Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

  • 1179 Accesses

Abstract

In Chapter 2, quadratic Lyapunov functions were utilized in the estimation of the domain of attraction for linear systems with saturated linear feedback. Based on different treatments of saturated linear feedback, various conditions were established under which ellipsoids, the level sets of quadratic Lyapunov functions, are contractively invariant and can be used as estimates of the domain of attraction. As generalizations of quadratic Lyapunov functions, Lyapunov functions that are composed from a group of quadratic functions, such as the convex hull Lyapunov function and the max Lyapunov function, were introduced in Chapter 4 and demonstrated to be less conservative than quadratic Lyapunov functions in obtaining estimates of the domain of attraction for linear systems with saturated linear feedback. Such composite quadratic Lyapunov functions were also used in Chapter 5 in the study of the problems of disturbance tolerance and disturbance rejection for linear systems with an algebraic loop and subject to actuator saturation and external disturbances. Note that the Lyapunov functions used in Chapters 2, 4, and 5 do not embody the properties of saturation/deadzone functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. A. Abate, A. Tiwari and S. Sastry, “Box invariance in biologically-inspired dynamical systems,” Automatica, vol. 45, no. 7, pp. 1601–1610, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Alamo, A. Cepeda and D. Limon, “Improved computation of ellipsoidal invariant sets for saturated control systems,” in Proceedings of the 44th IEEE Conference on Decision and Control and the 2005 European Control Conference, pp. 6216–6221, Seville, Spain, 2005.

    Google Scholar 

  3. T. Alamo, A. Cepeda, D. Limon and E.F. Camacho, “A new concept of invariance for saturated systems,” Automatica, vol. 42, no. 9, pp. 1515–1521, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Alamoo, A. Cepeda, D. Limon and E. Camacho, “Estimation of the domain of attraction for saturated discrete-time systems,” International Journal of Systems Science, vol. 37, no. 8, pp. 575–583, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Alvarez and R. Suarez, “Planar linear systems with single saturated feedback,” Systems & Control Letters, vol. 20, no. 4, pp. 319–326, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Bateman and Z. Lin, “An analysis and design method for discrete-time linear systems under nested saturation,” IEEE Transactions on Automatic Control, vol. 47, no. 8, pp. 1305–1310, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bateman and Z. Lin, “An analysis and design method for linear systems under nested saturation,” System & Control Letters, vol. 48, no. 1, pp. 41–52, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Benhayoun, A. Benzaouia, F. Mesquine and A. El Hajjaji, “System stabilization by unsymmetrical saturated state feedback control,” in Proceedings of the 9th Asian Control Conference, pp. 1–5, Istanbul, Turkey, 2013.

    Google Scholar 

  9. M. Benhayoun, A. Benzaouia, F. Mesquine and A. El Hajjaji, “Stabilization of unsymmetrical saturated discrete-time systems: an LMI approach,” in Proceedings of the 3rd International Conference on System and Control, Algiers, Algeria, pp. 478–483, 2013.

    Google Scholar 

  10. A. Benzaouia and C. Burgat, “Regulator problem for linear discrete-time systems with non symmetrical constrained control,” International Journal of Control, vol. 48, no. 6, pp 2441–2451, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Berg, K. Hammett, C. Schwartz and S. Banda, “An analysis of the destabilizing effect of daisy chained rate-limited actuators,” IEEE Transactions on Control System Technology, vol. 4, no. 2, pp. 171–176, 1996.

    Article  Google Scholar 

  12. F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Cao and Z. Lin, “Stability analysis of discrete-time systems with actuator saturation by a saturation-dependent Lyapunov function,” Automatica, vol. 39, no. 10, pp. 1235–1241, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  14. Y. Cao, Z. Lin and D.G. Ward, “An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation,” IEEE Transactions on Automatic Control, vol. 47, no. 1, pp. 140–145, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Chesi, “Robustness analysis of genetic regulatory networks affected by model uncertainty,” Automatica, vol. 47, no. 6, pp. 1131–1138, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  16. Y. Chitour, W. Liu and E. Sontag, “On the continuity and incremental-gain properties of certain saturated linear feedback loops,” International Journal of Robust and Nonlinear Control, vol. 5, pp. 413–440, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Dai, T. Hu, A.R. Teel and L. Zaccarian, “Piecewise quadratic Lyapunov functions for systems with deadzones or saturations,” Systems & Control Letters, vol. 58, no. 5, pp. 365–371, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  18. Q. Dinh, S. Gumussory, W. Michiels and M. Diehl, “Combining convex-concave decompositions and linearization approaches for solving BMIs, with application to static output feedback,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1377–1399, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  19. H. Fang, Z. Lin and T. Hu, “Analysis of linear systems in the presence of actuator saturation and \( \mathcal{L}_{2} \)-disturbances,” Automatica, vol. 40, no. 7, pp. 1229–1238, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Fang, Z. Lin and Y. Shamash, “Disturbance tolerance and rejection of linear systems with imprecise knowledge of actuator input output characteristics,” Automatica, vol. 42, no. 9, pp. 1523–1530, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Fiacchini, S. Tarbouriech and C. Prieur, “Quadratic stability for hybrid systems with nested saturations,” IEEE Transactions on Automatic Control, vol. 57, no. 7, pp. 1832–1838, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Fridman and M. Dambrine, “Control under quantization, saturation and delay: an LMI approach,” Automatica, vol. 45, no. 10, pp. 2258–2264, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  23. F. Forni and S. Galeani, “Gain-scheduled, model-based anti-windup for LPV systems,” Automatica, vol. 46, no. 1, pp. 222–225, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Fuller, “In-the-large stability of relay and saturating control systems with linear controllers,” International Journal of Control, vol. 10, no. 4, pp. 457–480, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. Galeani, S. Onori, A.R. Teel and L. Zaccarian, “Further results on static linear antiwindup design for control systems subject to magnitude and rate saturation,” in Proceedings of the 45th IEEE Conference on Decision and Control, pp. 6373–6378, San Diego, California, 2006.

    Google Scholar 

  26. S. Galeani, A.R. Teel and L. Zaccarian, “Constructive nonlinear anti-windup design for exponentially unstable linear plants,” Systems & Control Letters, vol. 56, no. 2, pp. 357–365, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Goebel, A.R. Teel, T. Hu and Z. Lin, “Conjugate convex Lyapunov functions for dual linear differential inclusions,” IEEE Transactions on Automatic Control, vol. 51, no. 4, pp. 661–666, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  28. J.M. Gomes da Silva Jr and S. Tarbouriech, “Polyhedral regions of local stability for linear discrete-time systems with saturating controls,” IEEE Transactions on Automatic Control, vol. 44, no. 11, pp. 2081–2085, 1999.

    Google Scholar 

  29. J.M. Gomes da Silva Jr and S. Tarbouriech, “Local stabilization of discrete-time linear systems with saturatings controls: an LMI based approach,” IEEE Transactions on Automatic Control, vol. 46, no. 1, pp. 119–125, 2001.

    Google Scholar 

  30. J.M. Gomes da Silva Jr and S. Tarbouriech, “Antiwindup design with guaranteed regions of stability: an LMI-based approach,” IEEE Transactions on Automatic Control, vol. 50, no. 1, pp. 106–111, 2005.

    Google Scholar 

  31. J.M. Gomes da Silva Jr., S. Tarbouriech and R. Reginatto, “Analysis of regions of stability for linear systems with saturating inputs through an anti-windup scheme,” in Proceedings of 2002 IEEE International Symposium on Computer Aided Control Systems Design, pp. 1106–111, Glasgow, Scotland, 2002.

    Google Scholar 

  32. G. Grimm, J. Hatfield, I. Postlethwaite, A.R. Teel, M.C. Turner and L. Zaccarian, “Anti-windup for stable linear systems with input saturation: An LMI based synthesis,” IEEE Transactions on Automatic Control, vol. 48, no. 9, pp. 1509–1525, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. Grimm, A.R. Teel and L. Zaccarian, “Linear LMI-based external anti-windup augmentation for stable linear systems,” Automatica, vol. 40, no. 11, pp. 1987–1996, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Hanson, Geometry forN-dimensional graphics, in Graphics Gems IV, P. Heckbert, Ed. New York: Academic Press, 1994.

    Google Scholar 

  35. H. Hindi and S. Boyd, “Analysis of linear systems with saturating using convex optimization,” in Proceedings of the 37th IEEE Conference on Decision and Control, pp. 903–908, Tampa, Florida, 1998.

    Google Scholar 

  36. T. Hu and Z. Lin, Control Systems with Actuator Saturation: Analysis and Design, Birkhauser, Boston, 2001.

    Book  MATH  Google Scholar 

  37. T. Hu and Z. Lin, “On Semi-global stabilizability of anti-stable systems by saturated linear feedback,” IEEE Transactions on Automatic Control, vol. 47, no. 7, pp. 1193–1198, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Hu and Z. Lin, “Exact characterization of invariant ellipsoids for linear systems with saturating actuators,” IEEE Transactions on Automatic Control, vol. 47, no. 1, pp. 164–169, 2002.

    Article  MathSciNet  Google Scholar 

  39. T. Hu and Z. Lin, “On the tightness of a recent set invariance condition under actuator saturation,” Systems & Control Letters, vol. 49, no. 5, pp. 389–399, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  40. T. Hu and Z. Lin, “Composite quadratic Lyapunov functions for constrained control systems,” IEEE Transactions on Automatic Control, vol. 48, no. 3, pp. 440–452, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  41. T. Hu and Z. Lin, “Absolute stability with a generalized sector condition,” IEEE Transactions on Automatic Control, vol. 49, no. 4, pp. 535–548, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Hu and Z. Lin, “Properties of the composite quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 49, no. 7, pp. 1162–1167, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Hu and Z. Lin, “Absolute stability analysis of discrete-time systems with composite quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 781–796, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  44. T. Hu and Z. Lin, “Stabilization of switched systems via composite quadratic functions,” IEEE Transactions on Automatic Control, vol. 53, no. 11, pp. 2571–2585, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Hu, Z. Lin and B. Chen, “Analysis and design for discrete-time linear systems subject to actuator saturation,” Systems & Control Letters, vol. 45, no. 2, pp. 97–112, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  46. T. Hu, Z. Lin and B. Chen, “An analysis and design method for linear systems subject to actuator saturation and disturbances,” Automatica, vol. 38, no. 2, pp. 351–359, 2002.

    Article  MATH  Google Scholar 

  47. T. Hu, Z. Lin and L. Qiu, “An explicit description of null controllable regions of linear systems with saturating actuators,” Systems & Control Letters, vol. 47, no. 1, pp. 65–78, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Hu, Z. Lin and Y. Shamash, “Semi-global stabilization with guaranteed regional performance of linear systems subject to actuator saturation,” Systems & Control Letters, vol. 43, no. 3, pp. 203–210, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  49. T. Hu, Z. Lin and Y. Shamash, “On maximizing the convergence rate for linear systems with input saturation,” IEEE Transactions on Automatic Control, vol. 48, no. 7, pp. 1249–1253, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  50. T. Hu, A. Pitsillides and Z. Lin, “Null controllability and stabilization of linear systems subject to asymmetric actuator saturation,” in Proceedings of the 39th IEEE Conference on Decision and Control, pp. 3254–3259, Sydney, Australia, 2000.

    Google Scholar 

  51. T. Hu, A.R. Teel and L. Zaccarian, “Stability and performance for saturated systems via quadratic and nonquadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 51, no. 11, pp. 1770–1785, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  52. T. Hu, A.R. Teel and L. Zaccarian, “Anti-windup synthesis for linear control systems with input saturation: achieving regional, nonlinear performance,” Automatica, vol. 44, no. 2, pp. 512–519, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  53. H. Ichihara and E. Nobuyama, “\( \mathcal{L}_{2} \)-gain analysis and control design of linear systems with input saturation using matrix sum of squares relaxation,” in Proceedings of the 2006 American Control Conference, pp. 837–3842, Minneapolis, Minnesota, 2006.

    Google Scholar 

  54. E. Johnson and S. Kannan, “Nested saturation with guaranteed real poles,” in Proceedings of the 2003 American Control Conference, Denver, Colorado, pp. 497–502, 2003.

    Google Scholar 

  55. T. Kailath, Linear Systems, Englewood Cliffs, NJ: Prentice-Hall, 1980.

    MATH  Google Scholar 

  56. C. Kao, “\( \mathcal{L}_{2} \)-gain of a double integrator with feedback loop saturation nonlinearity,” IEEE Transactions on Automatic Control, vol. 46, no. 4, pp. 501–504, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  57. V. Kapila, A. Sparks and H. Pan, “Control of systems with actuator saturation nonlinearities: an LMI approach,” International Journal of Control, vol 74, no. 12, pp. 586–599, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  58. Y. Li and Z. Lin, “Saturation-based switching anti-windup design for linear systems with nested input saturation,” Automatica, vol. 50, no. 11, pp. 2888–2896, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  59. Y. Li and Z. Lin, “A complete characterization of the maximal contractively invariant ellipsoids of linear systems under saturated linear feedback,” IEEE Transactions on Automatic Control, vol. 60, no. 1, pp. 179–185, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  60. Y. Li and Z. Lin, “Improvements to the linear differential inclusion approach to Stability analysis of linear systems with saturated linear feedback,” Automatica, vol 49, no. 3, pp. 821–828, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  61. Y. Li and Z. Lin, “Design of saturation-based switching anti-windup gains for the enlargement of the domain of attraction,” IEEE Transactions on Automatic Control, vol. 58, no. 7, pp. 1810–1816, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  62. Y. Li and Z. Lin, “Stability and performance of saturated systems via partitioning of the virtual input space,” Automatica, vol. 53, pp. 85–93, 2015.

    Article  MathSciNet  MATH  Google Scholar 

  63. Y. Li and Z. Lin, “A switching anti-windup design based on partitioning of the input space,” Systems & Control Letters, vol. 88, no. 2, pp. 39–46, 2016.

    Article  MathSciNet  MATH  Google Scholar 

  64. Y. Li and Z. Lin, “On the Generalized Piecewise Lyapunov Function Approach to Estimating the Domain of Attraction of a Saturated System,” in Proceedings of The 1st IFAC Conference on Modelling, Identification and Control of Nonlinear Systems, pp. 120–125, Saint Petersburg, Russia, 2015.

    Google Scholar 

  65. Y. Li and Z. Lin, “On the estimation of the domain of attraction for linear systems with asymmetric actuator saturation via asymmetric Lyapunov functions,” in Proceedings of the 2016 American Control Conference, pp. 1136–1141, Boston, Massachusetts, 2016.

    Google Scholar 

  66. Z. Lin, “Robust semi-global stabilization of linear systems with imperfect actuators,” Systems & Control Letters, vol. 29, pp. 215–221, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  67. Z. Lin, “Global control of linear systems with saturating actuators,” Automatica, vol. 34, no. 7, pp. 897–905, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  68. Z. Lin, Low Gain Feedback, Springer, London, 1999.

    MATH  Google Scholar 

  69. Z. Lin and H. Fang, “On asymptotic stabilizability of linear systems with delayed input,” IEEE Transactions on Automatic Control, vol. 52, no. 6, pp. 998–1013, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  70. Z. Lin, M. Pachter and S. Banda, “Toward improvement on tracking performance - nonlinear feedback for linear systems,” International Journal of Control, vol. 70, pp. 1–11, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  71. Z. Lin and A. Saberi, “Semi-global exponential stabilization of linear systems subject to ‘input saturation’ via linear feedbacks,” Systems & Control Letters, vol. 21, no. 3, pp. 225–239, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  72. Z. Lin and A. Saberi, “A semi-global low-and-high gain design technique for linear systems with input saturation - stabilization and disturbance rejection,” International Journal of Robust and Nonlinear Control, vol. 5, no. 5, pp. 381–398, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  73. Z. Lin, A. Saberi and A.R. Teel, “Almost disturbance decoupling with internal stability for linear systems subject to input saturation - state feedback case,” Automatica, vol. 32, no. 4, pp. 619–624, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  74. Z. Lin, A.A. Stoorvogel and A. Saberi, “Output regulation for linear systems subject to input saturation,” Automatica, vol. 32, no. 1, pp. 29–47, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  75. W. Liu, Y. Chitour and E. Sontag, “On finite-gain stabilizability of linear systems subject to input saturation,” SIAM Journal on Control and Optimization, vol. 34, no. 4, pp. 1190–1219, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  76. L. Lu and Z. Lin, “Analysis and design of singular linear systems under actuator saturation and \( \mathcal{L}_{2}/\mathcal{L}_{\infty } \) disturbances,” Systems & Control Letters, vol. 57, pp. 904–912, 2008.

    Article  MathSciNet  Google Scholar 

  77. L. Lu and Z. Lin, “Design of switched linear systems in the presence of actuator saturation,” IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1536–1542, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  78. L. Lu and Z. Lin, “A switching anti-windup design using multiple Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 55, no. 1, pp. 142–148, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  79. N. Marchand and A. Hably, “Global stabilization of multiple integrators with bounded controls,” Automatica, vol. 41, no. 12, pp. 2147–2152, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  80. A. Megretski, “\( \mathcal{L}_{2} \) BIBO output feedback stabilization with saturated control,” in Proceedings of the 13th IFAC World Congress, pp. 435–440, San Francisco, California, 1996.

    Google Scholar 

  81. B. Milani, “Piecewise-affine Lyapunov functions for discrete-time linear systems with saturating controls,” Automatica, vol. 38, no. 12, pp. 2177–2184, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  82. T. Nguyen and F. Jabbari, “Disturbance attenuation for systems with input saturation: an LMI approach,” IEEE Transactions on Automatic Control, vol. 44, no. 4, pp. 852–857, 1999.

    Article  MathSciNet  MATH  Google Scholar 

  83. T. Nguyen and F. Jabbari, “Output feedback controllers for disturbance attenuation with actuator amplitude and rate saturation,” Automatica, vol. 36, no. 9, pp. 1339–1346, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  84. C. Paim, S. Tarbouriech, J.M. Gomes da Silva Jr. and E. Castelan, “Control design for linear systems with saturating actuators and \( \mathcal{L}_{2} \)-bounded disturbances,” in Proceedings of the 41st IEEE Conference on Decision and Control, pp. 4148–4153, Las Vegas, Nevada, 2002.

    Google Scholar 

  85. A. Saberi, Z. Lin and A.R. Teel, “Control of linear systems with saturating actuators,” IEEE Transactions on Automatic Control, vol. 41, no.3, pp. 368–378, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  86. S. Sajjadi-Kia and F. Jabbari, “Multi-stage anti-windup compensation for open-loop stable plants,” IEEE Transactions on Automatic Control, vol. 56, no. 9, pp. 2166–2172, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  87. E.D. Sontag, “An algebraic approach to bounded controllability of linear systems,” International Journal of Control, vol. 39, no. 1, pp. 181–188, 1984.

    Article  MathSciNet  MATH  Google Scholar 

  88. E.D. Sontag and H.J. Sussmann, “Nonlinear output feedback design for linear systems with saturating controls,” in Proceedings of the 29th IEEE Conference on Decision and Control, pp. 3414–3416, Honolulu, Hawaii, 1990.

    Google Scholar 

  89. R. Suarez, J. Alvarez-Ramirez and J. Solis-Daun, “Linear systems with bounded inputs: global stabilization with eigenvalue placement,” International Journal of Robust and Nonlinear Control, vol 7, no. 9, pp. 835–845, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  90. H.J. Sussmann, E.D. Sontag and Y. Yang, “A general result on the stabilization of linear systems using bounded controls,” IEEE Transactions on Automatic Control, vol. 39, no. 12, pp. 2411–2425, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  91. H.J. Sussmann and Y. Yang, “On the stabilizability of multiple integrators by means of bounded feedback controls,” in Proceedings of the 30th IEEE Conference on Decision and Control, pp. 70–72, Brighton, England, 1991.

    Google Scholar 

  92. S. Tarbouriech, G. Garcia, J.M. Gomes da Silva Jr and I. Queinnec, Stability and Stabilization of Linear systems with Saturating Actuators, Springer, London, 2011.

    Google Scholar 

  93. S. Tarbouriech, C. Prieur, and J. M., Jr. Gomes da Silva, “Stability analysis and stabilization of systems presenting nested saturations,” IEEE Transactions on Automatic Control, vol. 51, no. 8, pp. 1364–1371, 2006.

    Google Scholar 

  94. A.R. Teel, “Global stabilization and restricted tracking for multiple integrators with bounded controls,” Systems & Control Letters, vol. 18, no. 3, pp. 165–171, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  95. A.R. Teel, “Linear systems with input nonlinearities: global stabilization by scheduling a family of H -type controllers,” International Journal of Robust and Nonlinear Control, vol. 5, no. 5, pp. 399–441, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  96. A.R. Teel, “Semi-global stabilization of linear controllable systems with input nonlinearities,” IEEE Transactions on Automatic Control, vol. 40, no. 1, pp. 96–100, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  97. P.Y. Tiwari, E.F. Mulder and M.V. Kothare, “Synthesis of stabilizing antiwindup controllers using piecewise quadratic Lyapunov functions,” IEEE Transactions on Automatic Control, vol. 52, no. 12, pp. 2341–2345, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  98. F. Tyan and D. Bernstein, “Dynamic output feedback compensation for linear systems with independent amplitude and rate saturation,” International Journal of Control, vol. 67, no. 1, pp. 89–116, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  99. N. Wada, T. Oomoto and M. Saeki, “\( \mathcal{L}_{2} \)-gain analysis of discrete-time systems with saturation nonlinearity using parameter dependent Lyapunov function,” in Proceedings on the 43rd IEEE Conference on Decision and Control, pp. 1952–1957, Paradise Islands, The Bahamas, 2004.

    Google Scholar 

  100. F. Wu and B. Lu, “Anti-windup control design for exponentially unstable LTI systems with actuator saturation,” Systems & Control Letters, vol. 52, no. 3–4, pp. 305–322, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  101. F. Wu, and M. Soto, “Extended LTI anti-windup control with actuator magnitude and rate saturations,” in Proceedings of the 42nd IEEE conference on decision and control, pp. 2784–2789, Maui, Hawaii, 2003.

    Google Scholar 

  102. C. Yuan and F. Wu, “A switching control approach for linear systems subject to asymmetric actuator saturation,” in Proceedings of the 33rd Chinese Control Conference, pp. 3959–3964, Nanjing, China, 2014.

    Google Scholar 

  103. L. Zaccarian and A.R. Teel, “Nonlinear scheduled anti-windup design for linear systems,” IEEE Transactions on Automatic Control, vol. 49, no. 11, pp. 2055–2061, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  104. T. Zhang, G. Feng, H. Liu and J. Lu, “Piecewise fuzzy anti-windup dynamic output feedback control of nonlinear processes with amplitude and rate actuator saturations,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 2, pp. 253–264, 2009.

    Article  Google Scholar 

  105. B. Zhou, “Analysis and design of discrete-time linear systems with nested actuator saturations,” Systems & Control Letters, vol. 62, no. 10, pp. 871–879, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  106. B. Zhou, G. Duan and Z. Lin, “A parametric Lyapunov equation approach to the design of low gainfeedback,” IEEE Transactions on Automatic Control, vol. 53, no. 6, pp. 1549–1554, 2008.

    Article  Google Scholar 

  107. B. Zhou, W. Zheng and G. Duan, “An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation,” Automatica, vol. 47, no. 2, pp. 306–315, 2011.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Li, Y., Lin, Z. (2018). Control Systems with an Algebraic Loop. In: Stability and Performance of Control Systems with Actuator Saturation. Control Engineering. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-64246-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64246-8_7

  • Published:

  • Publisher Name: Birkhäuser, Cham

  • Print ISBN: 978-3-319-64244-4

  • Online ISBN: 978-3-319-64246-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics