Advertisement

A Lightweight Regression Method to Infer Psycholinguistic Properties for Brazilian Portuguese

  • Leandro Borges dos SantosEmail author
  • Magali Sanches Duran
  • Nathan Siegle Hartmann
  • Arnaldo CandidoJr.
  • Gustavo Henrique Paetzold
  • Sandra Maria Aluisio
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10415)

Abstract

Psycholinguistic properties of words have been used in various approaches to Natural Language Processing tasks, such as text simplification and readability assessment. Most of these properties are subjective, involving costly and time-consuming surveys to be gathered. Recent approaches use the limited datasets of psycholinguistic properties to extend them automatically to large lexicons. However, some of the resources used by such approaches are not available to most languages. This study presents a method to infer psycholinguistic properties for Brazilian Portuguese (BP) using regressors built with a light set of features usually available for less resourced languages: word length, frequency lists, lexical databases composed of school dictionaries and word embedding models. The correlations between the properties inferred are close to those obtained by related works. The resulting resource contains 26,874 words in BP annotated with concreteness, age of acquisition, imageability and subjective frequency.

Keywords

Psycholinguistic properties Brazilian Portuguese Lexical resources 

Notes

Acknowledgments

This work was supported by CNPq and FAPESP.

References

  1. 1.
    Graesser, A.C., McNamara, D.S.: Computational analyses of multilevel discourse comprehension. Top. Cogn. Sci. 3(2), 371–98 (2011)CrossRefGoogle Scholar
  2. 2.
    Cameirao, M.L., Vicente, S.G.: Age-of-acquisition norms for a set of 1,749 Portuguese words. Behav. Res. Meth. 42(2), 474–480 (2010)CrossRefGoogle Scholar
  3. 3.
    Fellbaum, C.: Wordnet: An Electronic Lexical Database. MIT Press, Cambridge (1998)Google Scholar
  4. 4.
    Feng, S., Cai, Z., Crossley, S.A., McNamara, D.S.: Simulating human ratings on word concreteness. In: Proceedings of 24th FLAIRS Conference, pp. 1–6 (2011)Google Scholar
  5. 5.
    Geiger, P.: Minidicionário contemporâneo da língua portuguesa (2011)Google Scholar
  6. 6.
    Janczura, G., Castilho, G., Rocha, N., van Erven, T., Huang, T.: Normas de concretude para 909 palavras da língua portuguesa. Psicologia: Teoria e Pesquisa, pp. 195–204 (2007)Google Scholar
  7. 7.
    Marques, J.F., Fonseca, F.L., Morais, S., Pinto, I.A.: Estimated age of acquisition norms for 834 Portuguese nouns and their relation with other psycholinguistic variables. Behav. Res. Meth. 39(3), 439–444 (2007)Google Scholar
  8. 8.
    Marques, J.F.: Normas de imagética e concreteza para substantivos comuns. Laboratório de Psicologia 3, 65–75 (2005)Google Scholar
  9. 9.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
  10. 10.
    Paetzold, G., Specia, L.: Collecting and exploring everyday language for predicting psycholinguistic properties of words. In: Proceedings of COLING 2016, pp. 1669–1679 (2016)Google Scholar
  11. 11.
    Paetzold, G.H., Specia, L.: Inferring psycholinguistic properties of words. In: Proceedings of NAACL-HLT 2016, pp. 435–440 (2016)Google Scholar
  12. 12.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of EMNLP 2014, pp. 1532–1543 (2014)Google Scholar
  13. 13.
    Singh, A.D., Mehta, P., Husain, S., Rajkumar, R.: Quantifying sentence complexity based on eye-tracking measures (2016)Google Scholar
  14. 14.
    Soares, A.P., Costa, A.S., Machado, J., Comesana, M., Oliveira, H.M.: The Minho Word Pool: norms for imageability, concreteness, and subjective frequency for 3,800 portuguese words. Behav. Res. Meth. 49(3), 1065–1081 (2017)CrossRefGoogle Scholar
  15. 15.
    Tang, K.: A 61 million word corpus of Brazilian Portuguese film subtitles as a resource for linguistic research. UCL Work Pap. Linguist. 24, 208–214 (2012)Google Scholar
  16. 16.
    Vajjala, S., Meurers, D.: Readability assessment for text simplification from analysing documents to identifying sentential simplifications. Recent Adv. Autom. Readability Assess. Text Simplification 165(2), 194–222 (2014)Google Scholar
  17. 17.
    Vajjala, S., Meurers, D.: Readability-based sentence ranking for evaluating text simplification. arXiv preprint arXiv:1603.06009 (2016)
  18. 18.
    Xu, C., Tao, D., Xu, C.: A survey on multi-view learning. arXiv preprint: arXiv:1304.5634 (2013)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Leandro Borges dos Santos
    • 1
    Email author
  • Magali Sanches Duran
    • 1
  • Nathan Siegle Hartmann
    • 1
  • Arnaldo CandidoJr.
    • 2
  • Gustavo Henrique Paetzold
    • 3
  • Sandra Maria Aluisio
    • 1
  1. 1.Institute of Mathematics and Computer SciencesUniversity of São PauloSão PauloBrazil
  2. 2.Federal Technological University of Paraná (UTFPR), MedianeiraMedianeiraBrazil
  3. 3.Department of Computer ScienceUniversity of SheffieldSheffieldEngland

Personalised recommendations