioprine: association with therapy-related myelodysplastic syndrome and acute myeloid leukemia. J Rheumatol. 2010;37(3):485–90.

    Article  CAS  PubMed  Google Scholar 

  151. Anderson LA, Gadalla S, Morton LM, et al. Population-based study of autoimmune conditions and the risk of specific lymphoid malignancies. Int J Cancer. 2009;125(2):398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Johnson KJ, Blair CM, Fink JM, et al. Medical conditions and risk of adult myeloid leukemia. Cancer Causes Control. 2012;23(7):1083–9.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Lopez A, Mounier M, Bouvier AM, et al. Increased risk of acute myeloid leukemias and myelodysplastic syndromes in patients who received thiopurine treatment for inflammatory bowel disease. Clin Gastroenterol Hepatol. 2014;12(8):1324–9.

    Article  CAS  PubMed  Google Scholar 

  154. Morton LM, Gibson TM, Clarke CA, et al. Risk of myeloid neoplasms after solid organ transplantation. Leukemia. 2014;28(12):2317–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Pagano L, Pulsoni A, Tosti ME, et al. Acute lymphoblastic leukaemia occurring as second malignancy: report of the GIMEMA archive of adult acute leukaemia. Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto. Br J Haematol. 1999;106(4):1037–40.

    Article  CAS  PubMed  Google Scholar 

  156. Shivakumar R, Tan W, Wilding GE, Wang ES, Wetzler M. Biologic features and treatment outcome of secondary acute lymphoblastic leukemia—a review of 101 cases. Ann Oncol. 2008;19(9):1634–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Tang G, Zuo Z, Thomas DA, et al. Precursor B-acute lymphoblastic leukemia occurring in patients with a history of prior malignancies: is it therapy-related? Haematologica. 2012;97(6):919–25.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Aldoss I, Dagis A, Palmer J, Forman S, Pullarkat V. Therapy-related ALL: cytogenetic features and hematopoietic cell transplantation outcome. Bone Marrow Transplant. 2015;50(5):746–8.

    Article  CAS  PubMed  Google Scholar 

  159. Linos A, Gray JE, Orvis AL, et al. Low-dose radiation and leukemia. N Engl J Med. 1980;302(20):1101–5.

    Article  CAS  PubMed  Google Scholar 

  160. Boice JD Jr, Morin MM, Glass AG, et al. Diagnostic x-ray procedures and risk of leukemia, lymphoma, and multiple myeloma. JAMA. 1991;265(10):1290–4.

    Article  PubMed  Google Scholar 

  161. Zheng W, Linet MS, Shu XO, et al. Prior medical conditions and the risk of adult leukemia in shanghai, People’s republic of China. Cancer Causes Control. 1993;4(4):361–8.

    Article  CAS  PubMed  Google Scholar 

  162. Yuasa H, Hamajima N, Ueda R, et al. Case-control study of leukemia and diagnostic radiation exposure. Int J Hematol. 1997;65(3):251–61.

    Article  CAS  PubMed  Google Scholar 

  163. Pogoda JM, Nichols PW, Ross RK, et al. Diagnostic radiography and adult acute myeloid leukaemia: an interview and medical chart review study. Br J Cancer. 2011;104(9):1482–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Martling U, Mattsson A, Travis LB, Holm LE, Hall P. Mortality after long-term exposure to radioactive thorotrast: a forty-year follow-up survey in Sweden. Radiat Res. 1999;151(3):293–9.

    Article  CAS  PubMed  Google Scholar 

  165. Andersson M, Carstensen B, Visfeldt J. Leukemia and other related hematological disorders among Danish patients exposed to Thorotrast. Radiat Res. 1993;134(2):224–33.

    Article  CAS  PubMed  Google Scholar 

  166. Travis LB, Hauptmann M, Gaul LK, et al. Site-specific cancer incidence and mortality after cerebral angiography with radioactive thorotrast. Radiat Res. 2003;160(6):691–706.

    Article  CAS  PubMed  Google Scholar 

  167. Weiss HA, Darby SC, Fearn T, Doll R. Leukemia mortality after X-ray treatment for ankylosing spondylitis. Radiat Res. 1995;142(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  168. Sakata R, Kleinerman RA, Mabuchi K, et al. Cancer mortality following radiotherapy for benign gynecologic disorders. Radiat Res. 2012;178(4):266–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Inskip PD, Kleinerman RA, Stovall M, et al. Leukemia, lymphoma, and multiple myeloma after pelvic radiotherapy for benign disease. Radiat Res. 1993;135(1):108–24.

    Article  CAS  PubMed  Google Scholar 

  170. Griem ML, Kleinerman RA, Boice JD Jr, et al. Cancer following radiotherapy for peptic ulcer. J Natl Cancer Inst. 1994;86(11):842–9.

    Article  CAS  PubMed  Google Scholar 

  171. Ozasa K. Epidemiological research on radiation-induced cancer in atomic bomb survivors. J Radiat Res. 2016;57(Suppl 1):i112–7.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Richardson D, Sugiyama H, Nishi N, et al. Ionizing radiation and leukemia mortality among Japanese atomic bomb survivors, 1950–2000. Radiat Res. 2009;172(3):368–82.

    Article  CAS  PubMed  Google Scholar 

  173. Krestinina L, Preston DL, Davis FG, et al. Leukemia incidence among people exposed to chronic radiation from the contaminated Techa River, 1953–2005. Radiat Environ Biophys. 2010;49(2):195–201.

    Article  CAS  PubMed  Google Scholar 

  174. Krestinina LY, Davis FG, Schonfeld S, et al. Leukaemia incidence in the Techa River cohort: 1953-2007. Br J Cancer. 2013;109(11):2886–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yoshinaga S, Mabuchi K, Sigurdson AJ, Doody MM, Ron E. Cancer risks among radiologists and radiologic technologists: review of epidemiologic studies. Radiology. 2004;233(2):313–21.

    Article  PubMed  Google Scholar 

  176. Berrington de Gonzalez A, Ntowe E, Kitahara CM, et al. Long-term mortality in 43 763 U.S. radiologists compared with 64 990 U.S. Psychiatrists. Radiology. 2016;281(3):847–57.

    Article  PubMed  PubMed Central  Google Scholar 

  177. Liu JJ, Freedman DM, Little MP, et al. Work history and mortality risks in 90,268 US radiological technologists. Occup Environ Med. 2014;71(12):819–35.

    Article  PubMed  Google Scholar 

  178. Daniels RD, Schubauer-Berigan MK. A meta-analysis of leukaemia risk from protracted exposure to low-dose gamma radiation. Occup Environ Med. 2011;68(6):457–64.

    Article  CAS  PubMed  Google Scholar 

  179. Leuraud K, Richardson DB, Cardis E, et al. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol. 2015;2(7):e276–81.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Shilnikova NS, Preston DL, Ron E, et al. Cancer mortality risk among workers at the Mayak nuclear complex. Radiat Res. 2003;159(6):787–98.

    Article  CAS  PubMed  Google Scholar 

  181. International Agency for Research on Cancer. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Volume 100F: A Review of Human Carcinogens: Chemical Agents and Related Occupations. 2012. http://monographs.Iarc.Fr/ENG/monographs/vol100F/mono100F-24.Pdf. Accessed Mar 29 2016.

  182. Wallace LA. Major sources of benzene exposure. Environ Health Perspect. 1989;82:165–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Schnatter AR, Rosamilia K, Wojcik NC. Review of the literature on benzene exposure and leukemia subtypes. Chem Biol Interact. 2005;153–154:9–21.

    Article  PubMed  CAS  Google Scholar 

  184. Khalade A, Jaakkola MS, Pukkala E, Jaakkola JJ. Exposure to benzene at work and the risk of leukemia: a systematic review and meta-analysis. Environ Health. 2010;9:31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  185. Yin SN, Hayes RB, Linet MS, et al. A cohort study of cancer among benzene-exposed workers in China: overall results. Am J Ind Med. 1996;29(3):227–35.

    Article  CAS  PubMed  Google Scholar 

  186. Linet MS, Yin SN, Travis LB, et al. Clinical features of hematopoietic malignancies and related disorders among benzene-exposed workers in China. Benzene study group. Environ Health Perspect. 1996;104(Suppl 6):1353–64.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Hayes RB, Yin SN, Dosemeci M, et al. Benzene and the dose-related incidence of hematologic neoplasms in China. Chinese academy of preventive medicine—National Cancer Institute benzene study group. J Natl Cancer Inst. 1997;89(14):1065–71.

    Article  CAS  PubMed  Google Scholar 

  188. Linet MS, Yin SN, Gilbert ES, et al. A retrospective cohort study of cause-specific mortality and incidence of hematopoietic malignancies in Chinese benzene-exposed workers. Int J Cancer. 2015;137(9):2184–97.

    Article  CAS  PubMed  Google Scholar 

  189. Linet MS, Devesa SS, Morgan GJ. The leukemias. In: Schottenfeld D, Fraumeni JF, editors. Cancer epidemiology and prevention. 3rd ed. New York: Oxford University Press; 2006. p. 841–71.

    Chapter  Google Scholar 

  190. Jones RR, Yu CL, Nuckols JR, et al. Farm residence and lymphohematopoietic cancers in the Iowa Women’s health study. Environ Res. 2014;133:353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Schinasi LH, De Roos AJ, Ray RM, et al. Insecticide exposure and farm history in relation to risk of lymphomas and leukemias in the Women’s health initiative observational study cohort. Ann Epidemiol. 2015;25(11):803–10.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Descatha A, Jenabian A, Conso F, Ameille J. Occupational exposures and haematological malignancies: overview on human recent data. Cancer Causes Control. 2005;16(8):939–53.

    Article  PubMed  Google Scholar 

  193. Travis LB, Li CY, Zhang ZN, et al. Hematopoietic malignancies and related disorders among benzene-exposed workers in China. Leuk Lymphoma. 1994;14(1–2):91–102.

    Article  CAS  PubMed  Google Scholar 

  194. Van Maele-Fabry G, Duhayon S, Lison D. A systematic review of myeloid leukemias and occupational pesticide exposure. Cancer Causes Control. 2007;18(5):457–78.

    Article  PubMed  Google Scholar 

  195. Waggoner JK, Kullman GJ, Henneberger PK, et al. Mortality in the agricultural health study, 1993–2007. Am J Epidemiol. 2011;173(1):71–83.

    Article  PubMed  Google Scholar 

  196. Frost G, Brown T, Harding AH. Mortality and cancer incidence among British agricultural pesticide users. Occup Med (Lond). 2011;61(5):303–10.

    Article  CAS  Google Scholar 

  197. Beane Freeman LE, Bonner MR, Blair A, et al. Cancer incidence among male pesticide applicators in the agricultural health study cohort exposed to diazinon. Am J Epidemiol. 2005;162(11):1070–9.

    Article  PubMed  Google Scholar 

  198. van Bemmel DM, Visvanathan K, Beane Freeman LE, et al. S-ethyl-N,N-dipropylthiocarbamate exposure and cancer incidence among male pesticide applicators in the agricultural health study: a prospective cohort. Environ Health Perspect. 2008;116(11):1541–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Mahajan R, Blair A, Lynch CF, et al. Fonofos exposure and cancer incidence in the agricultural health study. Environ Health Perspect. 2006;114(12):1838–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  200. Purdue MP, Hoppin JA, Blair A, Dosemeci M, Alavanja MC. Occupational exposure to organochlorine insecticides and cancer incidence in the agricultural health study. Int J Cancer. 2007;120(3):642–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lerro CC, Koutros S, Andreotti G, et al. Use of acetochlor and cancer incidence in the agricultural health study. Int J Cancer. 2015;137(5):1167–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Silver SR, Bertke SJ, Hines CJ, et al. Cancer incidence and metolachlor use in the agricultural health study: an update. Int J Cancer. 2015;137(11):2630–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Freeman LE, Rusiecki JA, Hoppin JA, et al. Atrazine and cancer incidence among pesticide applicators in the agricultural health study (1994-2007). Environ Health Perspect. 2011;119(9):1253–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Brownson RC, Novotny TE, Perry MC. Cigarette smoking and adult leukemia. A meta-analysis. Arch Intern Med. 1993;153(4):469–75.

    Article  CAS  PubMed  Google Scholar 

  205. Fircanis S, Merriam P, Khan N, Castillo JJ. The relation between cigarette smoking and risk of acute myeloid leukemia: an updated meta-analysis of epidemiological studies. Am J Hematol. 2014;89(8):E125–32.

    Article  PubMed  Google Scholar 

  206. Kasim K, Levallois P, Abdous B, Auger P, Johnson KC. Lifestyle factors and the risk of adult leukemia in Canada. Cancer Causes Control. 2005;16(5):489–500.

    Article  PubMed  Google Scholar 

  207. Castillo JJ, Reagan JL, Ingham RR, et al. Obesity but not overweight increases the incidence and mortality of leukemia in adults: a meta-analysis of prospective cohort studies. Leuk Res. 2012;36(7):868–75.

    Article  PubMed  Google Scholar 

  208. Ross JA, Kasum CM, Davies SM, et al. Diet and risk of leukemia in the Iowa Women’s health study. Cancer Epidemiol Biomark Prev. 2002;11(8):777–81.

    Google Scholar 

  209. Li Y, Moysich KB, Baer MR, et al. Intakes of selected food groups and beverages and adult acute myeloid leukemia. Leuk Res. 2006;30(12):1507–15.

    Article  PubMed  Google Scholar 

  210. Zhang M, Zhao X, Zhang X, Holman CD. Possible protective effect of green tea intake on risk of adult leukaemia. Br J Cancer. 2008;98(1):168–70.

    Article  CAS  PubMed  Google Scholar 

  211. Yamamura Y, Oum R, Gbito KY, Garcia-Manero G, Strom SS. Dietary intake of vegetables, fruits, and meats/beans as potential risk factors of acute myeloid leukemia: a Texas case-control study. Nutr Cancer. 2013;65(8):1132–40.

    Article  CAS  PubMed  Google Scholar 

  212. Ma X, Park Y, Mayne ST, et al. Diet, lifestyle, and acute myeloid leukemia in the NIH-AARP cohort. Am J Epidemiol. 2010;171(3):312–22.

    Article  PubMed  Google Scholar 

  213. Saberi Hosnijeh F, Peeters P, Romieu I, et al. Dietary intakes and risk of lymphoid and myeloid leukemia in the European prospective investigation into cancer and nutrition (EPIC). Nutr Cancer. 2014;66(1):14–28.

    Article  CAS  PubMed  Google Scholar 

  214. Gorini G, Stagnaro E, Fontana V, et al. Alcohol consumption and risk of leukemia: a multicenter case-control study. Leuk Res. 2007;31(3):379–86.

    Article  CAS  PubMed  Google Scholar 

  215. Klatsky AL, Li Y, Baer D, et al. Alcohol consumption and risk of hematologic malignancies. Ann Epidemiol. 2009;19(10):746–53.

    Article  PubMed  Google Scholar 

  216. Kroll ME, Murphy F, Pirie K, et al. Alcohol drinking, tobacco smoking and subtypes of haematological malignancy in the UK million women study. Br J Cancer. 2012;107(5):879–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Moore SC, Lee IM, Weiderpass E, et al. Association of leisure-time physical activity with risk of 26 types of cancer in 1.44 million adults. JAMA Intern Med. 2016;176(6):816–25.

    Article  PubMed  PubMed Central  Google Scholar 

  218. Jochem C, Leitzmann MF, Keimling M, Schmid D, Behrens G. Physical activity in relation to risk of hematologic cancers: a systematic review and meta-analysis. Cancer Epidemiol Biomark Prev. 2014;23(5):833–46.

    Article  Google Scholar 

  219. Walter RB, Buckley SA, White E. Regular recreational physical activity and risk of hematologic malignancies: results from the prospective VITamins and lifestyle (VITAL) study. Ann Oncol. 2013;24(5):1370–7.

    Article  CAS  PubMed  Google Scholar 

  220. Traversa G, Menniti-Ippolito F, Da Cas R, et al. Drug use and acute leukemia. Pharmacoepidemiol Drug Saf. 1998;7(2):113–23.

    Article  CAS  PubMed  Google Scholar 

  221. Kasum CM, Blair CK, Folsom AR, Ross JA. Non-steroidal anti-inflammatory drug use and risk of adult leukemia. Cancer Epidemiol Biomark Prev. 2003;12(6):534–7.

    CAS  Google Scholar 

  222. Weiss JR, Baker JA, Baer MR, et al. Opposing effects of aspirin and acetaminophen use on risk of adult acute leukemia. Leuk Res. 2006;30(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  223. Ross JA, Blair CK, Cerhan JR, et al. Nonsteroidal anti-inflammatory drug and acetaminophen use and risk of adult myeloid leukemia. Cancer Epidemiol Biomark Prev. 2011;20(8):1741–50.

    Article  CAS  Google Scholar 

  224. Walter RB, Milano F, Brasky TM, White E. Long-term use of acetaminophen, aspirin, and other nonsteroidal anti-inflammatory drugs and risk of hematologic malignancies: results from the prospective vitamins and lifestyle (VITAL) study. J Clin Oncol. 2011;29(17):2424–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Owen C, Barnett M, Fitzgibbon J. Familial myelodysplasia and acute myeloid leukaemia--a review. Br J Haematol. 2008;140(2):123–32.

    Article  CAS  PubMed  Google Scholar 

  226. Noetzli L, Lo RW, Lee-Sherick AB, et al. Germline mutations in ETV6 are associated with thrombocytopenia, red cell macrocytosis and predisposition to lymphoblastic leukemia. Nat Genet. 2015;47(5):535–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Topka S, Vijai J, Walsh MF, et al. Germline ETV6 mutations confer susceptibility to acute lymphoblastic leukemia and thrombocytopenia. PLoS Genet. 2015;11(6):e1005262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  228. Shah S, Schrader KA, Waanders E, et al. A recurrent germline PAX5 mutation confers susceptibility to pre-B cell acute lymphoblastic leukemia. Nat Genet. 2013;45(10):1226–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Couto E, Chen B, Hemminki K. Association of childhood acute lymphoblastic leukaemia with cancers in family members. Br J Cancer. 2005;93(11):1307–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: lessons in natural history. Blood. 2003;102(7):2321–33.

    Article  CAS  PubMed  Google Scholar 

  231. Alter BP, Giri N, Savage SA, et al. Malignancies and survival patterns in the National Cancer Institute inherited bone marrow failure syndromes cohort study. Br J Haematol. 2010;150(2):179–88.

    PubMed  PubMed Central  Google Scholar 

  232. Rommens J, Durie P. Shwachman-diamond syndrome. In: Pagon R, Bird T, Dolan C, Stephens K, editors. Gene reviews [internet]. Seattle, WA: University of Washington; 2008.

    Google Scholar 

  233. Federman N, Sakamoto KM. The genetic basis of bone marrow failure syndromes in children. Mol Genet Metab. 2005;86(1–2):100–9.

    Article  CAS  PubMed  Google Scholar 

  234. Gelb BD, Tartaglia M. Noonan syndrome and related disorders: dysregulated RAS-mitogen activated protein kinase signal transduction. Hum Mol Genet. 2006;15 Spec No 2:R220–6.

    Article  PubMed  CAS  Google Scholar 

  235. German J. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet. 1997;93(1):100–6.

    Article  CAS  PubMed  Google Scholar 

  236. Olsen JH, Hahnemann JM, Borresen-Dale AL, et al. Cancer in patients with ataxia-telangiectasia and in their relatives in the Nordic countries. J Natl Cancer Inst. 2001;93(2):121–7.

    Article  CAS  PubMed  Google Scholar 

  237. Varley JM, Evans DG, Birch JM. Li-Fraumeni syndrome--a molecular and clinical review. Br J Cancer. 1997;76(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Yohay K. Neurofibromatosis type 1 and associated malignancies. Curr Neurol Neurosci Rep. 2009;9(3):247–53.

    Article  CAS  PubMed  Google Scholar 

  239. Ross JA, Spector LG, Robison LL, Olshan AF. Epidemiology of leukemia in children with down syndrome. Pediatr Blood Cancer. 2005;44(1):8–12.

    Article  PubMed  Google Scholar 

  240. Xavier AC, Taub JW. Acute leukemia in children with down syndrome. Haematologica. 2010;95(7):1043–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Vijayakrishnan J, Houlston RS. Candidate gene association studies and risk of childhood acute lymphoblastic leukemia: a systematic review and meta-analysis. Haematologica. 2010;95(8):1405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Migliorini G, Fiege B, Hosking FJ, et al. Variation at 10p12.2 and 10p14 influences risk of childhood B-cell acute lymphoblastic leukemia and phenotype. Blood. 2013;122(19):3298–307.

    Article  CAS  PubMed  Google Scholar 

  243. Papaemmanuil E, Hosking FJ, Vijayakrishnan J, et al. Loci on 7p12.2, 10q21.2 and 14q11.2 are associated with risk of childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1006–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Prasad RB, Hosking FJ, Vijayakrishnan J, et al. Verification of the susceptibility loci on 7p12.2, 10q21.2, and 14q11.2 in precursor B-cell acute lymphoblastic leukemia of childhood. Blood. 2010;115(9):1765–7.

    Article  CAS  PubMed  Google Scholar 

  245. Sherborne AL, Hosking FJ, Prasad RB, et al. Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk. Nat Genet. 2010;42(6):492–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. Vijayakrishnan J, Kumar R, Henrion MY, et al. A genome-wide association study identifies risk loci for childhood acute lymphoblastic leukemia at 10q26.13 and 12q23.1. Leukemia. 2017;31(3):573–9.

    Article  CAS  PubMed  Google Scholar 

  247. Vijayakrishnan J, Sherborne AL, Sawangpanich R, et al. Variation at 7p12.2 and 10q21.2 influences childhood acute lymphoblastic leukemia risk in the Thai population and may contribute to racial differences in leukemia incidence. Leuk Lymphoma. 2010;51(10):1870–4.

    Article  CAS  PubMed  Google Scholar 

  248. Hungate EA, Vora SR, Gamazon ER, et al. A variant at 9p21.3 functionally implicates CDKN2B in paediatric B-cell precursor acute lymphoblastic leukaemia aetiology. Nat Commun. 2016;7:10635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Perez-Andreu V, Roberts KG, Harvey RC, et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat Genet. 2013;45(12):1494–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Trevino LR, Yang W, French D, et al. Germline genomic variants associated with childhood acute lymphoblastic leukemia. Nat Genet. 2009;41(9):1001–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Xu H, Yang W, Perez-Andreu V, et al. Novel susceptibility variants at 10p12.31-12.2 for childhood acute lymphoblastic leukemia in ethnically diverse populations. J Natl Cancer Inst. 2013;105(10):733–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Yang JJ, Cheng C, Devidas M, et al. Genome-wide association study identifies germline polymorphisms associated with relapse of childhood acute lymphoblastic leukemia. Blood. 2012;120(20):4197–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Yang W, Trevino LR, Yang JJ, et al. ARID5B SNP rs10821936 is associated with risk of childhood acute lymphoblastic leukemia in blacks and contributes to racial differences in leukemia incidence. Leukemia. 2010;24(4):894–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Enciso-Mora V, Hosking FJ, Sheridan E, et al. Common genetic variation contributes significantly to the risk of childhood B-cell precursor acute lymphoblastic leukemia. Leukemia. 2012;26(10):2212–5.

    Article  CAS  PubMed  Google Scholar 

  255. Lim JY, Bhatia S, Robison LL, Yang JJ. Genomics of racial and ethnic disparities in childhood acute lymphoblastic leukemia. Cancer. 2014;120(7):955–62.

    Article  PubMed  Google Scholar 

  256. Moriyama T, Relling MV, Yang JJ. Inherited genetic variation in childhood acute lymphoblastic leukemia. Blood. 2015;125(26):3988–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Logan G. Spector Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Spector, L.G., Marcotte, E.L., Kehm, R., Poynter, J.N. (2018). Epidemiology and Hereditary Aspects of Acute Leukemia. In: Wiernik, P., Dutcher, J., Gertz, M. (eds) Neoplastic Diseases of the Blood. Springer, Cham. https://doi.org/10.1007/978-3-319-64263-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64263-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64262-8

  • Online ISBN: 978-3-319-64263-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics