Advertisement

Multipurpose Public-Key Encryption

  • Rui Zhang
  • Kai HeEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10418)

Abstract

We propose a new type of public-key schemes, that simultaneously satisfies selective opening (SO) security, key-dependent message (KDM) security and leakage-resilience. Our construction can be instantiated under the quadratic residuosity (QR) assumption or decisional composite residuosity (DCR) assumption. With the decisional Diffie-Hellman (DDH) assumption holding on a subgroup of QR or DCR group, the instantiated encryption schemes enjoy key-privacy in addition.

Keywords

Public key encryption Selective opening KDM-security Leakage resilience Key privacy 

Notes

Acknowledgments

We would like to thank Yang Tao, Gaosheng Tan and the anonymous reviewers for their helpful discussions and comments. This work was partially supported by National Natural Science Foundation of China (No. 61632020, 61472416 and 61602468) and Key Research Project of Zhejiang Province (No. 2017C01062).

References

  1. 1.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001). doi: 10.1007/3-540-45682-1_33 CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01001-9_1 CrossRefGoogle Scholar
  3. 3.
    Black, J., Rogaway, P., Shrimpton, T.: Encryption-scheme security in the presence of key-dependent messages. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 62–75. Springer, Heidelberg (2003). doi: 10.1007/3-540-36492-7_6 CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Halevi, S., Hamburg, M., Ostrovsky, R.: Circular-secure encryption from decision Diffie-Hellman. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 108–125. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85174-5_7 CrossRefGoogle Scholar
  5. 5.
    Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 1–20. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14623-7_1 CrossRefGoogle Scholar
  6. 6.
    Camenisch, J., Chandran, N., Shoup, V.: A public key encryption scheme secure against key dependent chosen plaintext and adaptive chosen ciphertext attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 351–368. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01001-9_20 CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anonymous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001). doi: 10.1007/3-540-44987-6_7 CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002). doi: 10.1007/3-540-46035-7_4 CrossRefGoogle Scholar
  9. 9.
    Fehr, S., Hofheinz, D., Kiltz, E., Wee, H.: Encryption schemes secure against chosen-ciphertext selective opening attacks. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 381–402. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_20 CrossRefGoogle Scholar
  10. 10.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot attacks on encryption keys. In: van Oorschot, P.C. (ed.) USENIX, pp. 45–60 (2008)Google Scholar
  12. 12.
    Hemenway, B., Libert, B., Ostrovsky, R., Vergnaud, D.: Lossy encryption: constructions from general assumptions and efficient selective opening chosen ciphertext security. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 70–88. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-25385-0_4 CrossRefGoogle Scholar
  13. 13.
    Kitagawa, F., Matsuda, T., Hanaoka, G., Tanaka, K.: On the key dependent message security of the fujisaki-okamoto constructions. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9614, pp. 99–129. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49384-7_5 CrossRefGoogle Scholar
  14. 14.
    Lu, X., Li, B., Jia, D.: KDM-CCA security from RKA secure authenticated encryption. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 559–583. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46800-5_22 Google Scholar
  15. 15.
    Malkin, T., Teranishi, I., Yung, M.: Efficient circuit-size independent public key encryption with KDM security. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 507–526. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20465-4_28 CrossRefGoogle Scholar
  16. 16.
    Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_2 CrossRefGoogle Scholar
  17. 17.
    Qin, B., Liu, S.: Leakage-resilient chosen-ciphertext secure public-key encryption from hash proof system and one-time lossy filter. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 381–400. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-42045-0_20 CrossRefGoogle Scholar
  18. 18.
    Wee, H.: KDM-security via homomorphic smooth projective hashing. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 159–179. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49387-8_7 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations