Advertisement

Deterministic Identity-Based Encryption from Lattices with More Compact Public Parameters

  • Daode Zhang
  • Fuyang FangEmail author
  • Bao Li
  • Xin Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10418)

Abstract

Xie et al. (SCN 2012) proposed the first deterministic identity-based encryption (DIBE) scheme with an adaptive security in the auxiliary-input setting, under the learning with errors (LWE) assumption. However, the master public key consists of \(\mathcal {O}(\lambda )\) number of basic matrices.

  • In this paper, we consider to construct adaptively secure DIBE schemes from partitioning functions (IACR’17). By instantiating the DIBE construction with two partitioning functions, we get two DIBE schemes in which the master public key consists of \(\mathcal {O}(\log ^3 \lambda )\) (respectively, \(\mathcal {O}(\log ^2 \lambda )\)) number of basic matrices in the first (respectively, the second) DIBE scheme.

  • We also change the identity-based encryption (IBE) scheme of Yamada16 (Eurocrypt’16) to construct DIBE scheme with the same security from the LWE problem. And the master public key consists of \(\mathcal {O}(\lambda ^{1/d})\) number of basic matrices, where \(d\ge 2\) is a flexible integer.

Keywords

Deterministic identity-based encryption LWE Adaptively secure Auxiliary-input Compact public parameters 

Notes

Acknowledgments

We thank the anonymous IWSEC’2017 reviewers for their helpful comments. This work is supported by the Foundation of Science and Technology on Communication Security Laboratory (9140C110206150C11049) and the National Nature Science Foundation of China (No.61379137, No.61502480, No.61572495, No.61602473).

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_28 CrossRefGoogle Scholar
  2. 2.
    Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). doi: 10.1007/3-540-48523-6_1 CrossRefGoogle Scholar
  3. 3.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS 2009, pp. 75–86 (2009)Google Scholar
  4. 4.
    Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-based (lossy) trapdoor functions and applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_15 CrossRefGoogle Scholar
  5. 5.
    Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49096-9_9 CrossRefGoogle Scholar
  6. 6.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_27 CrossRefGoogle Scholar
  7. 7.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.D.: Fuzzy extractors: how to generate strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Escala, A., Herranz, J., Libert, B., Ràfols, C.: Identity-based lossy trapdoor functions: new definitions, hierarchical extensions, and implications. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 239–256. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54631-0_14 CrossRefGoogle Scholar
  9. 9.
    Fang, F., Li, B., Xianhui, L., Liu, Y., Jia, D., Xue, H.: (Deterministic) Hierarchical identity-based encryption from learning with rounding over small modulus. In: AsiaCCS 2016, pp. 907–912 (2016)Google Scholar
  10. 10.
    Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the learning with errors assumption. In: ICS 2010, pp. 230–240 (2010)Google Scholar
  11. 11.
    Jager, T.: Verifiable random functions from weaker assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 121–143. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-46497-7_5 CrossRefGoogle Scholar
  12. 12.
    Katsumata, S., Yamada, S.: Partitioning via non-linear polynomial functions: more compact ibes from ideal lattices and bilinear maps. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 682–712. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53890-6_23 CrossRefGoogle Scholar
  13. 13.
    Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-29011-4_41 CrossRefGoogle Scholar
  14. 14.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93 (2005)Google Scholar
  15. 15.
    Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). doi: 10.1007/3-540-39568-7_5 CrossRefGoogle Scholar
  16. 16.
    Xie, X., Xue, R., Zhang, R.: Deterministic public key encryption and identity-based encryption from lattices in the auxiliary-input setting. In: Visconti, I., Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-32928-9_1 CrossRefGoogle Scholar
  17. 17.
    Yamada, S.: Adaptively secure identity-based encryption from lattices with asymptotically shorter public parameters. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 32–62. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5_2 CrossRefGoogle Scholar
  18. 18.
    Yamada, S.: Asymptotically compact adaptively secure lattice ibes and verifiable random functions via generalized partitioning techniques. Cryptology ePrint Archive, Report 2017/096 (2017). http://eprint.iacr.org/2017/096
  19. 19.
    Zhang, J., Chen, Y., Zhang, Z.: Programmable hash functions from lattices: short signatures and IBEs with small key sizes. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 303–332. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53015-3_11 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Daode Zhang
    • 1
    • 3
  • Fuyang Fang
    • 1
    • 3
    Email author
  • Bao Li
    • 1
    • 2
    • 3
  • Xin Wang
    • 1
    • 3
  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Science and Technology on Communication Security LaboratoryChengduChina
  3. 3.School of Cyber SecurityUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations