Skip to main content

Prognostic Factors in APL

  • Chapter
  • First Online:
Acute Promyelocytic Leukemia

Abstract

The prognosis of acute promyelocytic leukemia (APL) has significantly improved since the introduction of anthracyclines, but especially after the advent of all-trans retinoic acid (ATRA) and arsenic trioxide (ATO). The identification of prognostic factors is a key process in clinical investigation, since their recognition allows the stratification of disease risks and promotes refined therapeutic adjustments. In fact, most treatments are now designed following risk-adapted strategies in order to optimize the therapeutic efficacy and minimizing side effects. The efficacy of treatment is one major determinant in prognosis. Therefore, the impact of a number of disease and patient characteristics on outcome should be analyzed according to their predictive value with the two main therapeutic approaches currently used for APL, i.e., ATRA plus chemotherapy-based and ATRA plus ATO-based therapy. The prognostic impact of WBC counts on induction response and the risk of relapse are universally accepted, regardless of the type of treatment used. A score defined by the GIMEMA and PETHEMA groups, based on the presenting WBC and platelet counts, is the most widely used for risk stratification in clinical trials and routine practice, because of its simplicity and accuracy. Other prognostic factors, including clinical and molecular markers, have been associated with outcome in some studies, but in general they have not been incorporated into decision-making algorithms, with the exception of age. This chapter includes a comprehensive review of patient- and disease-related prognostic factors, with special emphasis on those reported with state-of-the-art treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bernard J, Weil M, Boiron M, et al. Acute promyelocytic leukemia: results of treatment by daunorubicin. Blood. 1973;41:489–96.

    CAS  PubMed  Google Scholar 

  2. Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72:567–72.

    CAS  PubMed  Google Scholar 

  3. Shen ZX, Chen GQ, Ni JH, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): II. Clinical efficacy and pharmacokinetics in relapsed patients. Blood. 1997;89:3354–60.

    CAS  PubMed  Google Scholar 

  4. de la Serna J, Montesinos P, Vellenga E, et al. Causes and prognostic factors of remission induction failure in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and idarubicin. Blood. 2008;111:3395–402. https://doi.org/10.1182/blood-2007-07-100669.

    Article  CAS  PubMed  Google Scholar 

  5. Adès L, Chevret S, Raffoux E, et al. Is cytarabine useful in the treatment of acute promyelocytic leukemia? Results of a randomized trial from the European Acute Promyelocytic Leukemia Group. J Clin Oncol. 2006;24:5703–10. https://doi.org/10.1200/JCO.2006.08.1596.

    Article  CAS  PubMed  Google Scholar 

  6. Asou N, Kishimoto Y, Kiyoi H, et al. A randomized study with or without intensified maintenance chemotherapy in patients with acute promyelocytic leukemia who have become negative for PML-RARalpha transcript after consolidation therapy: the Japan Adult Leukemia Study Group (JALSG) APL97 study. Blood. 2007;110:59–66. https://doi.org/10.1182/blood-2006-08-043992.

    Article  CAS  PubMed  Google Scholar 

  7. Lo-Coco F, Avvisati G, Vignetti M, et al. Front-line treatment of acute promyelocytic leukemia with AIDA induction followed by risk-adapted consolidation for adults younger than 61 years: results of the AIDA-2000 trial of the GIMEMA Group. Blood. 2010;116:3171–9. https://doi.org/10.1182/blood-2010-03-276196.

    Article  CAS  PubMed  Google Scholar 

  8. Sanz MA, Montesinos P, Rayón C, et al. Risk-adapted treatment of acute promyelocytic leukemia based on all-trans retinoic acid and anthracycline with addition of cytarabine in consolidation therapy for high-risk patients: further improvements in treatment outcome. Blood. 2010;115:5137–46. https://doi.org/10.1182/blood-2010-01-266007.

    Article  CAS  PubMed  Google Scholar 

  9. Burnett AK, Hills RK, Jovanovic JV, et al. Inclusion of chemotherapy in addition to anthracycline in the treatment of acute promyelocytic leukaemia does not improve outcomes: results of the MRC AML15 trial. Leukemia. 2013;27:843–51. https://doi.org/10.1038/leu.2012.360.

    Article  CAS  PubMed  Google Scholar 

  10. Hu J, Liu Y-F, Wu C-F, et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc Natl Acad Sci U S A. 2009;106:3342–7. https://doi.org/10.1073/pnas.0813280106.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Powell BL, Moser B, Stock W, et al. Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710. Blood. 2010;116:3751–7. https://doi.org/10.1182/blood-2010-02-269621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gore SD, Gojo I, Sekeres MA, et al. Single cycle of arsenic trioxide-based consolidation chemotherapy spares anthracycline exposure in the primary management of acute promyelocytic leukemia. J Clin Oncol. 2010;28:1047–53. https://doi.org/10.1200/JCO.2009.25.5158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iland HJ, Bradstock K, Supple SG, et al. All-trans-retinoic acid, idarubicin, and IV arsenic trioxide as initial therapy in acute promyelocytic leukemia (APML4). Blood. 2012;120:1570–80; quiz 1752. https://doi.org/10.1182/blood-2012-02-410746.

    Article  CAS  PubMed  Google Scholar 

  14. Iland HJ, Collins M, Bradstock K, et al. Use of arsenic trioxide in remission induction and consolidation therapy for acute promyelocytic leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML4 study: a non-randomised phase 2 trial. Lancet Haematol. 2015;2:e357–66. https://doi.org/10.1016/S2352-3026(15)00115-5.

    Article  PubMed  Google Scholar 

  15. Zhu H-H, Wu D-P, Jin J, et al. Long-term survival of acute promyelocytic leukaemia patients treated with arsenic and retinoic acid. Br J Haematol. 2016;174:820–2. https://doi.org/10.1111/bjh.13809.

    Article  CAS  PubMed  Google Scholar 

  16. Lo-Coco F, Avvisati G, Vignetti M, et al. Retinoic acid and arsenic trioxide for acute promyelocytic leukemia. N Engl J Med. 2013;369:111–21. https://doi.org/10.1056/NEJMoa1300874.

    Article  CAS  PubMed  Google Scholar 

  17. Burnett AK, Russell NH, Hills RK, et al. Arsenic trioxide and all-trans retinoic acid treatment for acute promyelocytic leukaemia in all risk groups (AML17): results of a randomised, controlled, phase 3 trial. Lancet Oncol. 2015;16:1295–305. https://doi.org/10.1016/S1470-2045(15)00193-X.

    Article  CAS  PubMed  Google Scholar 

  18. Burnett AK, Grimwade D, Solomon E, et al. Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the Randomized MRC Trial. Blood. 1999;93:4131–43.

    CAS  PubMed  Google Scholar 

  19. Di Bona E, Avvisati G, Castaman G, et al. Early haemorrhagic morbidity and mortality during remission induction with or without all-trans retinoic acid in acute promyelocytic leukaemia. Br J Haematol. 2000;108:689–95.

    Article  PubMed  Google Scholar 

  20. Schlenk RF, Germing U, Hartmann F, et al. High-dose cytarabine and mitoxantrone in consolidation therapy for acute promyelocytic leukemia. Leukemia. 2005;19:978–83. https://doi.org/10.1038/sj.leu.2403766.

    Article  CAS  PubMed  Google Scholar 

  21. Sanz MA, Martín G, González M, et al. Risk-adapted treatment of acute promyelocytic leukemia with all-trans-retinoic acid and anthracycline monochemotherapy: a multicenter study by the PETHEMA group. Blood. 2004;103:1237–43. https://doi.org/10.1182/blood-2003-07-2462.

    Article  CAS  PubMed  Google Scholar 

  22. Fenaux P, Chastang C, Chevret S, et al. A randomized comparison of all transretinoic acid (ATRA) followed by chemotherapy and ATRA plus chemotherapy and the role of maintenance therapy in newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood. 1999;94:1192–200.

    CAS  PubMed  Google Scholar 

  23. Lengfelder E, Haferlach C, Saussele S, et al. High dose ara-C in the treatment of newly diagnosed acute promyelocytic leukemia: long-term results of the German AMLCG. Leukemia. 2009;23:2248–58. https://doi.org/10.1038/leu.2009.183.

    Article  CAS  PubMed  Google Scholar 

  24. Rego EM, Kim HT, Ruiz-Argüelles GJ, et al. Improving acute promyelocytic leukemia (APL) outcome in developing countries through networking, results of the International Consortium on APL. Blood. 2013;121:1935–43. https://doi.org/10.1182/blood-2012-08-449918.

    Article  CAS  PubMed  Google Scholar 

  25. Ghavamzadeh A, Alimoghaddam K, Rostami S, et al. Phase II study of single-agent arsenic trioxide for the front-line therapy of acute promyelocytic leukemia. J Clin Oncol. 2011;29:2753–7. https://doi.org/10.1200/JCO.2010.32.2107.

    Article  CAS  PubMed  Google Scholar 

  26. Ravandi F, Estey E, Jones D, et al. Effective treatment of acute promyelocytic leukemia with all-trans-retinoic acid, arsenic trioxide, and gemtuzumab ozogamicin. J Clin Oncol. 2009;27:504–10. https://doi.org/10.1200/JCO.2008.18.6130.

    Article  CAS  PubMed  Google Scholar 

  27. Murray CK, Estey E, Paietta E, et al. CD56 expression in acute promyelocytic leukemia: a possible indicator of poor treatment outcome? J Clin Oncol. 1999;17:293–7. https://doi.org/10.1200/jco.1999.17.1.293.

    Article  CAS  PubMed  Google Scholar 

  28. Montesinos P, Rayón C, Vellenga E, et al. Clinical significance of CD56 expression in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based regimens. Blood. 2011;117:1799–805. https://doi.org/10.1182/blood-2010-04-277434.

    Article  CAS  PubMed  Google Scholar 

  29. Sunter NJ, Scott K, Hills R, et al. A functional variant in the core promoter of the CD95 cell death receptor gene predicts prognosis in acute promyelocytic leukemia. Blood. 2012;119:196–205. https://doi.org/10.1182/blood-2011-04-349803.

    Article  CAS  PubMed  Google Scholar 

  30. Slack JL, Arthur DC, Lawrence D, et al. Secondary cytogenetic changes in acute promyelocytic leukemia--prognostic importance in patients treated with chemotherapy alone and association with the intron 3 breakpoint of the PML gene: a Cancer and Leukemia Group B study. J Clin Oncol. 1997;15:1786–95. https://doi.org/10.1200/jco.1997.15.5.1786.

    Article  CAS  PubMed  Google Scholar 

  31. Hiorns LR, Swansbury GJ, Mehta J, et al. Additional chromosome abnormalities confer worse prognosis in acute promyelocytic leukaemia. Br J Haematol. 1997;96:314–21.

    Article  CAS  PubMed  Google Scholar 

  32. De Botton S, Chevret S, Sanz M, et al. Additional chromosomal abnormalities in patients with acute promyelocytic leukaemia (APL) do not confer poor prognosis: results of APL 93 trial. Br J Haematol. 2000;111:801–6.

    PubMed  Google Scholar 

  33. Hernández JM, Martín G, Gutiérrez NC, et al. Additional cytogenetic changes do not influence the outcome of patients with newly diagnosed acute promyelocytic leukemia treated with an ATRA plus anthracyclin based protocol. A report of the Spanish group PETHEMA. Haematologica. 2001;86:807–13.

    PubMed  Google Scholar 

  34. Cervera J, Montesinos P, Hernández-Rivas JM, et al. Additional chromosome abnormalities in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Haematologica. 2010;95:424–31. https://doi.org/10.3324/haematol.2009.013243.

    Article  CAS  PubMed  Google Scholar 

  35. Poiré X, Moser BK, Gallagher RE, et al. Arsenic trioxide in front-line therapy of acute promyelocytic leukemia (C9710): prognostic significance of FLT3 mutations and complex karyotype. Leuk Lymphoma. 2014;55:1523–32. https://doi.org/10.3109/10428194.2013.842985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Botton S, Dombret H, Sanz M, et al. Incidence, clinical features, and outcome of all trans-retinoic acid syndrome in 413 cases of newly diagnosed acute promyelocytic leukemia. The European APL Group. Blood. 1998;92:2712–8.

    PubMed  Google Scholar 

  37. Jeddi R, Ghédira H, Mnif S, et al. High body mass index is an independent predictor of differentiation syndrome in patients with acute promyelocytic leukemia. Leuk Res. 2010;34:545–7.

    Article  PubMed  Google Scholar 

  38. Breccia M, Mazzarella L, Bagnardi V, et al. Increased BMI correlates with higher risk of disease relapse and differentiation syndrome in patients with acute promyelocytic leukemia treated with the AIDA protocols. Blood. 2012;119:49–54.

    Article  CAS  PubMed  Google Scholar 

  39. Leblebjian H, Deangelo DJ, Skirvin JA, et al. Predictive factors for all-trans retinoic acid-related differentiation syndrome in patients with acute promyelocytic leukemia. Leuk Res. 2013;37:747–51. https://doi.org/10.1016/j.leukres.2013.04.011.

    Article  CAS  PubMed  Google Scholar 

  40. Norsworthy KJ, Altman JK. Optimal treatment strategies for high-risk acute promyelocytic leukemia. Curr Opin Hematol. 2016;23:127–36. https://doi.org/10.1097/MOH.0000000000000215.

    Article  CAS  PubMed  Google Scholar 

  41. Abla O, Ribeiro RC, Testi AM, et al. Predictors of thrombo-hemorrhagic early death in children and adolescents with t(15;17) positive acute promyelocytic leukemia treated with ATRA and chemotherapy. Ann Hematol. 2017;96(9):1449–56. https://doi.org/10.1007/s00277-017-3042-6.

    Article  PubMed  Google Scholar 

  42. Mell LK, Jeong J-H. Pitfalls of using composite primary end points in the presence of competing risks. J Clin Oncol. 2010;28:4297–9. https://doi.org/10.1200/JCO.2010.30.2802.

    Article  PubMed  Google Scholar 

  43. Sanz MA, Lo-Coco F, Martín G, et al. Definition of relapse risk and role of nonanthracycline drugs for consolidation in patients with acute promyelocytic leukemia: a joint study of the PETHEMA and GIMEMA cooperative groups. Blood. 2000;96:1247–53.

    CAS  PubMed  Google Scholar 

  44. Tallman MS, Kim HT, Montesinos P, et al. Does microgranular variant morphology of acute promyelocytic leukemia independently predict a less favorable outcome compared with classical M3 APL? A joint study of the North American Intergroup and the PETHEMA Group. Blood. 2010;116:5650–9. https://doi.org/10.1182/blood-2010-06-288613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Noguera NI, Breccia M, Divona M, et al. Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia. 2002;16:2185–9. https://doi.org/10.1038/sj.leu.2402723.

    Article  CAS  PubMed  Google Scholar 

  46. Au WY, Fung A, Chim CS, et al. FLT-3 aberrations in acute promyelocytic leukaemia: clinicopathological associations and prognostic impact. Br J Haematol. 2004;125:463–9. https://doi.org/10.1111/j.1365-2141.2004.04935.x.

    Article  CAS  PubMed  Google Scholar 

  47. Gale RE, Hills R, Pizzey AR, et al. Relationship between FLT3 mutation status, biologic characteristics, and response to targeted therapy in acute promyelocytic leukemia. Blood. 2005;106:3768–76. https://doi.org/10.1182/blood-2005-04-1746.

    Article  CAS  PubMed  Google Scholar 

  48. Chillón MC, Santamaría C, García-Sanz R, et al. Long FLT3 internal tandem duplications and reduced PML-RARα expression at diagnosis characterize a high-risk subgroup of acute promyelocytic leukemia patients. Haematologica. 2010;95:745–51. https://doi.org/10.3324/haematol.2009.015073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Beitinjaneh A, Jang S, Roukoz H, Majhail NS. Prognostic significance of FLT3 internal tandem duplication and tyrosine kinase domain mutations in acute promyelocytic leukemia: a systematic review. Leuk Res. 2010;34:831–6. https://doi.org/10.1016/j.leukres.2010.01.001.

    Article  CAS  PubMed  Google Scholar 

  50. Hong S-D, Kim Y-K, Kim H-N, et al. Treatment outcome of all-trans retinoic acid/anthracycline combination chemotherapy and the prognostic impact of FLT3/ITD mutation in acute promyelocytic leukemia patients. Korean J Hematol. 2011;46:24–30. https://doi.org/10.5045/kjh.2011.46.1.24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schnittger S, Bacher U, Haferlach C, et al. Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA. Haematologica. 2011;96:1799–807. https://doi.org/10.3324/haematol.2011.049007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Barragán E, Montesinos P, Camos M, et al. Prognostic value of FLT3 mutations in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy. Haematologica. 2011;96:1470–7. https://doi.org/10.3324/haematol.2011.044933.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Breccia M, Loglisci G, Loglisci MG, et al. FLT3-ITD confers poor prognosis in patients with acute promyelocytic leukemia treated with AIDA protocols: long-term follow-up analysis. Haematologica. 2013;98:e161–3. https://doi.org/10.3324/haematol.2013.095380.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lucena-Araujo AR, Kim HT, Jacomo RH, et al. Internal tandem duplication of the FLT3 gene confers poor overall survival in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: an International Consortium on Acute Promyelocytic Leukemia study. Ann Hematol. 2014;93:2001–10. https://doi.org/10.1007/s00277-014-2142-9.

    Article  CAS  PubMed  Google Scholar 

  55. Cicconi L, Divona M, Ciardi C, et al. PML-RARα kinetics and impact of FLT3-ITD mutations in newly diagnosed acute promyelocytic leukaemia treated with ATRA and ATO or ATRA and chemotherapy. Leukemia. 2016;30:1987–92. https://doi.org/10.1038/leu.2016.122.

    Article  CAS  PubMed  Google Scholar 

  56. Shen Y, Fu Y-K, Zhu Y-M, et al. Mutations of epigenetic modifier genes as a poor prognostic factor in acute promyelocytic leukemia under treatment with all-trans retinoic acid and arsenic trioxide. EBioMedicine. 2015;2:563–71. https://doi.org/10.1016/j.ebiom.2015.04.006.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Nolte F, Hecht A, Reinwald M, et al. In acute promyelocytic leukemia (APL) low BAALC gene expression identifies a patient group with favorable overall survival and improved relapse free survival. Leuk Res. 2013;37:378–82. https://doi.org/10.1016/j.leukres.2012.11.018.

    Article  CAS  PubMed  Google Scholar 

  58. Hecht A, Nowak D, Nowak V, et al. High expression of the Ets-related gene (ERG) is an independent prognostic marker for relapse-free survival in patients with acute promyelocytic leukemia. Ann Hematol. 2013;92:443–9. https://doi.org/10.1007/s00277-012-1648-2.

    Article  CAS  PubMed  Google Scholar 

  59. Hecht A, Nolte F, Nowak D, et al. Prognostic importance of expression of the Wilms’ tumor 1 gene in newly diagnosed acute promyelocytic leukemia. Leuk Lymphoma. 2015;56:2289–95. https://doi.org/10.3109/10428194.2014.990011.

    Article  CAS  PubMed  Google Scholar 

  60. Hecht A, Nowak D, Nowak V, et al. A molecular risk score integrating BAALC, ERG and WT1 expression levels for risk stratification in acute promyelocytic leukemia. Leuk Res. 2015;39:1172–7. https://doi.org/10.1016/j.leukres.2015.08.010.

    Article  CAS  Google Scholar 

  61. Lucena-Araujo AR, Kim HT, Jacomo RH, et al. Prognostic impact of KMT2E transcript levels on outcome of patients with acute promyelocytic leukaemia treated with all-trans retinoic acid and anthracycline-based chemotherapy: an International Consortium on Acute Promyelocytic Leukaemia study. Br J Haematol. 2014;166:540–9. https://doi.org/10.1111/bjh.12921.

    Article  CAS  PubMed  Google Scholar 

  62. Santamaría C, Chillón MC, García-Sanz R, et al. The relevance of preferentially expressed antigen of melanoma (PRAME) as a marker of disease activity and prognosis in acute promyelocytic leukemia. Haematologica. 2008;93:1797–805. https://doi.org/10.3324/haematol.13214.

    Article  PubMed  Google Scholar 

  63. Baljevic M, Dumitriu B, Lee J-W, et al. Telomere length recovery: a strong predictor of overall survival in acute promyelocytic leukemia. Acta Haematol. 2016;136:210–8. https://doi.org/10.1159/000448160.

    Article  CAS  PubMed  Google Scholar 

  64. Mandelli F, Diverio D, Avvisati G, et al. Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell’Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood. 1997;90:1014–21.

    CAS  PubMed  Google Scholar 

  65. Sanz MA, Martín G, Rayon C, et al. A modified AIDA protocol with anthracycline-based consolidation results in high antileukemic efficacy and reduced toxicity in newly diagnosed PML/RARalpha-positive acute promyelocytic leukemia. PETHEMA group. Blood. 1999;94:3015–21.

    CAS  PubMed  Google Scholar 

  66. Ferrara F, Morabito F, Martino B, et al. CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy. J Clin Oncol. 2000;18:1295–300. https://doi.org/10.1200/JCO.2000.18.6.1295.

    Article  CAS  PubMed  Google Scholar 

  67. Ito S, Ishida Y, Oyake T, et al. Clinical and biological significance of CD56 antigen expression in acute promyelocytic leukemia. Leuk Lymphoma. 2004;45:1783–9. https://doi.org/10.1080/10428190410001683624.

    Article  CAS  PubMed  Google Scholar 

  68. de Botton S, Sanz MA, Chevret S, et al. Extramedullary relapse in acute promyelocytic leukemia treated with all-trans retinoic acid and chemotherapy. Leukemia. 2005;20:35–41. https://doi.org/10.1038/sj.leu.2404006.

    Article  CAS  Google Scholar 

  69. Montesinos P, Díaz-Mediavilla J, Debén G, et al. Central nervous system involvement at first relapse in patients with acute promyelocytic leukemia treated with all-trans retinoic acid and anthracycline monochemotherapy without intrathecal prophylaxis. Haematologica. 2009;94:1242–9. https://doi.org/10.3324/haematol.2009.007872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Montesinos P, González JD, Gonzalez J, et al. Therapy-related myeloid neoplasms in patients with acute Promyelocytic leukemia treated with all-trans-retinoic acid and anthracycline-based chemotherapy. J Clin Oncol. 2010;28:3872–9. https://doi.org/10.1200/JCO.2010.29.2268.

    Article  CAS  PubMed  Google Scholar 

  71. Martínez-Cuadrón D, Montesinos P, Vellenga E, et al. Long-term outcome of elderly patients with newly diagnosed acute promyelocytic leukemia treated with ATRA plus anthracycline-based therapy. Leukemia accepted article preview 6 June 2017; doi: 10.1038/leu.2017.178.

    Article  CAS  PubMed  Google Scholar 

  72. Yanada M, Matsushita T, Asou N, et al. Severe hemorrhagic complications during remission induction therapy for acute promyelocytic leukemia: incidence, risk factors, and influence on outcome. Eur J Haematol. 2007;78:213–9. https://doi.org/10.1111/j.1600-0609.2006.00803.x.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Sanz M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de la Serna, J., Montesinos, P., Sanz, M.A. (2018). Prognostic Factors in APL. In: Abla, O., Lo Coco, F., Sanz, M. (eds) Acute Promyelocytic Leukemia . Springer, Cham. https://doi.org/10.1007/978-3-319-64257-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64257-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64256-7

  • Online ISBN: 978-3-319-64257-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics